Skip to main content

Advertisement

Log in

New Biotechnological Therapies for Crohn’s Disease

Where Are We Now?

  • Biopharmaceuticals
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Recent advances in mucosal immunology have provoked recent interest in the application of biodrugs to Crohn’s disease intestinal inflammation. Our understanding of the roles of cytokines, adhesion molecules, cell trafficking and cellular immune mechanisms of disease has lead to a number of recent clinical trials. There has been simultaneous research by a number of groups using several animal models of gut inflammation. Better animal models and in particular, the use of gene knock-outs and transgenics has benefitted our understanding of the inflammatory components of Crohn’s. Examples of early cellular biodrugs included anti-CD4 monoclonal antibodies. The recent FDA approval of infliximab was preceded by knowledge that levels of tumour necrosis factor (TNF)-α are suppressed in the clinical therapy of Crohn’s. A recent study of interleukin (IL)-10 was not as favourably reported. Equivocal data has not supported the use of IL-10 for Crohn’s disease therapy at this time. An ongoing multicentre phase III study of antisense to ICAM-1 for Crohn’s disease is nearing completion and review.

The newer monoclonal antibodies to enter into clinical studies of Crohn’s disease therapy include those targeting the adhesion molecules β7 and α4β7. Numerous other biodrugs are in planning stages or early clinical studies. The coagulation pathway is another target that has been identified. This range of compounds will produce mixed efficacy in clinical studies and winners and losers will result. Moreover, combination therapy using 2 or more of these and other pre-existing compounds may prove clinically beneficial. Tailoring of pharmaceutical use to specific patients may also be expected, as we understand more about the subclasses of Crohn’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin SD, Korelitz BI. Immunomodulatory therapy: targeting severe inflammatory bowel disease. Formulary 1995; 30: 784–98

    Google Scholar 

  2. Stronkhorst A, Radema S, Yong SL, et al. CD4 antibody treatment in patients with active Crohn’s disease: a phase dose finding study. Gut 1997; 40: 320–7

    PubMed  CAS  Google Scholar 

  3. Van Deventer SJH, Elson CO, Fedorak RN, et al. Multiple doses of intravenous interleukin-10 in steroid refractory Crohn’s disease. Gastroenterology 1997; 113: 383–9

    Article  PubMed  Google Scholar 

  4. Targan SR, Hanauer SB, Van Deventer SJH, et al. A short term study of chimeric monoclonal antibody cA2 to tumour necrosis factor α for Crohn’s disease. N Engl J Med 1997; 337 (115): 1029–35

    Article  Google Scholar 

  5. Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L, et al. Aplacebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology 1998; 114: 1133–42

    Article  PubMed  CAS  Google Scholar 

  6. DeWaal Malefyt R, Abrams J, Bennett B, et al. Interleukin-10 (IL-10) inhibits cytokine synthesis by human macrocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 1991; 174: 1209–20

    Article  Google Scholar 

  7. Fiorentino DF, Zlotnik A, Mossman TR, et al. IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147: 3815–22

    PubMed  CAS  Google Scholar 

  8. Wang P, Wu P, Siegel M, et al. IL-10 inhibits transcription of cytokine genes in human peripheral blood monocytes. J Immunol 1994; 153: 811–6

    PubMed  CAS  Google Scholar 

  9. Wang P, Wu P, Siegel M, et al. Interleukin-10 (IL-10) inhibits nuclear factor Kβ (NFKβ) activation in human monocytes. J Biol Chem 1995; 270: 9558–63

    Article  PubMed  CAS  Google Scholar 

  10. Braeger CP, Nicholls S, Murch SH, et al. Tumour necrosis factor a in stool as a marker of intestinal inflammation. Lancet 1992; 339: 89–91

    Article  Google Scholar 

  11. Neurath MF, Follias G, Duchmann R, et al. Effects of antibodies to TNF-α on acute and chronic experimental colitis in mice [abstract]. Gastroenterology 1996; 110: A979

    Google Scholar 

  12. Sun XM, Hsueh W. Bowel necrosis induced by tumour necrosis factor in rats is mediated by platelet activating factor. J Clin Invest 1988; 81: 1328–31

    Article  PubMed  CAS  Google Scholar 

  13. Crooke ST. Therapeutic applications of oligonucleotides. Austin: RG Landes Co, 1995: 63–79

    Google Scholar 

  14. Dustin ML, Rothlein R, Bhan AK, et al. Induction by IL-1 and interferon gamma: tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-1). J Immunol 1986; 137: 245–54

    PubMed  CAS  Google Scholar 

  15. Rothlein RM, Dustin L, Marlin SD, et al. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 1986; 137: 1270–4

    PubMed  CAS  Google Scholar 

  16. Simmons DM, Makgoba W, Seed B. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature 1988; 331: 624–7

    Article  PubMed  CAS  Google Scholar 

  17. Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function associated antigen-1 (LFA-1). Cell 1987; 51: 813–9

    Article  PubMed  CAS  Google Scholar 

  18. Diamond MS, Staunton DE, de Fougerolles AR, et al. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 1990; 111: 3129–39

    Article  PubMed  CAS  Google Scholar 

  19. Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991; 67: 1033–6

    Article  PubMed  CAS  Google Scholar 

  20. Furie MB, Tancinco MCA, Smith CW. Monoclonal antibodies to leukocyte integrins CD11a/CD18 and CD11b/CD18 or intercellular adhesion molecule-1 inhibit chemoattractant-stimulated neutrophil transendothelial migration in vitro. Blood 1991; 78: 2089–97

    PubMed  CAS  Google Scholar 

  21. Oppenheimer-Marks N, Davis LS, Bogue DT, et al. Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol 1991; 147: 2913–21

    PubMed  CAS  Google Scholar 

  22. Altmann DM, Hogg N, Trowsdale J, et al. Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature 1989; 338: 512–4

    Article  PubMed  CAS  Google Scholar 

  23. Hanauer SB. Inflammatory bowel disease. N Engl J Med 1996; 334: 841–8

    Article  PubMed  CAS  Google Scholar 

  24. Feagan BG, McDonald JWD. Medical therapy for inflammatory bowel disease. Curr Opin Gastroenterol 1997; 13: 307–11

    Article  Google Scholar 

  25. Yang H, Vora DK, Targan SR, et al. Intercellular adhesion molecule I gene association with immunologic subsets of inflammatory bowel disease. Gastroenterology 1995; 109: 440–8

    Article  PubMed  CAS  Google Scholar 

  26. Aderka D, Engelmann H, Shemer-Avni Y, et al. Variation in serum levels of soluble TNF receptors among healthy adults. Lymphokine Cytokine Res 1992; 11: 157–9

    PubMed  CAS  Google Scholar 

  27. Prantera C, Davioli M, Lorenzetti R, et al. Clinical and laboratory indicators of the extent of ulcerative colitis. Serum C-reactive protein helps the most. J Clin Gastroenterol 1988; 10: 41–5

    Article  PubMed  CAS  Google Scholar 

  28. Yacyshyn BR, Meddings JB, Sadowski D, et al. Multiple sclerosis patients have peripheral blood CD45RO+ B-cells and increased intestinal permeability. Dig Dis Sci 1996; 41: 2493–8

    Article  PubMed  CAS  Google Scholar 

  29. Croitoru K, Bienenstock J. Characteristics and functions of mucosa-associated lymphoid tissue. In: Ogra PL, Strober W, Mestecky J, et al., editors. Handbook of mucosal immunology. San Diego: Academic Press Inc, 1994: 141–9

    Google Scholar 

  30. Carruthers L, Dourmashkin R, Phillips A. Disorders of the cytoskeleton of the enterocyte. Clin Gastroenterol 1986; 15: 105–20

    PubMed  CAS  Google Scholar 

  31. Sanderson IR, Walker WA. Uptake and transport of macromolecules by the intestine: possible role in clinical disorders [an update]. Gastroenterology 1993; 104: 622–39

    PubMed  CAS  Google Scholar 

  32. Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview. Gastroenterology 1995; 108: 1566–81

    Article  PubMed  CAS  Google Scholar 

  33. Dailey MO. The selectin family of cell-adhesion molecules. In: Shimizu Y, editor. Lymphocyte adhesion molecules. Austin: RG Landes Co, 1993: 75–104

    Google Scholar 

  34. Hollander D, Vadheim CM, Brettholtz E, et al. Increased intestinal permeability in patients with Crohn’s disease and their relatives. A possible etiologic factor. Ann Intern Med 1986; 105: 883–5

    PubMed  CAS  Google Scholar 

  35. May GR, Sutherland LR, Meddings JB. Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterology 1993; 104: 1627–32

    PubMed  CAS  Google Scholar 

  36. Peeters M, Geypens B, Claus D, et al. Clustering of increased small intestinal permeability in families with Crohn’s disease. Gastroenterology 1997; 113: 802–7

    Article  PubMed  CAS  Google Scholar 

  37. Hollander D. The intestinal permeability barrier. A hypothesis as to its regulation and involvement in Crohn’s disease. Scand J Gastroenterol 1992; 27: 721–6

    Article  PubMed  CAS  Google Scholar 

  38. Mahida YR, Wu K, Jewell DP. Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis or Crohn’s disease. Gut 1989; 30: 835–8

    Article  PubMed  CAS  Google Scholar 

  39. Rothe J, Gehr G, Loetscher H, et al. Tumour necrosis factor receptors, structure and function. Immunol Res 1992; 111: 81–90

    Article  Google Scholar 

  40. Aderka D, Engelmann H, Maor Y, et al. Stabilization of the bioactivity of tumour necrosis factor by its soluble receptors. J Exp Med 1992; 175: 323–9

    Article  PubMed  CAS  Google Scholar 

  41. Tracey KJ, Cerami A. Tumour necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 1994; 45: 491–503

    Article  PubMed  CAS  Google Scholar 

  42. Foley N, Lambert C, McNicol M, et al. An inhibitor of the toxicity of tumour necrosis factor in the serum of patients with sarcoidosis, tuberculosis and Crohn’s disease. Clin Exp Immunol 1990; 80: 395–9

    Article  PubMed  CAS  Google Scholar 

  43. Watkins PE, Foulkes R, Stephens S, et al. Fecal tumour necrosis factor alpha in cotton top tamarin colitis [abstract]. J Pathol 1993; 170: A364

    Google Scholar 

  44. Murch SH, Lamkin VA, Savage MO, et al. Serum concentrations of tumour necrosis factor in childhood inflammatory bowel disease. Gut 1991; 32: 913–7

    Article  PubMed  CAS  Google Scholar 

  45. Sategna-Guidetti X, Pulitano R, Fenoglio L, et al. Tumour necrosis factor/cachectin in Crohn’s disease. Relation of serum concentration to disease activity. Recent Prog Med 1993; 84: 93–9

    CAS  Google Scholar 

  46. Videla S, Vilaseca G, Gonzalez A, et al. Role of tumour necrosis factor in hapten-induced colitis [abstract]. Gastroenterology 1996; 110: A1039

    Google Scholar 

  47. Neilly PJ, Gardiner KR, Kirk SJ, et al. Anti-TNF-α antibody reduces the systemic inflammatory response in experimental colitis [abstract]. Gut 1995; 37: A16

    Article  Google Scholar 

  48. Binion DG, West GA, Ina K, et al. Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterol 1997; 112: 1895–907

    Article  CAS  Google Scholar 

  49. McCabe RP, Woody J, Van Deventer SJH, et al. A multicentre trial of cA2 anti-TNF chimeric monoclonal antibody in patients with active Crohn’s disease. Gastroenterology 1996; 11: A962

    Google Scholar 

  50. Van Dullemen HM, Van Deventer SJH, Hommes DW, et al. Treatment of Crohn’s disease with anti-tumour necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 1995; 109: 129–35

    Article  PubMed  Google Scholar 

  51. Sands BE, Podolsky DK, Tremaine WJ, et al. Chimeric monoclonal anti-tumour necrosis factor antibody (cA2) in the treatment of severe, steroid-refractory ulcerative colitis (UC) [abstract]. Gastroenterology 1996; 110: A1008

    Article  Google Scholar 

  52. Evans RC, Clark L, Heath P, et al. Treatment of ulcerative colitis with an engineered human anti-TNF-α antibody CDP571 [abstract]. Gastroenterology 1996; 110: A905

    Article  Google Scholar 

  53. Baert F, D’Haens G, Geboes K, et al. TNF-α antibody therapy causes a fast and dramatic decrease of histological colonic inflammation in Crohn’s disease but not ulcerative colitis [abstract]. Gastroenterology 1996; 110: A859

    Google Scholar 

  54. Derkx B, Taminiau J, Radema S, et al. Tumour necrosis factor antibody treatment in Crohn’s disease. Lancet 1993; 342: 173–4

    Article  PubMed  CAS  Google Scholar 

  55. Watkins PE, Foulkes R, Stephens S, et al. Treatment of inflammatory bowel disease using anti-tumour necrosis factor alpha antibody. Br J Surg 1995; 82: 693–4

    Google Scholar 

  56. Stack W, Mann S, Roy A, et al. The effects of CDP571, an engineered human IgG4 anti-TNF-α antibody in Crohn’s disease [abstract]. Gut 1996; 38: A27

    Article  Google Scholar 

  57. Stack WA, Mann SD, Roya AJ, et al. Randomized controlled trial of CDP571 antibody to tumour necrosis factor alpha in Crohn’s disease. Lancet 1997; 349: 521–4

    Article  PubMed  CAS  Google Scholar 

  58. Baert F, Peeters M, D’Haens G, et al. Impressive histologic improvement after TNF antibody (cA2) therapy in active Crohn’s disease [abstract]. Gut 1996; 39: A17

    Google Scholar 

  59. Targan SR, Rutgeerts P, Hanauer SB, et al. A multicentre trial of anti-tumour necrosis factor (TNF) antibody (cA2) treatment of patients with active Crohn’s disease [abstract]. Gastroenterology 1996; 110: A1026

    Google Scholar 

  60. Targan SR, Hanauer SB, Van Deventer SJH, et al. A short-term study of chimeric monoclonal antibody cA2 to tumour necrosis factor alpha for Crohn’s disease. N Engl J Med 1997; 337: 1029–35

    Article  PubMed  CAS  Google Scholar 

  61. Armstrong AM, Gardiner KR, Kirk SJ, et al. Tumour necrosis factor and inflammatory bowel disease. Br J Surg 1997; 84: 1051–8

    Article  PubMed  CAS  Google Scholar 

  62. Nicholls S, Stephens S, Braegger CP, et al. Cytokines in stools of children with inflammatory bowel disease or infective diarrhea. J Clin Pathol 1993; 46: 757–60

    Article  PubMed  CAS  Google Scholar 

  63. Gray DJ, Madsen KL, Tavernini MM, et al. Interleukin-10 gene deficient mice have a primary intestinal permeability defect prior to the development of enterocolitis [abstract]. Gastroenterology 1997; 112: A984

    Article  Google Scholar 

  64. Piorentino DF, Zlotnik A, Mosmann TR, et al. IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147: 3815–22

    Google Scholar 

  65. Rath HC, Bender DE, Holt LC, et al. Metronidazole attenuates colitis in HLA-B27/β2 in transgenic (TG) rats: a pathogenic role for anaerobic bacteria. Clin Immunol Immunopathol 1995; 76: S45

    Google Scholar 

  66. Rath HC, Herfarth HH, Ideda JS, et al. Normal luminal bacteria especially bacteroides species, mediate chronic colitis, gastritis and arthritis in HLA-B27 human β2 microglobulin transgenic rats. J Clin Invest 1996; 98: 945–53

    Article  PubMed  CAS  Google Scholar 

  67. Liu Y, van Kruiningen HJ, West AB, et al. Immunocytochemical evidence of Listeria, Escherichia coli and Streptococcus antigens in Crohn’s disease. Gastroenterology 1995; 108: 1396–404

    Article  PubMed  CAS  Google Scholar 

  68. Madsen KL, Lewis SA, Tavernini MM, et al. Interleukin-10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology 1997; 113: 151–9

    Article  PubMed  CAS  Google Scholar 

  69. Scott MG, Nahm MH, Macke K, et al. Spontaneous secretion of IgG subclasses by intestinal mononuclear cells: Differences between ulcerative colitis, Crohn’s disease and controls. Clin Exp Immunol 1986; 66: 209–15

    PubMed  CAS  Google Scholar 

  70. Greenwald BD, James SP Immunology of inflammatory bowel disease. Curr Opin Gastroenterol 1995; 298–304

  71. Heiner DC. Significance of immunoglobulin G (IgG) subclasses. Am J Med 1984; 76(3A): 1–6

    Article  PubMed  CAS  Google Scholar 

  72. Oxelius VA. Immunoglobulin G (IgG) subclasses and human disease. Am J Med 1984; 76(3A): 7–18

    Article  PubMed  CAS  Google Scholar 

  73. Sartor RB. Microbial factors in the pathogenesis of Crohn’s disease, ulcerative colitis and experimental intestinal inflammation. In: Kirsner JB, Shorter RG, editors. Inflammatory bowel disease. Baltimore: Williams & Wilkins, 1995: 96–124

    Google Scholar 

  74. Steinhart AH, McLeod RS, Greenberg G, et al. Disease characteristics of familial and non-familial Crohn’s disease [abstract]. Gastroenterology 1997; 4: A1096

    Google Scholar 

  75. Nielsen OH, Koppen T, Rudiger N, et al. Involvement of interleukin-4 and 10 in inflammatory bowel disease. Dig Dis Sci 1996; 41: 1786–93

    Article  PubMed  CAS  Google Scholar 

  76. Fuss IJ, Neurath M, Boirivant M, et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157: 1261–70

    PubMed  CAS  Google Scholar 

  77. Mosmann TR, Sad S, Krishnan L, et al. Differentiation of subsets of CD4+ CD8+ T-cells. Ciba Found Symp 1995; 195: 42–50

    PubMed  CAS  Google Scholar 

  78. De Waal Malefyt R, Haanen BAG, Spits H, et al. IL-10 and viral IL-10 strongly reduce antigen specific human T-cell proliferation by diminishing the antigen presenting capacity of monocytes via down-regulation of class II MHC expression. J Exp Med 1991; 174: 915–24

    Article  PubMed  Google Scholar 

  79. DeWaal Malefyt R, Vasel H, De Vries JE. Direct effects of IL-10 on subsets of human CD4+ T-cell clones and resting T-cells. Specific inhibition of IL-2 production and proliferation. J Immunol 1993; 150: 4754–65

    CAS  Google Scholar 

  80. Taga K, Mostowski H, Tosato G. Human interleukin-10 can directly inhibit T-cell growth. Blood 1993; 81: 2964–71

    PubMed  CAS  Google Scholar 

  81. Wang P, Wu P, Siegel MI, et al. IL-10 inhibits transcription of cytokine genes in human peripheral blood mononuclear cells. J Immunol 1994; 153: 811–6

    PubMed  CAS  Google Scholar 

  82. Wang P, Wu P, Siegel MI, et al. Interleukin-10 inhibits nuclear factor κβ (NF κβ) activation in human monocytes. J Bio Chem 1995; 270: 9558–63

    Article  CAS  Google Scholar 

  83. Schreiber S, Fedorak RN, Nielsen OH, et al. A safety and efficacy study of IL-10 (rHu IL-10) treatment in patients with chronic active Crohn’s disease (CACD) [abstract]. Gastroenterology 1998; 114: A4423

    Google Scholar 

  84. Chernoff AE, Granowitz EV, Shapiro L, et al. A randomized controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J Immunol 1995; 154: 3492–9

    Google Scholar 

  85. Bull DM, Bookman MA. Isolation and functional characterization of human intestinal mucosal lymphoid cells. J Clin Invest 1977; 59: 966–74

    Article  PubMed  CAS  Google Scholar 

  86. Yacyshyn BR, Lazarovits A, Tsai V, et al. Crohn’s disease, ulcerative colitis and normal intestinal lymphocytes express integrins in a dissimilar pattern. Gastroenterology 1994; 107: 1364–71

    PubMed  CAS  Google Scholar 

  87. Elson CO, McCabe RP. The immunology of inflammatory bowel disease. In: Kirsner JB, Shorter RG, editors. Inflammatory bowel disease. Baltimore: Williams & Wilkins, 1995: 203–51

    Google Scholar 

  88. Madara JL. Intestinal epithelial barrier function: characteristics and responses to neutrophil transepithelial migration. In: Kirsner JB, Shorter RG, editors. Inflammatory bowel disease. Baltimore: Williams & Wilkins, 1995: 125–39

    Google Scholar 

  89. Pallone F, Fais S, Squarcia O, et al. Activation of peripheral blood and intestinal lamina propria lymphocytes in Crohn’s disease: in vivo state of activation and in vitro response to stimulation as defined by the expression of early activation antigens. Gut 1987; 28: 745–53

    Article  PubMed  CAS  Google Scholar 

  90. Yacyshyn BR, Pilarski LM. Expression of CD45RO on circulating CD19+ B-cells in Crohn’s disease. Gut 1993; 34: 1698–704

    Article  PubMed  CAS  Google Scholar 

  91. Yacyshyn BR. Activated CD19 population in ulcerative colitis lamina propria mononuclear cells. J Immunol Cell Biol 1993; 71: 265–74

    Article  Google Scholar 

  92. Yacyshyn BR. Activated CD19+ B-cell lamina propria lymphocytes in ulcerative colitis. Immunol Cell Biol 1993; 71(4): 265–74

    Article  PubMed  Google Scholar 

  93. Stronkhorst A, Radema S, Yong SL, et al. CD4 treatment in patients with active Crohn’s disease: a phase I dose finding study. Gut 1997; 40: 320–7

    PubMed  CAS  Google Scholar 

  94. Duesch K, Reiter C, Mauthe B, et al. Chimeric monoclonal anti-CD4 antibody therapy proves effective for treating inflammatory bowel disease [abstract]. Gastroenterology 1992; 102: A615

    Google Scholar 

  95. Canva-Delcambre V, Jacquot S, Robinet E, et al. Treatment of severe Crohn’s disease with anti-CD4 monoclonal antibody. Aliment Pharmacol Ther 1996; 10: 721–7

    Article  PubMed  CAS  Google Scholar 

  96. Moreland LW, Pratt PW, Mayes MD, et al. Double-blind, placebo-controlled, multicentre trial using chimeric monoclonal anti CD4 antibody cM-T412, in rheumatoid arthritis patients receiving concomitant Methotrexate. Arthritis Rheum 1995; 38: 1581–8

    Article  PubMed  CAS  Google Scholar 

  97. Koizumi M, King N, Lobb R, et al. Expression of vascular adhesion molecules in inflammatory bowel disease. Gastroenterology 1992; 103: 840–7

    PubMed  CAS  Google Scholar 

  98. Ohtani H, Nakamura S, Watanabe Y, et al. Light and electron microscopic immunolocalization of endothelial leukocyte adhesion molecule-1 in inflammatory bowel disease. Virchows Arch A Pathol Anat 1992; 420: 403–9

    Article  CAS  Google Scholar 

  99. Jones SC, Banks RE, Haidar A, et al. Adhesion molecules in inflammatory bowel disease. Gut 1995; 36: 724–30

    Article  PubMed  CAS  Google Scholar 

  100. Springer TA. Adhesion receptors of the immune system. Nature 1990; 346: 425–34

    Article  PubMed  CAS  Google Scholar 

  101. Kvale D, Krajci P, Brandtzaeg P. Expression and regulation of adhesion molecules ICAM (CD54) and LFA3 (CD58) in human intraepithelial cell lines. Scand J Immunol 1992; 35: 669–76

    Article  PubMed  CAS  Google Scholar 

  102. Obrink B. Epithelial cell adhesion molecules. Exp Cell Res 1986; 163(1): 1–21

    Article  PubMed  CAS  Google Scholar 

  103. Jensen GS, Belch AR, Mant MJ, et al. Expression of multiple β1 integrins on circulating monoclonal B-cells in patients with multiple myeloma. Am J Hematol 1993; 43(1): 29–36

    Article  PubMed  CAS  Google Scholar 

  104. Hemler ME. VLA proteins in the integrin family: Structures, functions and their role on leukocytes. Ann Rev Immunol 1990; 8: 365–400

    Article  CAS  Google Scholar 

  105. Yacyshyn BR. Activated CD19+ B-cell lamina propria lymphocytes in ulcerative colitis. Immunol Cell Biol 1993; 71(4): 265–74

    Article  PubMed  Google Scholar 

  106. Hynes RO. Integrins: a family of cell surface receptors. Cell 1987; 48: 549–54

    Article  PubMed  CAS  Google Scholar 

  107. Maliza G, Calabrese A, Cottone M, et al. Expression of leukocyte adhesion molecules by mucosal mononuclear phagocytes in inflammatory bowel disease. Gastroenterology 1991; 100: 150–9

    Google Scholar 

  108. Bernstein CN, Sargent M, Gallatin WM, et al. β2 integrin/intercellular adhesion molecule (ICAM) expression in the normal human intestine. Clin Exp Immunol 1996; 106: 160–9

    PubMed  CAS  Google Scholar 

  109. Hokari R, Miura S, Fujimori H, et al. Lymphocyte outflux to intestinal microlymphatics is intercellular cell adhesion molecule-1 dependent process in Peyer’s patches [abstract]. Gastroenterology 1997; 112: A369

    Google Scholar 

  110. Morise K, Yamaguchi T, Kuroiwa A, et al. Expression of adhesion molecules and HLA-DR by macrophages and dendritic cells in aphthoid lesion of Crohn’s disease: an immunohisto-chemical study. J Gastroenterol 1994; 29: 257–64

    Article  PubMed  CAS  Google Scholar 

  111. Oppenheimer-Marks N, Davis LS, Bogue DT, et al. Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T-lymphocytes. J Immunol 1991; 147: 2913–21

    PubMed  CAS  Google Scholar 

  112. Rothlein RM, Dustin ML, Marlin SD, et al. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 1986; 137: 1270–4

    PubMed  CAS  Google Scholar 

  113. Simmons D, Makgoba MW, Seed B. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature 1988; 331: 624–7

    Article  PubMed  CAS  Google Scholar 

  114. Marlin SD, Springer TA. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function associated antigen-1 (LFA-1). Cell 1987; 51: 813–9

    Article  PubMed  CAS  Google Scholar 

  115. Diamond MS, Staunton DE, de Fougerolles AR, et al. ICAM-1 (CD54): Acounter-receptor for Mac-1(CD11b/CD18). J Cell Biol 1990; 111: 3129–39

    Article  PubMed  CAS  Google Scholar 

  116. Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991; 67: 1033–66

    Article  PubMed  CAS  Google Scholar 

  117. Kuijpers TW, Hakkert BC, Hart MH, et al. Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells: a role for platelet-activating factor and IL-8. J Cell Biol 1992; 117: 565–72

    Article  PubMed  CAS  Google Scholar 

  118. Smart SJ, Casale TB. TNF-α-induced transendothelial neutrophil migration is IL-8 dependent. Am J Physiol 1994; 266: 1238–45

    Google Scholar 

  119. Paleolog EM, Delasalle SA, Buurman WA, et al. Functional activities of tumour necrosis factor alpha on human vascular endothelial cells. Blood 1994; 84: 2578–98

    PubMed  CAS  Google Scholar 

  120. Schuerer-Maly CC, Eckmann L, Kagnoff M, et al. Colonic epithelial cell lines as a source of interleukin 8: stimulation by inflammatory cytokines and bacterial lipopolysaccharide. Immunology 1995; 81: 85–91

    Google Scholar 

  121. Lammers KM, Jansen J, Bijlsma PB, et al. Polarised interleukin-8 secretion by HT29/19A cells. Gut 1994; 35: 338–42

    Article  PubMed  CAS  Google Scholar 

  122. Roggensack AM, Yacyshyn MB, Yacyshyn BR. Surface expression of the αd integrin in Crohn’s, ulcerative colitis and normal intestine [abstract]. Can J Gastroenterol 1997; 11(A): S163

    Google Scholar 

  123. Furie MB, Tancinco MC, Smith CW. Monoclonal antibodies to leukocyte integrins CD11a/CD18 and CD11b/CD18 or intercellular adhesion molecule-1 inhibit chemoattractant-stimulated neutrophil transendothelial migration in vitro. Blood 1991; 78: 2089–97

    PubMed  CAS  Google Scholar 

  124. Lollo BA, Chan KW, Hanson EM, et al. Direct evidence for two affinity states for lymphocyte function-associated antigen-1 on activated T-cells. J Biol Chem 1993; 268: 21693–700

    PubMed  CAS  Google Scholar 

  125. Abreu-Martin MT, Targan SR. Regulation of immune responses of the intestinal mucosa. Crit Rev Immunol 1996; 16: 277–309

    Article  PubMed  CAS  Google Scholar 

  126. Parker CM, Cepek KL, Russell GJ, et al. A family of β7 integrins on human mucosal lymphocytes. Proc Natl Acad Sci U S A 1992; 89: 1924–8

    Article  PubMed  CAS  Google Scholar 

  127. Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure of deoxyribose nucleic acid. Nature 1953; 171: 737–8

    Article  PubMed  CAS  Google Scholar 

  128. Nielsen PE, Egholm M, Berg RH, et al. Peptide nucleic acids (PNA): oligonucleotide analogues with a polyamide backbone. In: Crooke ST, Lebleu B, editors. Antisense and research applications. Boca Raton: CRC Press, 1993: 363

    Google Scholar 

  129. Uhlenbeck OC. Using ribozymes to cleave RNAs. In: Crooke ST, Lebleu B, editors. Antisense research and applications. Boca Raton: CRC Press, 1983: 83

    Google Scholar 

  130. Crooke ST. Phosphorothioate oligonucleotides. In: Crooke ST, editor. Therapeutic applications of oligonucleotides. Austin: RG Landes Co, 1995: 63–84

    Google Scholar 

  131. Kulka M, Smith C, Aurelian L, et al. Site specificity of the inhibitor effects of oligo (nucleoside methylphosphonates) complementary to the acceptor splice junction of herpes simplex virus type 1 immediately early mRNA. Proc Natl Acad Sci 1989; 86: 6868–72

    Article  PubMed  CAS  Google Scholar 

  132. Chiang MY, Chan H, Zounes MA, et al. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 1991; 266: 18162–71

    PubMed  CAS  Google Scholar 

  133. Higgins KA, Perez JR, Coleman TA, et al. Antisense inhibition of the p65 subunit of NFκβ blocks tumorigenicity and causes tumour regression. Proc Natl Acad Sci 1993; 90: 9901–5

    Article  PubMed  CAS  Google Scholar 

  134. Stepkowski SM, Tu Y, Condon TP, et al. Blocking of heart allograft rejection by ICAM-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol 1994; 153: 5336–46

    PubMed  CAS  Google Scholar 

  135. Burch RM, Maham LC. Oligonucleotides antisense to the interleukin 1 receptor mRNA blocks the effects of interleukin 1 in cultured murine and human fibroblasts and in mice. J Clin Invest 1991; 88: 1190–6

    Article  PubMed  CAS  Google Scholar 

  136. Neurath MF, Petterson S, Meyer KH, et al. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NFκβ abrogates established experimental colitis in mice. Nat Med 1996; 2(9): 998–1004

    Article  PubMed  CAS  Google Scholar 

  137. Whitesell L, Rosolen A, Neckers LM. In vivo modulation of N-myc expression by continuous perfusion with an antisense oligonucleotide. Antisense Res Dev 1991; 1: 343–50

    PubMed  CAS  Google Scholar 

  138. Akira S, Kishimoto T. NF-IL6 and NF-κβ in cytokine gene regulation. Adv Immunol 1997; 65: 1–46

    Article  PubMed  CAS  Google Scholar 

  139. Mielo ME, Bennett CF, Miller BE, et al. Enhanced metastatic ability of TNF-α treated malignant melanoma cells is reduced by intercellular adhesion molecule-1 (CD54) antisense oligonucleotides. Exp Cell Res 1994; 214: 231–41

    Article  Google Scholar 

  140. Nestle F, Mitra RS, Bennett CF, et al. Cationic lipid is not required for uptake and inhibitor activity of ICAM-1 phosphorothioate antisense oligonucleotide in keratinocytes. J Invest Dermatol 1994; 103: 569–75

    Article  PubMed  CAS  Google Scholar 

  141. Bennett CF, Condon T, Grimm S, et al. Inhibition of endothelial cell-leukocyte adhesion molecule expression with antisense oligonucleotides. J Immunol 1994; 152: 3530–40

    PubMed  CAS  Google Scholar 

  142. Bennett CF, Kornbrust D, Henry S, et al. An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate sodium-induced colitis in mice. J Pharmacol Exp Ther 1997; 280: 988–1000

    PubMed  CAS  Google Scholar 

  143. Glover JM, Leeds JM, Mant TFK, et al. Phase I safety and pharmacokinetic profile of an intercellular adhesion molecule-1 antisense oligonucleotide (ISIS 2302). J Pharmacol Exp Ther 1997; 282: 1173–80

    PubMed  CAS  Google Scholar 

  144. Henry SP, Larkin R, Novotny WF, et al. Effects of ISIS 2302, a phosphorothioate oligonucleotide, on in vitro and in vivo coagulation parameters. Pharmaceut Res 1994; 11: S–353

    Google Scholar 

  145. Azad RF, Brown-Driver V, Buckheit RW, et al. Anti-viral activity of a phosphorothioate oligonucleotide complementary to human cytomegalovirus RNA when used in combination with antiviral nucleoside analogs. Antiviral Res 1995; 28: 101–11

    Article  PubMed  CAS  Google Scholar 

  146. Azad RF, Brown-Driver V, Tanaka K, et al. Antiviral activity of a phosphorothiatic oligonucleotide complementary to RNA of the huiman cytomegalovius major immediate-early region. Antimicrob Agents Chemother 1993; 37(9): 1945–54

    Article  PubMed  CAS  Google Scholar 

  147. Sikic BI, Yuen AR, Halsey J, et al. A phase I trial of an antisense oligonucleotide targeted to protein kinase C-α (ISIS 3521) delivered by 21-day continuous intravenous infusion. Clin Pharmacol 1997; 16: 212A

    Google Scholar 

  148. De Kriuf J, van der Vuurst de vries AR, Cilenti L. et al. New perspectives on recombinant human antibodies. Immunol Today 1996; 17: 453–5

    Article  Google Scholar 

  149. Rocken M, Racke M, Shevach EM. IL-4 induced immune deviation as antigen specific therapy for inflammatory autoimmune disease. Immunol Today 1996; 17: 225–31

    Article  PubMed  CAS  Google Scholar 

  150. Kingsley G, Lanchbury J, Panayi G. Immunotherapy in rheumatic disease: an idea whose time has come-or gone? Immunol Today 1996; 17: 9–12

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Yacyshyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yacyshyn, B.R. New Biotechnological Therapies for Crohn’s Disease. BioDrugs 10, 301–316 (1998). https://doi.org/10.2165/00063030-199810040-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199810040-00005

Keywords

Navigation