Skip to main content
Log in

Acute Pancreatitis

An Overview of Emerging Pharmacotherapy

  • Immunological Disorders
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Biotechnology has enabled greater understanding of the cellular and molecular biology of acute pancreatitis and has offered the possibility of a new generation of biodrugs to treat this disease. The proteases inhibitor gabexate mesilate has proven to be effective for endoscopie retrograde cholangiopancreatography-induced pancreatitis but, given the low incidence of this condition, its cost-effectiveness has to be evaluated. Randomised controlled trials have shown no benefit for somatostatin or its analogue octreotide although some practitioners continue to use it to prevent organ damage and complicated disease. Antioxidant therapy has been thoroughly investigated in animal models but the results of large scale clinical trials are awaited. The use of kinin inhibitors is in its infancy and has not yet reached the clinic. Considerable interest has been engendered in nitric oxide (NO), firstly for its beneficial use in acute lung injury resulting from the multiorgan failure of acute pancreatitis and secondly, the possible benefits of NOS inhibition to prevent pancreatitic necrosis. Tumour necrosis factor antagonism and interleukin- 1 blockade are 2 therapies awaiting clinical trials because there is overwhelming evidence of their benefit in animal models. Interleukin-10, an anticytokine, may have similar benefits and has been shown to be beneficial in animal models when given as pretreatment.

The only biodrug that has progressed to phase III clinical trials is the platelet-activating factor antagonist lexipafant. Successful phase II studies have been followed up by a phase III study indicating benefits in reduction of organ failure and pseudocyst formation and reduction in mortality when treatment is given within 48 hours of onset of the disease. Finally, prophylactic therapy with selected antibacterials in patients with predicted severe disease can reduce local complications and possibly mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourke JB. Incidence and aetiology of acute pancreatitis. BMJ 1977; 2: 1688–9

    Google Scholar 

  2. Corfield AP, Cooper MJ, Williamson RCN. Acute pancreatitis: a lethal disease of increasing incidence. Gut 1985; 26: 724–9

    Article  PubMed  CAS  Google Scholar 

  3. Wilson C, Imrie CW. Changing patterns of incidence and mortality from acute pancreatitis in Scotland, 1961-1985. Br J Surg 1990; 77: 731–4

    Article  PubMed  CAS  Google Scholar 

  4. Siggurdsson GH. Intensive care management of acute pancreatitis. Dig Surg 1994; 11: 231–41

    Article  Google Scholar 

  5. Neoptolemos JP, London NJ, James D, et al. Controlled trial of urgent endoscopic retrograde cholangiopancreatography and endoscopic sphincterotomy versus conservative treatment for acute pancreatitis due to gallstones. Lancet 1988; ii: 979–83

    Article  Google Scholar 

  6. Fan ST, Lai CS, Mok FPT. Early treatment of acute biliary pancreatitis by endoscopie papillotomy. N Engl J Med 1993; 328: 228–32

    Article  PubMed  CAS  Google Scholar 

  7. Folsch UR, Nitsche R, Ludtke R, et al. Early ERCP and papillotomy compared with conservative treatment for acute biliary pancreatitis. N Engl J Med 1997; 336: 237–42

    Article  PubMed  CAS  Google Scholar 

  8. McFadden W, Reber HA. Indications for surgery in severe acute pancreatitis. Int J Pancreatol 1994; 15: 83–90

    PubMed  CAS  Google Scholar 

  9. DeBeaux AC, Palmer KR, Carter DC. Factors influencing morbidity and mortality in acute pancreatitis; an analysis of 279 cases. Gut 1995; 37: 121–6

    Article  CAS  Google Scholar 

  10. Banks PA. Practice guidelines in acute pancreatitis. Am J Gastroenterol 1997; 92: 377–86

    PubMed  CAS  Google Scholar 

  11. Mann DV, Hershman MJ, Hittinger R, et al. Multicentre audit of death from acute pancreatitis. Br J Surg 1994; 81: 890–3

    Article  PubMed  CAS  Google Scholar 

  12. Steer ML, Meldolosi J. The cell biology of experimental pancreatitis. N Engl J Med 1987; 316: 144–50

    Article  PubMed  CAS  Google Scholar 

  13. Goff JS. The effect of ethanol on the pancreatic duct sphincter of Oddi. Am J Gastroenterol 1993; 88: 656–60

    PubMed  CAS  Google Scholar 

  14. Meier P. Who gets and what causes pancreatitis. J Lab Clin Med 1995; 125: 298–300

    PubMed  CAS  Google Scholar 

  15. Wedgwood KR, Adler G, Kern H, et al. Effects of oral agents on pancreatic duct permeability: a model of acute alcoholic pancreatitis. Dig Dis Sci 1986; 31: 1081–8

    Article  PubMed  CAS  Google Scholar 

  16. Niederau C, Neiderau M, Luthen R, et al. Pancreatic exocrine secretion in acute experimental pancreatitis. Gastroenterology 1990; 99: 1120–7

    PubMed  CAS  Google Scholar 

  17. Fernandez del Castillo C, Rattner DW, Warshaw AL. Acute pancreatitis. Lancet 1993; 342: 475–9

    Article  Google Scholar 

  18. Kingsnorth AN. Role of cytokines and their inhibitors in acute pancreatitis. Gut 1997; 40: 1–4

    PubMed  CAS  Google Scholar 

  19. Sweiry JH, Mann GE. Role of oxidative stress in the pathogenesis of acute pancreatitis. Scand J Gastroenterol 1996; S219: 10–5

    Article  Google Scholar 

  20. Weidenbach H, Lerch MM, Gress TM, et al. Vasoactive mediators and the progression from oedematous to necrotising experimental acute pancreatitis. Gut 1995; 37: 434–40

    Article  PubMed  CAS  Google Scholar 

  21. Kusske AM, Rongione AJ, Reber HA. Cytokines and acute pancreatitis. Gastroenterology 1996; 110(2): 639–42

    Article  PubMed  CAS  Google Scholar 

  22. Formela L, Galloway SW, Kingsnorth AN. Inflammatory mediators in acute pancreatitis. Br J Surg 1995; 82: 6–13

    Article  PubMed  CAS  Google Scholar 

  23. Rink L, Kirchner H. Recent progress in the tumor necrosis factor-α field. Allergy Immunol 1996; 111: 199–209

    Article  CAS  Google Scholar 

  24. Murakami H, Nakao A, Kishimoto, et al. Detection of O2 generation and neutrophil accumulation in rat lungs after acute necrotizing pancreatitis. Surgery 1995; 118: 547–54

    Article  PubMed  CAS  Google Scholar 

  25. Horton JW. Haemodynamic function in acute pancreatitis. Surgery 1988; 103: 538–46

    PubMed  CAS  Google Scholar 

  26. Guice K, Oldham KT, Johnson KJ, et al. Pancreatitis induced lung injury. Ann Surg 1988; 208: 71–7

    Article  PubMed  CAS  Google Scholar 

  27. Isenmann R, Buchler MW. Infection and acute pancreatitis. Br J Surg 1994; 81: 1707–8

    Article  PubMed  CAS  Google Scholar 

  28. Cox AG. Death from acute pancreatitis. MRC multicentre trial of glucagon and apoprotin. Lancet 1977; 24: 632–5

    Google Scholar 

  29. Imrie CW, Benjamin IS, Ferguson JC, et al. A single centre double blind trial of trasylol therapy in acute pancreatitis. Br J Surg 1978; 65: 337–341

    Article  PubMed  CAS  Google Scholar 

  30. Ohshio G, Saluja AK, Leli U, et al. Esterase inhibitors prevent lysosomal enzyme redistribution in two non-invasive models of experimental pancreatitis. Gastroenterology 1989; 96: 853–9

    PubMed  CAS  Google Scholar 

  31. Wisner JR, Renner IG, Grendell JU, et al. Gabexate mesilate (FOY) protects against ceauletide-induced pancreatitis in the rat pancreas. Pancreas 1987; 2: 181–6

    Article  PubMed  CAS  Google Scholar 

  32. Buchler M, Malfertueiner P, Uhl W, et al. Gabexate mesilate in human acute pancreatitis. Gastroenterology 1993; 104: 1165–70

    PubMed  CAS  Google Scholar 

  33. Pederloui P, Gavallini G, Falconi M, et al. Gabexate mesilate versus aprotonin in human acute pancreatitis (GAMEPA). Int J Pancreatol 1993; 14: 117–24

    Google Scholar 

  34. Messori A, Rampallo R, Scrollaro G, et al. Effectiveness of gabexate mesilate in acute pancreatitis. Dig Dis Sci 1995; 40: 734–8

    Article  PubMed  CAS  Google Scholar 

  35. Cavallini G, Tittobello A, Frulloni L, et al. Gabexate for the prevention of pancreatic damage related to endoscopie retrograde cholangiopancreatography. N Engl J Med 1996; 335: 919–23

    Article  PubMed  CAS  Google Scholar 

  36. Russell RCG. Somatostatin in pancreatic disease. Br J Surg 1996; 83: 1665–7

    Article  PubMed  CAS  Google Scholar 

  37. Gullo L, Priory P, Scarpilnato C, et al. Effect of somatostatin 14 on pure human pancreatic secretion. Dig Dis Sci 1987; 32: 1065–70

    Article  PubMed  CAS  Google Scholar 

  38. Baxter JN, Ellenbogen S, Roberts N, et al. The effects of a somatostatin analogue SMS 201–995 on pancreatic secretion in pig and man. Surg Res Commun 1988; 4: 215–28

    Google Scholar 

  39. Niederau C, Niederau M, Lutuen R, et al. Pancreatic exocrine secretion in acute experimental pancreatitis. Gastroenterology 1990; 99: 1120–7

    PubMed  CAS  Google Scholar 

  40. Kotzampassi K, Eleftheriadis E. Octreotide and pancreatic perfusion on the outcome of experimental acute pancreatitis. Dig Surg 1996; 13: 460–4

    Article  Google Scholar 

  41. Schwades U, Althoff PH, Klempa I, et al. Effects of somatostatin on bile induced haemorrhagic pancreatitis in the dog. Horm Metab Res 1979; 11: 655–61

    Article  Google Scholar 

  42. Baxter JN, Jenkins SA, Cowell DC, et al. Effects of somatostatin and a long acting somatostatin analogue on the prevention and treatment of experimentally induced pancreatitis in the rat. Br J Surg 1985; 72: 382–5

    Article  PubMed  CAS  Google Scholar 

  43. Scuarlman DE, Beinfeld MC, Andres C, et al. Effects of somatostatin on acute canine pancreatitis. Int J Pancreatol 1987; 2: 247–55

    Google Scholar 

  44. Lankisch PC, Koop H, Winckler K, et al. Somatostatin therapy of acute experimental pancreatitis. Gut 1977; 18: 713–6

    Article  PubMed  CAS  Google Scholar 

  45. Paran H, Neufeld D, Mayo A, et al. Preliminary report of a prospective randomised study of octreotide in the treatment of severe acute pancreatitis. J Am Coll Surg 1995; 181: 121–4

    PubMed  CAS  Google Scholar 

  46. Cuoi TK, Mok F, Zuan WH, et al. Somatostatin in the treatment of acute pancreatitis: a prospective randomised controlled trial. Gut 1989; 30: 223–7

    Article  Google Scholar 

  47. Gjrup I, Roikjaer O, Amderven B, et al. A double blinded multicenter trial of somatostatin in the treatment of acute pancreatitis. Surg Gynaecol Obstet 1992; 175: 397–400

    Google Scholar 

  48. D’Amilo D, Favia G, Biasiato R, et al. The use of somatostatin in acute pancreatitis results of a multicentre trial. Hepato-gastroenterology 1990; 37: 92–8

    Google Scholar 

  49. Binmueller KF, Harris AG, Dumas R, et al. Does the somatostatin analogue octreotide protect against ERCP induced pancreatitis. Gut 1992; 33: 1129–33

    Article  Google Scholar 

  50. Dabrowski A, Chwiecko M. Oxidative stress: an early phenomenon characteristic of acute experimental pancreatitis. Int J Pancreatol 1992; 12: 193–9

    PubMed  CAS  Google Scholar 

  51. Braganza JM, Scott P, Bilton D, et al. Evidence for early oxidative stress in acute pancreatitis. Int J Pancreatol 1995; 17: 69–81

    PubMed  CAS  Google Scholar 

  52. Nonaka A, Manabe T, Tobe T. Effect of a new synthetic ascorbic acid derivative as a free radical scavenger on the development of acute pancreatitis in mice. Gut 1991; 32: 528–32

    Article  PubMed  CAS  Google Scholar 

  53. Wisner J, Renner IG. Allopurinol attenuates caerulein induced acute pancreatitis in the rat. Gut 1988; 29: 926–9

    Article  PubMed  CAS  Google Scholar 

  54. Neiderau C, Neiderau M, Borchard F, et al. Effects of antioxidants and free radical scavengers in three different models of acute pancreatitis. Pancreas 1992; 7: 486–96

    Article  Google Scholar 

  55. Steer ML, Rutledge PL, Powers RE, et al. The role of oxygen derived free radicals in two models of experimental acute pancreatitis: effects of catalase, Superoxide dismutase, dimethylsulfoxide, and allopurinol. Klin Wochenschr 1991; 69: 1012–7

    Article  PubMed  CAS  Google Scholar 

  56. Lankisch PG, Pohl U, Otto J. Xanthine oxidase inhibitor in acute experimental pancreatitis in rats and mice. Pancreas 1989; 4: 436–40

    Article  PubMed  CAS  Google Scholar 

  57. Hotter G, Closa D, Gelpi E, et al. Role of xanthine oxidase and eicosanoids in development of pancreatic ischaemia-reperfusion injury. Inflammation 1995; 4: 469–78

    Article  Google Scholar 

  58. Wisner J, Green D, Ferrell L, et al. Evidence for a role of oxygen free radicals in the pathogenesis of caerulein induced acute pancreatitis in rats. Gut 1988; 29: 1516–23

    Article  PubMed  CAS  Google Scholar 

  59. Wang XD, Deng XM, Haraldsen R, et al. Antioxidant and calcium channel blockers counteract endothelial barrier injury induced by acute pancreatitis in rats. Scand J Gastroenterol 1995; 30: 1129–36

    Article  PubMed  CAS  Google Scholar 

  60. Furukawa M, Kimura T, Yamaguchi H, et al. Role of oxygen-derived free radicals in hemorrhagic pancreatitis induced by stress and caerulein in rats. Pancreas 1994; 9: 67–72

    Article  PubMed  CAS  Google Scholar 

  61. Schoenberg MH, Buchler M, Younes M. Effect of antioxidant treatment in rats with acute hemorrhagic pancreatitis. Dig Dis Sci 1994; 39: 1034–40

    Article  PubMed  CAS  Google Scholar 

  62. Schoenberg MH, Birk D, Beger HG. Oxidative stress in acute and chronic pancreatitis. Am J Clin Nutr 1995; 62: 1306–14

    Google Scholar 

  63. Yotsumoto F, Manabe T, Ohshio G. Bradykinin involvement in the aggravation of acute pancreatitis in rabbits. Digestion 1993; 54: 224–30

    Article  PubMed  Google Scholar 

  64. Klar E, Messmer K, Warshaw AL, et al. Pancreatic ischaemia in experimental acute pancreatitis: mechanism, significance and therapy. Br J Surg 1990; 77: 1205–10

    Article  PubMed  CAS  Google Scholar 

  65. Griesbacher T, Tiran B, Lembeck F. Pathological events in experimental acute pancreatitis prevented by the bradykinin antagonist, Hoe 140. Br J Pharmacol 1993; 108: 405–11

    Article  PubMed  CAS  Google Scholar 

  66. Hoffman TF, Leider R, Waldner H, et al. Bradykinin antagonists HOE-140 and CP-0597 diminish microcirculatory injury after ischaemia-reperfusion of the pancreas. Br J Surg 1996; 83: 189–95

    Article  Google Scholar 

  67. Hoffman TF, Waldner H, Messmer K. The bradykinin antagonist CP-0597 can limit the progression of postischaemic pancreatitis. Immunopharmacology 1996; 33: 243–6

    Article  Google Scholar 

  68. Kanbe T, Naruse S, Kitagawa Y.Effects of a bradykinin receptor antagonist (HOE140) on taurochlorate induced acute pancreatitis in rats. Pancreas 1996; 13: 283–8

    Article  PubMed  CAS  Google Scholar 

  69. Lerch MM, Weidenbach H, Gress TM, et al. Effect of kinin inhibition in experimental acute pancreatitis. Am J Physiol 1995; 269: G490–9

    PubMed  CAS  Google Scholar 

  70. Schmidt HW, Walter U. NO at work. Cell 1994; 78: 919–25

    Article  PubMed  CAS  Google Scholar 

  71. Konturek SJ, Bilski J, Konturek PK, et al. Role of endogenous nitric oxide in the control of canine pancreatic secretion and blood flow. Gastroenterology 1993; 104: 896–902

    PubMed  CAS  Google Scholar 

  72. Holst JJ, Rasmussen TN, Schmidt P. Role of nitric oxide in neurally induced pancreatic exocrine secretion in pigs. Am J Physiol 1994; 266: 206–13

    Google Scholar 

  73. Konturek JW, Hengst K, Kulesza E. Role of endogenous nitric oxide in the control of exocrine and endocrine pancreatic secretion in humans. Gut 1997; 40: 86–91

    PubMed  CAS  Google Scholar 

  74. Molero X, Guarner F, Salas A. Nitric oxide modulates pancreatic basal secretion and response to cerulein in the rat: effects in acute pancreatitis. Gastroenterology 1995; 108: 1855–62

    Article  PubMed  CAS  Google Scholar 

  75. Werner J, Rivera J, Fernandez del Castillo C. Differing roles of nitric oxide in the pathogenesis of acute endematous versus necrotising pancreatitis. Surgery 1997; 121: 23–30

    Article  PubMed  CAS  Google Scholar 

  76. Abe T, Shimosegawa T, Satoh A, et al. Nitric oxide modulates pancreatic edema formation in rat caerulein-induced pancreatitis. J Gastroenterol 1995; 30: 636–42

    Article  PubMed  CAS  Google Scholar 

  77. Dobosz M, Hac S, Wajda Z. Does nitric oxide protect from microcirculatory disturbances in experimental acute pancreatitis in rats. Int J Microcirc 1996; 16: 221–6

    Article  CAS  Google Scholar 

  78. Jolliet P, Bulpa P, Ritz M, et al. Additive beneficial effects of the prone position, nitric oxide, and almatrine bismesylate on gas exchange and oxygen transport in acute respiratory distress syndrome. Crit Care Med 1997; 25: 786–94

    Article  PubMed  CAS  Google Scholar 

  79. O’Donovan DA, Kelly CJ, Abdih H, et al. Role of nitric oxide in lung injury associated with experimental acute pancreatitis. Br J Surg 1995; 82: 1122–6

    Article  PubMed  Google Scholar 

  80. Tsukahara Y, Horita Y, Anan K. Role of nitric oxide derived from alveolar macrophages in the early phase of acute pancreatitis. J Surg Res 1996; 66: 43–50

    Article  PubMed  CAS  Google Scholar 

  81. Anggard E. Nitric oxide: mediator, murderer, and medicine. Lancet 1994; 343: 1199–206

    Article  PubMed  CAS  Google Scholar 

  82. Crane B, Arvai AS, Gachhui R. The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science 1997; 278: 425–31

    Article  PubMed  CAS  Google Scholar 

  83. Vander Poll T, Lowry SF. Tumour necrosis factor in sepsis: mediator of multiple organ failure or essential part of host defense. Shock 1995; 3(1): 1–12

    Google Scholar 

  84. De Beux AC, Ross JA, Maingay JP, et al. Proinflammatory cytokine release by peripheral blood mononuclear cells from patients with acute pancreatitis. Br J Surg 1997; 83: 1071–5

    Google Scholar 

  85. Exley AR, Leese T, Holliday MP, et al. Endotoxaemia and serum tumour necrosis factor as prognostic markers in severe acute pancreatitis. Gut 1992; 33: 1126–8

    Article  PubMed  CAS  Google Scholar 

  86. McKay CJ, Gallagher G, Brooks B, et al. Increased monocyte cytokine production in association with systemic complications in acute pancreatitis. Br J Surg 1996; 83: 919–23

    Article  PubMed  CAS  Google Scholar 

  87. De Beaux AC, Goldie AS, Ross JA, et al. Serum concentrations of inflammatory mediators related to organ failure in patients with acute pancreatitis. Br J Surg 1996; 83: 349–53

    Article  Google Scholar 

  88. Norman JG, Fink GW, Franz MG. Acute pancreatitis induces intrapancreatic tumor necrosis factor gene expression. Arch Surg 1995; 130: 966–70

    Article  PubMed  CAS  Google Scholar 

  89. Gukovskaya AS, Gukovsky I, Zaninovic V, et al. Pancreatic acinar cells produce, release, and respond to tumour necrosis factor-α. J Clin Invest 1997; 100(7): 1853–62

    Article  PubMed  CAS  Google Scholar 

  90. Grewal HP, Mohey el-Din AB, Gaber LW, et al. Amelioration of the physiologic and biochemical changes of acute pancreatitis using an anti-TNF-α 9 polyclonal antibody. Am J Surg 1994; 167: 214–8

    Article  PubMed  CAS  Google Scholar 

  91. Hughes CB, Gaber LW, Mohey el-Din AB, et al. Inhibition of TNF-α improves survival in an experimental model of acute pancreatitis. Am Surg 1996; 62(1): 8–13

    PubMed  CAS  Google Scholar 

  92. Guice KS, Oldham KT, Remick DG, et al. Antitumor necrosis factor antibody augments edema formation in caeruline induced acute pancreatitis. J Surg Res 1991; 51: 495–9

    Article  PubMed  CAS  Google Scholar 

  93. Norman JG, Fink GW, Messina J, et al. Timing of tumor necrosis factor antagonism is critical in determining outcome in murine lethal acute pancreatitis. Surgery 1996; 120: 515–21

    Article  PubMed  CAS  Google Scholar 

  94. Havell EA. Evidence that TNF has an important role in antibacterial resistance. J Immunol 1989; 143: 2894–9

    PubMed  CAS  Google Scholar 

  95. Platanias LC, Vogelzang NJ. Interleukin-1: biology, pathophysiology, and clinical prospects. Am J Med 1990; 89: 621–9

    Article  PubMed  CAS  Google Scholar 

  96. Norman JG, Fink GW, Franz G, et al. Active interleukin-1 receptor required for maximal progression of acute pancreatitis. Ann Surg 1996; 223(2): 163–9

    Article  PubMed  CAS  Google Scholar 

  97. Dower SK, Fanslow W, Jacobs, et al. Interleukin-1 antagonists. Ther Immunol 1994; 1: 113–22

    PubMed  CAS  Google Scholar 

  98. Norman JG, Franz MG, Messina J, et al. Interleukin-1 receptor antagonist decreases severity of experimental acute pancreatitis. Surgery 1995; 117: 648–55

    Article  PubMed  CAS  Google Scholar 

  99. Fink GW, Yang J, Carter G, et al. Acute pancreatitis-induced enzyme release and necrosis are attenuated by IL-1 antagonism through an indirect mechanism. J Surg Res 1997; 67: 94–7

    Article  PubMed  CAS  Google Scholar 

  100. Norman JG, Franz MG, Fink GW, et al. Decreased mortality of severe acute pancreatitis after proximal cytokine blockade. Ann Surg 1995; 221(6): 625–34

    Article  PubMed  CAS  Google Scholar 

  101. Tanaka K, Murata A, Uda K, et al. Interleukin-1 receptor antagonist modifies the changes in vital organs induced by acute narcotising pancreatitis. Crit Care Med 1995; 23(5): 901–8

    Article  PubMed  CAS  Google Scholar 

  102. Norman J, Yang J, Fink G, et al. Severity and mortality of experimental pancreatitis are dependent on interleukin-1 converting enzyme (ICE). J Inteferon Cytokine Res 1997; 17: 113–8

    Article  CAS  Google Scholar 

  103. Ho AS, Moore KW. Interleukin-10 and its receptor. Ther Immunol 1994; 1: 173–85

    PubMed  CAS  Google Scholar 

  104. Howard M, Muchamuel T, Andrade S, et al. Interleukin-10 protects mice from lethal endotoxemia. J Exp Med 1993; 117: 1205–9

    Article  Google Scholar 

  105. Van der Poll T, Jansen PM, Montegut WJ, et al. Effects of Interleukin-10 on systemic inflammatory responses during suble-thal primate endotoxaemia. J Immunol 1997; 158: 1971–5

    PubMed  Google Scholar 

  106. Van Leetham J, Marchant A, Delvaux A, et al. Interleukin-10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology 1995; 108: 1917–22

    Article  Google Scholar 

  107. Rongione AJ, Kusske AM, Kwan K. Interleukin-10 reduces the severity of acute pancreatitis in rats. Gastroenterology 1997; 112: 960–7

    Article  PubMed  CAS  Google Scholar 

  108. Kusske AM, Rongione AJ, Ashley SW, et al. Interleukin-10 prevents death in lethal necrotizing pancreatitis in mice. Surgery 1996; 120: 284–9

    Article  PubMed  CAS  Google Scholar 

  109. Formela LJ, Galloway SW, Kingsnorth AN. Inflammatory mediators in acute pancreatitis. Br J Surg 1995; 82: 6–13

    Article  PubMed  CAS  Google Scholar 

  110. Braquet P, Touqui L, Shen TY, et al. Perspectives in platelet activating factor research. Pharmacol Rev 1987; 39: 97–145

    PubMed  CAS  Google Scholar 

  111. Emmanuelli G, Montrucchio G, Gaia E, et al. Experimental acute pancreatitis induced by platelet activating factor in rabbits. Am J Pathol 1989; 134: 315–26

    Google Scholar 

  112. Formela LJ, Wood LM, Whittaker M, et al. Amelioration of acute pancreatitis in a rat model by a potent platelet activating factor antagonist. Br J Surg 1994; 81: 1783–5

    Article  PubMed  CAS  Google Scholar 

  113. Zhou W, McCollum MO, Levine BA, et al. Role of platelet activating factor in pancreatitis associated lung injury in the rat. Am J Pathol 1992; 140: 971–9

    PubMed  CAS  Google Scholar 

  114. Galloway SW, Kingsnorth AN. Lung injury in a microembolic model of acute pancreatitis. Pancreas 1996; 13: 140–6

    Article  PubMed  CAS  Google Scholar 

  115. Kingsnorth AN, Galloway SW, Formela LJ. Randomised double blind phase II trial of lexipafant, a platelet activating factor antagonist, in human acute pancreatitis. Br J Surg 1995; 82: 1414–20

    Article  PubMed  CAS  Google Scholar 

  116. McKay C, Curran F, Sharples C, et al. Prospective, placebo-controlled, randomised trial of lexipafabt in predicted severe acute pancreatitis. Br J Surg 1997; 84: 1239–43

    Article  PubMed  CAS  Google Scholar 

  117. Kingsnorth AN, British Acute Pancreatitis Study Group. Early treatment with lexipafant, a platelet activating factor antagonist, reduces mortality in acute pancreatitis: a double blind, randomised placebo controlled study [abstract]. Gastroenterology 1997; 112Suppl. 1: 453A

    Google Scholar 

  118. Beger HG, Bittner R. Block S, et al. Bacterial contamination of pancreatic necrosis. Gastroenterology 1986; 91: 433–8

    PubMed  CAS  Google Scholar 

  119. Isenmann R, Buchler MW, Friess H, et al. Antibiotics in acute pancreatitis. Dig Surg 1996; 13: 365–9

    Article  Google Scholar 

  120. Banks PA. Practice guidelines in acute pancreatitis. Am J Gastroenterol 1997; 92: 377–86

    PubMed  CAS  Google Scholar 

  121. Johnson CD. Antibiotic prophylaxis in acute pancreatitis. Br J Surg 1996; 83: 883–4

    Article  PubMed  CAS  Google Scholar 

  122. Craig RM, Durdal E, Myles L. The use of ampicillin in acute pancreatitis. Ann Intern Med 1975; 83: 831–2

    PubMed  CAS  Google Scholar 

  123. Buchler M, Malfertheiner P, Friess H, et al. Human pancreatic tissue concentration of bacterial antibiotics. Gastroenterology 1992; 103: 1902–8

    PubMed  CAS  Google Scholar 

  124. Gianotti L, Munda R, Genneri R, et al. Effect of different specimens of gut decontamination of bacterial translocation and mortality in experimental acute pancreatitis. Eur J Surg 1995; 161: 85–92

    PubMed  CAS  Google Scholar 

  125. Luiten EJT, Hopth WCJ, Lance JF, et al. Controlled clinical trial of selective decontamination for the treatment of severe acute pancreatitis. Ann Surg 1995; 222: 57–65

    Article  PubMed  CAS  Google Scholar 

  126. Pederzollli P, Bassi C Vesentini S, et al. A randomised multicenter clinical trial of antibiotic prophylaxis of septic complications in acute necrotizing pancreatitis with imipenem. Surg Gynaecol Obstet 1993; 176: 480–3

    Google Scholar 

  127. Sainio V, Kemppainen E, Puolakkainen P, et al. Early antibiotic treatment in acute necrotising pancreatitis. Lancet 1995; 346: 663–7

    Article  PubMed  CAS  Google Scholar 

  128. Weiser MR, Gibbs SAL, Moore FD, et al. Complement inhibition by soluble complement receptor type I fails to moderate cerulein induced pancreatitis in the rat. Int J Pancreatol 1996; 19: 129–34

    PubMed  CAS  Google Scholar 

  129. Yagamuchi H, Weidenback H, Luhrs H, et al. Combined treatment with C1 esterase inhibitor and antithrombin III improves survival in severe experimental acute pancreatitis. Gut 1997; 40: 531–55

    Google Scholar 

  130. Rao R, Prinz PA, Kazantsev GB, et al. Effect of granulocyte colony stimulating factor in severe pancreatitis. Surgery 1996; 119: 657–63

    Article  PubMed  CAS  Google Scholar 

  131. Chen YZ, Yamaguchi Y, Sameshima H, et al. The protective effects of long acting recombinant human pancreatic secretory trypsin inhibitor (R44S-PSTI) in a rat model of cerulein induced pancreatitis. J Int Med Res 1996; 24: 59–68

    PubMed  Google Scholar 

  132. Banerjee AK, Galloway SJ, Kingsnorth AN. Experimental models of acute pancreatitis. Br J Surg 1994; 81: 1096–103

    Article  PubMed  CAS  Google Scholar 

  133. Steinberg WM, Schlesselman SE. Treatment of acute pancreatitis: comparison of animal and human studies. Gastroenterology 1987; 93: 1420–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew N. Kingsnorth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargen, K., Kingsnorth, A.N. Acute Pancreatitis. BioDrugs 10, 359–371 (1998). https://doi.org/10.2165/00063030-199810050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199810050-00003

Keywords

Navigation