Skip to main content

Advertisement

Log in

Use of Interleukin-2 in Immunotherapy of Human Immunodeficiency Virus Infection

  • Review Article
  • Immunology-Based Agent
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Interleukin-2 (IL-2) is a cytokine produced by activated T cells. Its stimulatory activity allows T cells, B cells and natural killer cells to proliferate and to release cytokines and antibodies which protect the host against invading organisms. IL-2 plays a critical role in the prevention of apoptosis of HIV-infected cells, and the addition of IL-2 to a culture medium will increase the survival of T cells and will upregulate IL-2 receptor function.

Clinical studies of the administration of exogenous IL-2 to HIV-infected patients have demonstrated that it can be given in well tolerated doses and that it can increase and sustain the number of CD4+ cells while only transiently affecting viral proliferation, especially when given to patients with CD4+ counts >200 cells/mm3.

Further investigations are required to determine the optimal use of exogenous IL-2 in HIV-infected patients. There may also be an important role for IL-2 as an adjunct to gene therapy and preventive vaccines against HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marincola FM. Interleukin-2. Biol Ther Updates 1994; 4: 1–16

    Google Scholar 

  2. Seder RA, Grabstein KH, Berzofsky JA, et al. Cytokine interactions in human deficiency virus-infected individuals: roles of interleukin (IL)-2, IL-12, and IL-15. J Exp Med 1995 Oct; 182(4): 1067–77

    Article  PubMed  CAS  Google Scholar 

  3. Adachi Y, Oyaizu N, Than S, et al. IL-2 rescues in vitro lymphocyte apoptosis in patients with HIV infection: correlation with its ability to block culture-induced down modulation of Bcl-2. J Immunol 1996 Nov; 157(9): 4184–93

    PubMed  CAS  Google Scholar 

  4. Kaplan G, Cohn ZA, Smith KA. Rational immunotherapy with interleukin-2. Biotechnology 1992 Feb; 10: 157–62

    Article  PubMed  CAS  Google Scholar 

  5. Kinter A, Fauci AS. Interleukin-2 and human deficiency virus infection: pathogenic mechanisms and potential for immunologic enhancement. Immunol Res 1996; 15(1): 1–5

    Article  PubMed  CAS  Google Scholar 

  6. Butera, ST. Cytokine involvement in viral permissiveness and the progression of HIV disease. J Cell Biochem 1993; 53: 336–42

    Article  PubMed  CAS  Google Scholar 

  7. Jacobson EI, Pilaro F, Smith KA. Rational interleukin-2 therapy for HIV-positive individuals: daily low doses enhance immune function without toxicity. Proc Natl Acad Sci USA 1996 Sep; 93(19): 10405–10

    Article  PubMed  CAS  Google Scholar 

  8. Weissman D, Daucher J, Barker T, et al. Cytokine regulation of HIV replication induced by dendritic cell-CD4-positive T cell interactions. AIDS Res Hum Retroviruses 1996; 12(9): 759–67

    Article  PubMed  CAS  Google Scholar 

  9. Levine BL, Mosca JD, Riley JL, et al. Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science 1996 Nov; 272: 1939–43

    Article  PubMed  CAS  Google Scholar 

  10. Smith KA. Interleukin-2: inception, impact, and implications. Science 1988; 240: 1169–76

    Article  PubMed  CAS  Google Scholar 

  11. Flores I, Casaseca T, Martinez AC, et al. Phosphatidic acid degeneration through interleukin-2 (IL-2)-induced alpha diacylglycerol kinase activation is an essential step in IL-2 lymphocyte proliferation. J Biol Chem 1996 Apr; 271(17): 10334–40

    Article  PubMed  CAS  Google Scholar 

  12. Brenner BG, Gryllis C, Wainberg MA. Role of antibody-dependent cellular toxicity and lymphokine-activated killer cells in AIDS and related diseases. J Leukoc Biol 1991 Dec; 50(6): 628–40

    PubMed  CAS  Google Scholar 

  13. Puri PK, Leland P, Aggarwal BB. Constitutive expression of human deficiency virus type 1 tat gene inhibits interleukin-2 and interleukin-2 receptor expression in a human CD4+ T lymphoid (H9) cell line. AIDS Res Hum Retroviruses 1995 Jan; 11(1): 31–40

    Article  PubMed  CAS  Google Scholar 

  14. Honda M, Kitamura K, Matsuda K, et al. Soluble IL-2 receptor in AIDS. J Immunol 1989Jun; 142(12): 4248–55

    PubMed  CAS  Google Scholar 

  15. Tsunetsugu-Yokota Y, Honda M. Effect of cytokines on HIV release and IL-2 receptor alpha expression in monocytic cell lines. J Acquir Immun Defic Syndr Hum Retrovirol 1990 Aug; 3(5): 511–6

    CAS  Google Scholar 

  16. Secreti I, Spear GT. Complement activation by HIV-1 infected target cells enhances IL-2 stimulated but not unstimulated ADCC activity mediated by peripheral blood mononuclear cells. Clin Immunol Immunopathol 1996 Jan; 78(1): 78–82

    Google Scholar 

  17. Lin SJ, Roberts RL, Ank BJ, et al. Human immunodeficiency virus (HIV) type-1 gp120-specific cell-mediated toxicity (CMC) and natural killer (NK) activity in HIV-infected (HIV+) subjects: enhancement with interleukin-2 (IL-2), IL-12, and IL-15. Clin Immunol Immunopathol 1997 Feb; 82(2): 163–73

    Article  PubMed  CAS  Google Scholar 

  18. Westendorp MO, Li-Weber M, Frank RW, et al. Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells. J Virol 1994 Jul; 68(7): 4177–85

    PubMed  CAS  Google Scholar 

  19. Lederman MM. Host-directed and immune-based therapies for human immunodeficiency virus infection. Ann Intern Med 1995; 122: 218–22

    PubMed  CAS  Google Scholar 

  20. Winkelstein A, Kingsley LA, Weaver LD, et al. Defective T cell colony formation and IL-2 receptor expression in HIV-infected homosexuals: relationship between functional abnormalities and CD4 cell numbers. J Acquir Immune Defic Syndr 1989; 2(4): 353–8

    PubMed  CAS  Google Scholar 

  21. Winkelstein A, Kingsley LA, Klein RS, et al. Defective T-cell colony formation and IL-2 receptor expression at all stages of HIV infection. Clin Exp Immunol 1988 Mar; 71(3): 417–22

    PubMed  CAS  Google Scholar 

  22. Clerici M, Hakim FT, Venzon DJ, et al. Changes in interleukin-2 and interleukin-4 production in asymptomatic, human immunodeficiency virus sero-positive individuals. J Clin Invest 1993 Mar; 91(3): 759–65

    Article  PubMed  CAS  Google Scholar 

  23. Clerici M, Balotta C, Meroni L, et al. Type 1 cytokine production and low prevalence of viral isolation correlate with long-term nonprogression in HIV infection. AIDS Res Hum Retroviruses 1996 Jul; 12(11): 1053–61

    Article  PubMed  CAS  Google Scholar 

  24. Bost KL, Hahn BH, Saag MS, et al. Individuals infected with HIV possess antibodies against IL-2. Immunology 1988 Dec; 65(4): 611–5

    PubMed  CAS  Google Scholar 

  25. Scott-Alzara D, Vuillier M, Marasescu M, et al. Serum levels of IL-2, IL-1α, TNF-α and soluble receptor of IL-2 in HIV-1-infected patients. AIDS Res Hum Retroviruses 1991 Apr; 7(4): 381–6

    Article  Google Scholar 

  26. Poli G, Fauci A. The effect of cytokines and pharmacologic agents on chronic HIV-infection. AIDS Res Hum Retroviruses 1992 Feb; 8(2): 191–7

    Article  PubMed  CAS  Google Scholar 

  27. Rubin LA, Kurman CC, Fritz ME, et al. Soluble interleukin-2 receptors are released from activated human lymphoid cells in vitro. J Immunol 1985; 135: 3172–7

    PubMed  CAS  Google Scholar 

  28. Rubin LA, Jay G, Nelson D. The released interleukin 2 receptor binds interleukin 2 efficiently. J Immunol 1986; 137: 3841–4

    PubMed  CAS  Google Scholar 

  29. Cohen JJ. Apoptosis. Immunol Today 1993; 14(3): 126–30

    Article  PubMed  CAS  Google Scholar 

  30. Radrizzani M, Accorneo P, Amidei A, et al. IL-12 inhibits apoptosis induced in a human Th1 clone by gp120/CD4 cross-linking and CD4/TCR activation or by IL-2 deprivation. Cell Immunol 1995 Mar; 161(1): 14–21

    Article  PubMed  CAS  Google Scholar 

  31. Meyaard L, Otto SA, Jonker RR, et al. Programmed cell death. Science 1992; 257: 217–9

    Article  PubMed  CAS  Google Scholar 

  32. Salmon M, Pilling D, Borthwick NJ, et al. The progressive differentiation of primed T cells is associated with an increasing susceptibility to apoptosis. Eur J Immunol 1994; 24: 892–9

    Article  PubMed  CAS  Google Scholar 

  33. Miyawawaki T, Uehara R, Nibu T, et al. Differential expression of apoptosis-related Fas antigen on lymphocytes subpopulation in human peripheral blood. J Immunol 1992; 149: 3753

    Google Scholar 

  34. Pandolfi F, Pierdominici M, Oliva A, et al. Apoptosis-related mortality in vitro of mononuclear cells from patients with HIV infection correlates with disease severity and progression. J Acquir Immun Defic Syndr Hum Retrovirol 1995 Aug; 9(5): 450–8

    CAS  Google Scholar 

  35. Clerici M, Sarin A, Berzofsky JA, et al. Antigen-stimulated apoptotic T-cell death in HIV infection is selective for CD4+ T cells, modulated by cytokines and affected by lymphotoxin. AIDS 1996; 10(6): 603–11

    Article  PubMed  CAS  Google Scholar 

  36. Clerici M, Balotta C, Salvaggio A, et al. Human immunodeficiency virus (HIV) phenotype and interleukin-2/interleukin-10 ratio are associated markers of protection and progression in HIV infection. Blood 1996 Jul; 88(2): 574–9

    PubMed  CAS  Google Scholar 

  37. Mor F, Cohen IR. IL-2 rescues antigen-specific T cells from radiation or dexamethasone-induced apoptosis. J Immunol 1996; 156: 515–22

    PubMed  CAS  Google Scholar 

  38. Kovacs JA, Baseler M, Dewar RJ, et al. Increases in CD4 lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. N Engl J Med 1995; 332: 567–75

    Article  PubMed  CAS  Google Scholar 

  39. Kovacs JA, Vogel S, Albert JM, et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 1996 Oct; 335(18): 1350–6

    Article  PubMed  CAS  Google Scholar 

  40. Kinter AL, Bende SM, Hardy EC, et al. Interleukin-2 induces CD8+ cell-mediated suppression of human immunodeficiency virus replication in CD4+ cells and this effect overrides its ability to stimulate virus expression. Proc Natl Acad Sci 1995 Nov; 92(24): 10985–9

    Article  CAS  Google Scholar 

  41. Teppler H, Kaplan G, Smith K, et al. Efficacy of the low doses of the polyethylene glycol derivative of interleukin-2 in modulating the immune response of patients with immunodeficiency virus type-1 infection. J Infect Dis 1993 Feb; 167(2): 291–8

    Article  PubMed  CAS  Google Scholar 

  42. Wood R, Montoya JG, Kundu SK, et al. Safety and efficacy of polyethylene glycol-modified interleukin-2 and zidovudine in human deficiency virus type 1 infection: a phase I/II study. J Infect Dis 1993 Mar; 167(3): 519–25

    Article  PubMed  CAS  Google Scholar 

  43. Barker E, Mackewicz CE, Levy JA. Effects of TH1 and TH2 cytokines on CD8+ cell response against human immunodeficiency virus: implications for long-term survival. Proc Natl Acad Sci USA 1995 Nov; 92: 11135–9

    Article  PubMed  CAS  Google Scholar 

  44. Vyarkarman A, Matear PM, Martin SJ, et al. Th1 cells specific for HIV-1 gag p24 are less efficient than Th0 cells in supporting HIV replication, and inhibit virus replication in Th0 cells. Immunology 1995 Sep; 86(1): 85–96

    Google Scholar 

  45. Chehimi J, Ma X, Chouaib S, et al. Differential production of interleukin-10 during human immunodeficiency virus infection. AIDS Res Hum Retroviruses 1996; 12(12): 1141

    Article  PubMed  CAS  Google Scholar 

  46. Hagiwara E, Sacks T, Leitman-Klinman SF, et al. Effect of HIV infection on the frequency of cytokine-secreting cells in human peripheral blood. AIDS Res Hum Retroviruses 1996 Jan; 12(2): 127–33

    Article  PubMed  CAS  Google Scholar 

  47. Naif HM, Chang J, Ho-Shon M, et al. Inhibition of human immunodeficiency virus in differentiating monocytes by interleukin-10 occurs in parallel with inhibition of cellular RNA expression. AIDS Res Hum Retroviruses 1996; 12(13): 1237–45

    Article  PubMed  CAS  Google Scholar 

  48. Koostra NA, Wout AB, Huisman HG, et al. Interference of interleukin-10 with human immunodeficiency virus type 1 replication in primary monocyte-derived macrophages. J Virol 1994 Nov; 68(11): 6967–75

    Google Scholar 

  49. Saville MW, Taga K, Foli A, et al. Interleukin-10 suppresses human immunodeficiency virus-1 replication in vitro in cells of the monocyte-macrophage lineage. Blood 1994 Jun; 83(12): 3591–9

    PubMed  CAS  Google Scholar 

  50. Fan J, Bass HZ, Fahey JL. Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J Immunol 1993 Nov; 151(9): 5031–40

    PubMed  CAS  Google Scholar 

  51. Sneller MC. Consensus symposium on combined antiretroviral therapy; overview of interferon and IL-2 combinations for the treatment of HIV infection. Antiviral Res 1996 Jan; 29(1): 105–9

    Article  PubMed  CAS  Google Scholar 

  52. Kinter AL, Poli G, Fox L, et al. HIV replication in IL-2-stimulated peripheral blood mononuclear cells is driven in an autocrine/paracrine manner by endogenous cytokines. J Immunol 1995 Mar; 154(5): 2248–59

    Google Scholar 

  53. Bernstein ZP, Porter MM, Gould M, et al. Prolonged administration of low-dose interleukin-2 in human immunodeficiency virus-associated malignancy results in selective expansion of innate immune effectors without significant clinical toxicity. Blood 1995 Nov; 86(9): 3287–94

    PubMed  CAS  Google Scholar 

  54. Davey RT, Chaitt DG, Piscitelli SC, et al. Subcutaneous administration of interleukin-2 in human immunodeficiency virus type-1-infected persons. J Infect Dis 1997; 175: 781–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald T. Mitsuyasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reier, A., Mitsuyasu, R.T. Use of Interleukin-2 in Immunotherapy of Human Immunodeficiency Virus Infection. BioDrugs 10, 215–225 (1998). https://doi.org/10.2165/00063030-199810030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199810030-00005

Keywords

Navigation