Skip to main content
Log in

Current Biotechnological Approaches to the Prevention of Restenosis

  • Review Article
  • Biopharmaceutical
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

No systemic pharmacological treatment has been convincingly shown to reduce the incidence of restenosis after angioplasty in patients. The lack of success of many pharmaceutical agents in reducing restenosis rates post-angioplasty and following stent implantation, as documented in dozens of clinical trials, has encouraged the development of new biotechnological approaches to the treatment of restenosis. Gene therapy and other agents, including antibodies, fusion toxins and ribozymes, have the potential to prevent some of the sequelae after arterial injury, particularly cell proliferation. Mechanical methods of preventing restenosis, for example sophisticated local drug delivery strategies and biodegradable stents using new materials, in combination with novel therapeutic agents or radiation, may also be of use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruentzig A. Transluminal dilatation of coronary artery stenosis. Lancet 1978; I: 263

    Google Scholar 

  2. Lange RA, Hillis LD. Immediate angioplasty for acute myocardial infarction. N Engl J Med 1993; 328: 726–7

    PubMed  CAS  Google Scholar 

  3. Nobuyoshi M, Kimura T, Nosaka H, et al. Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol 1988; 12(3): 616–23

    PubMed  CAS  Google Scholar 

  4. Serruys PW, Luijten HE, Beatt KJ, et al. Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon: a quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 1988; 77(2): 361–71

    PubMed  CAS  Google Scholar 

  5. Herrman JP, Hermans WR, Vos J, et al. Pharmacological approaches to the prevention of restenosis following angioplasty: the search for the Holy Grail? [Part I]. Drugs 1993; 46(1): 18–52

    PubMed  CAS  Google Scholar 

  6. Popma JJ, Califf RM, Topol EJ. Clinical trials of restenosis after coronary angioplasty. Circulation 1991; 84(3): 1426–36

    PubMed  CAS  Google Scholar 

  7. Forrester JS, Fishbein M, Helfant R, et al. A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies. J Am Coll Cardiol 1991; 17(3): 758–69

    PubMed  CAS  Google Scholar 

  8. Isner JM. Vascular remodeling. Honey, I think I shrunk the artery [editorial]. Circulation 1994; 89(6): 2937–41

    PubMed  CAS  Google Scholar 

  9. Höfling B, Huehns TY. Restenosis after angioplasty: an update on relevant animal models. J Invas Cardiol 1996; 8: 388–95

    Google Scholar 

  10. Bordignon C, Notarangelo LD, Nobili N, et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 1995; 270(5235): 470–5

    PubMed  CAS  Google Scholar 

  11. Lasic DD, Papahadjopoulos D. Liposomes revisited. Science 1995; 267(5202): 1275–6

    PubMed  CAS  Google Scholar 

  12. Keogh MC, Chen D, Lupu F, et al. High efficiency reporter gene transfection of vascular tissue in. vitro and in vivo using a cationic lipid DNA complex. Gene Ther 1997; 4(2): 162–71

    PubMed  CAS  Google Scholar 

  13. Miller AD. Human gene therapy comes of age. Nature 1992; 357: 455–60

    PubMed  CAS  Google Scholar 

  14. Newman KD, Dunn PF, Owens JW, et al. Adenovirus-mediated gene transfer into normal rabbit arteries results in prolonged vascular cell activation, inflammation, and neointimal hyperplasia. J Clin Invest 1995; 96(6): 2955–65

    PubMed  CAS  Google Scholar 

  15. Salmons B, Ganzburg WH. Targeting of retroviral vectors for gene therapy. Hum Gene Ther 1993; 4(2): 129–41

    PubMed  CAS  Google Scholar 

  16. Morishita R, Gibbons GH, Kaneda Y, et al. Novel in vitro gene transfer method for study of local modulators in vascular smooth muscle cells. Hypertension 1993; 21: 894–9

    PubMed  CAS  Google Scholar 

  17. Anderson WF, Killos L, Sanders HL, et al. Replication and expression of thymidine kinase and human globin genes microinjected into mouse fibroblasts. Proc Natl Acad sci USA 1980; 77(9): 5399–403

    PubMed  CAS  Google Scholar 

  18. Raja-Walia R, Webber J, Naftilan J, et al. Enhancement of lipo-some-mediated gene transfer into vascular tissue by replication deficient adenovirus. Gene Ther 1995; 2: 521–30

    PubMed  CAS  Google Scholar 

  19. Wickham TJ, Segal DM, Roelvink PW, et al. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J Virol 1996; 70(10): 6831–8

    PubMed  CAS  Google Scholar 

  20. Feldman LJ, Pastore CJ, Aubailly N, et al. Improved efficiency of arterial gene transfer by use of poloxamer 407 as a vehicle for adenoviral vectors. Gene Ther 1997; 4(3): 189–98

    PubMed  CAS  Google Scholar 

  21. Wilson JM, Grossman M, Raper SE, et al. Ex vivo gene therapy of familial hypercholesterolemia. Hum Gene Ther 1992; 3(2): 179–222

    PubMed  CAS  Google Scholar 

  22. Höfling B, Pölnitz AV, Backa D, et al. Percutaneous removal of atheromatous plaques in peripheral arteries. Lancet 1988; I: 384–6

    Google Scholar 

  23. Isner JM, Kearney M, Bauters C, et al. Use of human tissue specimens obtained by directional atherectomy to study restenosis. Trends Cardiovasc Med 1994; 4: 213–21

    PubMed  CAS  Google Scholar 

  24. Nikol S, Huehns TY, Höfling B. Molecular biology and post-angioplasty restenosis. Atherosclerosis 1996; 123: 17–31

    PubMed  CAS  Google Scholar 

  25. Hanna AK, Fox JC, Neschis DG, et al. Antisense basic fibro-blast growth factor gene transfer reduces neointimal thickening after arterial injury. J Vasc Surg 1997; 25(2): 320–5

    PubMed  CAS  Google Scholar 

  26. Nabel EG, Yang ZY, Plautz G, et al. Recombinant fibroblast growth factor-1 promotes intimal hyperplasia and angiogenesis in arteries in vivo. Nature 1993; 362: 844–6

    PubMed  CAS  Google Scholar 

  27. Border WA, Okuda S, Languino LR, et al. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor-β1. Nature 1990; 346: 371–74

    PubMed  CAS  Google Scholar 

  28. Nikol S, Isner JM, Pickering JG, et al. Expression of transforming growth factor-beta 1 is increased in human vascular restenosis lesions. J Clin Invest 1992; 90(4): 1582–92

    PubMed  CAS  Google Scholar 

  29. Nikol S, Weir L, Sullivan A, et al. Persistently increased expression of the transforming growth factor-β11 gene in human vascular restenosis: analysis of 62 patients with one or more episodes of restenosis. Cardiovasc Pathol 1994; 3: 57–64

    Google Scholar 

  30. Battegay EJ, Raines EW, Scifert RA, et al. TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 1990; 63(3): 515–24

    PubMed  CAS  Google Scholar 

  31. Wiernicki TR, Bean JS, Dell C, et al. Inhibition of vascular smooth muscle cell proliferation and arterial intimai thickening by a novel antiproliferative naphthopyran. J Pharmacol Exp Ther 1996; 278(3): 1452–59

    PubMed  CAS  Google Scholar 

  32. Liaw L, Lombardi DM, Almeida MM, et al. Neutralizing antibodies directed against osteopontin inhibit rat carotid neointimal thickening after endothelial denudation. Arterioscler Thromb Vasc Biol 1997; 17(1): 188–93

    PubMed  CAS  Google Scholar 

  33. Topol EJ, Califf RM, Weisman HF, The EPIC Investigators. Randomised trial of coronary intervention with antibody against platelet Ilb/IIIa integrin for reduction of clinical restenosis: results at six months [see comments]. Lancet 1994; 343: 881–6

    PubMed  CAS  Google Scholar 

  34. Nakada MT, Jordan RE, Knight DM. Abciximab (ReoPro, chimeric 7E3 Fab): cross-specificity with alpha-v-beta-3 integrin receptors: a potential mechanism for the prevention of restenosis [abstract]. J Am Coll Cardiol 1997; 29(2 Suppl. A): 243A

    Google Scholar 

  35. Kranzhöfer R, Schirmer J, Schömig A, et al. Suppression of neointimal thickening and smooth muscle cell proliferation after arterial injury in the rat by inhibitors of Na-H exchange. Circ Res 1993; 73(2): 264–8

    PubMed  Google Scholar 

  36. Emanuelsson H, Beatt KJ, Bagger JP, et al. Long-term effects of angiopeptin treatment in coronary angioplasty: reduction of clinical events but not angiographic restenosis. Circulation 1995; 91: 1689–96

    PubMed  CAS  Google Scholar 

  37. Nakajima M, Hutchinson HG, Fujinaga M, et al. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad sci USA 1995; 92(23): 10663–7

    PubMed  CAS  Google Scholar 

  38. Simons M, Edelman ER, DeKeyser JL, et al. Antisense c-myb oligonucleotides inhibit intimai arterial smooth muscle cell accumulation in vivo. Nature 1992; 359: 67–70

    PubMed  CAS  Google Scholar 

  39. Bennett MR, Anglin S, McEwan JR, et al. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Invest 1994; 93(2): 820–8

    PubMed  CAS  Google Scholar 

  40. Abe J, Zhou W, Taguchi J, et al. Suppression of neointimal smooth muscle cell accumulation in vivo by antisense cdc2 and cdk2 oligonucleotides in rat carotid artery. Biochem Biophys Res Commun 1994; 198(1): 16–24

    PubMed  CAS  Google Scholar 

  41. Edelman ER, Simons M, Sirois MG, et al. c-myc in vasculoproliferative disease. Circ Res 1995; 76(2): 176–82

    PubMed  CAS  Google Scholar 

  42. Morishita R, Gibbons GH, Ellison KE, et al. Single intraluminal delivery of antisense cdc2 kinase and proliferating cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad sci USA 1993; 90(18): 8474–8

    PubMed  CAS  Google Scholar 

  43. Shi Y, Fard A, Galeo A, et al. Transcatheter delivery of c-myc antisense oligomers reduces neointimal formation in a porcine model of coronary artery balloon injury. Circulation 1994; 90(2): 944–51

    PubMed  CAS  Google Scholar 

  44. Gunn J, Holt CM, Francis SE, et al. The effect of oligonucleotides to c-myb on vascular smooth muscle cell proliferation and neointima formation after porcine coronary angioplasty. Circ Res Apr 1997; 80(4): 520–31

    CAS  Google Scholar 

  45. Autieri MV, Yue TL, Ferstein GZ, et al. Antisense oligonucleotides to the p65 subunit of NF-κB inhibit human vascular smooth muscle cell adherence and proliferation and prevent neointima formation in rat carotid arteries. Biochem Biophys Res Commun 1995; 213(3): 827–36

    PubMed  CAS  Google Scholar 

  46. Sirois MG, Simons M, Edelman ER. Antisense oligonucleotide inhibition of PDGF beta receptor subunit expression directs suppression of intimai thickening. Circulation 1997; 95(3): 669–76

    PubMed  CAS  Google Scholar 

  47. Burgess TL, Fisher EF, Ross SL, et al. The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad sci USA 1995; 92(9): 4051–5

    PubMed  CAS  Google Scholar 

  48. Villa AE, Guzman LA, Poptic EJ, et al. Effects of antisense c-myb oligonucleotides on vascular smooth muscle cell proliferation and response to vessel wall injury. Circ Res 1995; 76(4): 505–13

    PubMed  CAS  Google Scholar 

  49. Wang WZ, Chen HJ, Schwartz A, et al. Sequence independent inhibition of in vitro vascular smooth muscle cell proliferation, migration, and in vivo neointimal formation by phosphorothioate oligodeoxynucleotides. J Clin Invest 1996; 98(2): 443–50

    PubMed  CAS  Google Scholar 

  50. Thompson JD, Macejak D, Couture L, et al. Ribozymes in gene therapy. Nature Med 1995; 1: 277–78

    PubMed  CAS  Google Scholar 

  51. Jarvis TC, Wincott FE, Alby LJ, et al. Optimizing the cell efficacy of synthetic ribozymes: site selection and chemical modifications of ribozymes targetting the proto-oncogene c-myb. J Biol Chem 1996; 271: 29107–12

    PubMed  CAS  Google Scholar 

  52. Chen SJ, Chen YF, Miller DM, et al. Mithramycin inhibits myointimal proliferation after balloon injury of the rat carotid artery in vivo. Circulation 1994; 90(5): 2468–73

    PubMed  CAS  Google Scholar 

  53. Lindner V, Olson NE, Clowes AW, et al. Inhibition of smooth muscle cell proliferation in injured rat arteries. Interaction of heparin with basic fibroblast growth factor. J Clin Invest 1992; 90(5): 2044–9

    PubMed  CAS  Google Scholar 

  54. Berk BC, Gordon JB, Alexander RW. Pharmacologic roles of heparin and glucocorticoids to prevent restenosis after coronary angioplasty. J Am Coll Cardiol 1991; 17: 111B–7B

    PubMed  CAS  Google Scholar 

  55. Majesky MW, Schwartz SM, Clowes MM, et al. Heparin regulates smooth muscle S phase entry in the injured rat carotid artery. Circ Res 1987; 61(2): 296–300

    PubMed  CAS  Google Scholar 

  56. Kobayashi S, Kitazawa T, Somlyo AV, et al. Cytosolic heparin inhibits muscarinic and alpha-adrenergic Ca2+ release in smooth muscle: physiological role of inositol 1,4,5-trisphosphate in pharmacomechanical coupling. J Biol Chem 1989; 264(30): 17997–8004

    PubMed  CAS  Google Scholar 

  57. Shah PK, Amin J. Low density lipoprotein level is associated with increased restenosis rate after coronary angioplasty. Circulation 1992; 85: 1279–85

    PubMed  CAS  Google Scholar 

  58. Ameli S, Hultgardh NA, Cercek B, et al. Recombinant apolipoprotein A-I Milano reduces intimai thickening after balloon injury in hypercholesterolemic rabbits. Circulation 1994; 90(4): 1935–41

    PubMed  CAS  Google Scholar 

  59. Forough R, Koyama N, Hasenstab D, et al. Overexpression of tissue inhibitor of matrix metalloproteinase 1 inhibits vascular smooth muscle cell functions in. vitro and in vivo. Circ Res 1996; 79(4): 812–20

    PubMed  CAS  Google Scholar 

  60. Indolfi C, Avvedimento EV, Rapacciuolo A, et al. Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nature Med 1995; 1(6): 541–5

    PubMed  CAS  Google Scholar 

  61. Chang MW, Barr E, Lu MM, et al. Adenovirus-mediated over-expression of the cyclin/cyclin-dependent kinase inhibitor p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest 1995; 96(5): 2260–8

    PubMed  CAS  Google Scholar 

  62. Chang MW, Barr E, Seltzer J, et al. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 1995; 267: 518–22

    PubMed  CAS  Google Scholar 

  63. Yang Z-Y, Simari RD, Perkins ND, et al. Role of the p21 cyclin-dependent kinase inhibitor in limiting intimal cell proliferation in response to arterial injury. Proc Natl Acad sci USA 1996; 93: 7905–10

    PubMed  CAS  Google Scholar 

  64. von der Leyen HE, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad sci USA 1995; 92(4): 1137–41

    PubMed  Google Scholar 

  65. Krumlauf R. Hox genes in vertebrate development. Cell 1994; 78: 191–201

    PubMed  CAS  Google Scholar 

  66. Weir L, Chen D, Pastore C, et al. Expression of gax, a growth arrest homeobox gene, is rapidly down-regulated in the rat carotid artery during the proliferative response to balloon injury. J Biol Chem 1995; 270(10): 5457–61

    PubMed  CAS  Google Scholar 

  67. Maillard L, Walsh K. Growth-arrest homeobox gene Gax: a molecular strategy to prevent arterial restenosis. Schweiz Med Wochenschr 1996; 126(41): 1721–6

    PubMed  CAS  Google Scholar 

  68. Takeshita S, Gal D, Leclerc G, et al. Increased gene expression after liposome-mediated arterial gene transfer associated with intimai smooth muscle cell proliferation: in vitro and in vivo findings in a rabbit model of vascular injury. J Clin Invest 1994; 93(2): 652–61

    PubMed  CAS  Google Scholar 

  69. Asahara T, Chen D, Tsurumi Y, et al. Accelerated restitution of endothelial integrity and endothelium-dependent function after phVEGF165 gene transfer. Circulation 1996; 94(12): 3291–302

    PubMed  CAS  Google Scholar 

  70. Yonemitsu Y, Kaneda Y, Morishita R, et al. Characterization of in vivo gene transfer into the arterial wall mediated by the Sendai virus (hemagglutinating virus of Japan) liposomes: an effective tool for the in vivo study of arterial diseases. Lab Invest 1996; 75(3): 313–23

    PubMed  CAS  Google Scholar 

  71. Isner JM, Walsh K, Symes J, et al. Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 1995; 91(11): 2687–92

    PubMed  CAS  Google Scholar 

  72. Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996; 348: 370–4

    PubMed  CAS  Google Scholar 

  73. Isner JM, Walsh K, Rosenfield K, et al. Arterial gene therapy for restenosis. Hum Gene Ther 1996; 7(8): 989–1011

    PubMed  CAS  Google Scholar 

  74. Pahl C, Gonschior P, Huehns TY Uptake of benzoporphyrin derivate by cultured myofibroblasts: possible use in restenosis prevention. Las Surg Med 1996; 12: 65–9

    Google Scholar 

  75. Gonschior P, Gerheuser F, Fleuhaus M, et al. Local photodynamic therapy to obviate tissue hyperplasia in an experimental restenosis model. Photobiol Photochem 1996; 64: 758–63

    CAS  Google Scholar 

  76. Pickering JG, Bacha PA, Weir L, et al. Prevention of smooth muscle cell outgrowth from human atherosclerotic plaque by a recombinant cytotoxin specific for the epidermal growth factor receptor. J Clin Invest 1993; 91(2): 724–9

    PubMed  CAS  Google Scholar 

  77. Ohno T, Gordon D, San H, et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 1994; 265(5173): 781–4

    PubMed  CAS  Google Scholar 

  78. Simari RD, San H, Rekhter M, et al. Regulation of cellular proliferation and intimal formation following balloon injury in atherosclerotic rabbit arteries. J Clin Invest 1996; 98(1): 225–35

    PubMed  CAS  Google Scholar 

  79. Guzman RJ, Hirschowitz EA, Brody SL, et al. In vivo suppression of injury-induced vascular smooth muscle cell accumulation using adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Proc Natl Acad sci USA 1994; 91(22): 10732–6

    PubMed  CAS  Google Scholar 

  80. Barbee RW, Stapleton DD, Madras DE, et al. Retroviral suicide vector does not inhibit neointimal growth in a porcine coronary model of restenosis. Biochem Biophys Res Commun 1995; 207(1): 89–98

    PubMed  CAS  Google Scholar 

  81. Hugosson M, Andreu D, Boman HG, et al. Antibacterial peptides and mitochondrial presequences affect mitochondrial coupling, respiration and protein import. Eur J Biochem 1994; 223: 1027–33

    PubMed  CAS  Google Scholar 

  82. Nikol S, Huehns TY, Schrittenloher P-K, et al. Inhibition of neointimal hyperplasia following local drug delivery of the gene of an amphipathic peptide with the needle injection catheter [abstract]. Proc Eur Atheroscler Soc 1996: 29

  83. Wilensky RL, March KL, Gradus-Pizlo I, et al. Methods and devices for local drug delivery in coronary and peripheral arteries. Trends Cardiovasc Med 1993; 3(5): 163–9

    PubMed  CAS  Google Scholar 

  84. Riessen R, Isner JM. Prospects for site-specific delivery of pharmacologic and molecular therapies. J Am Coll Cardiol 1994; 23(5): 1234–44

    PubMed  CAS  Google Scholar 

  85. Höfling B, Huehns TY. Intravascular local drug delivery after restenosis. Eur Heart J 1995; 16: 437–40

    PubMed  Google Scholar 

  86. Huehns TY, Gonschior P, Höfling B. Adventitia as a target for intravascular local drug delivery. Heart 1996; 75: 437–8

    Google Scholar 

  87. Shi Y, Piniek M, Fard A, et al. Adventitial remodeling after coronary arterial injury. Circulation 1996; 93: 340–48

    PubMed  CAS  Google Scholar 

  88. Shi Y, O’Brien JE, Fard A, et al. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 1996; 94: 1655–64

    PubMed  CAS  Google Scholar 

  89. Wilensky RL, Kolo M, Gradus-Pizlo I, et al. Regional and arterial localization of radioactive microparticles after local delivery by unsupported or supported porous balloon catheters. Am Heart J 1995; 129: 852–9

    PubMed  CAS  Google Scholar 

  90. Guzman LA, Labhasetwar V, Song CX, et al. Local intraluminal infusion of biodegradable polymeric nanoparticles: a novel approach for prolonged drug delivery after balloon angioplasty. Circulation 1996; 94(6): 1441–8

    PubMed  CAS  Google Scholar 

  91. Fernandez-Ortez A, Meyer BJ, Mailhac A, et al. A new approach for intravascular drug delivery. Circulation 1994; 89: 1518–22

    Google Scholar 

  92. Gonschior P, Goetz AE, Huehns TY, et al. A new catheter for prolonged local drug application. Coron Artery Dis 1995; 6(4): 329–34

    PubMed  CAS  Google Scholar 

  93. Gonschior P, Pahl C, Huehns TY, et al. Comparison of local intravascular drug-delivery catheter systems. Am Heart J 1995; 130(6): 1174–81

    PubMed  CAS  Google Scholar 

  94. Nikol S, Huehns TY, Nekolla S, et al. Adventitial gene transfer of the antisense to senescent cell-derived inhibitor 1 results in increased neointima [abstract]. J Mol Med 1997; 75(5): B32

    Google Scholar 

  95. Krauss E, Huehns TY, Winder D, et al. Adventitial delivery of the cecropin A gene encoding for an amphipathic peptide [abstract]. J Mol Med 1997; 75(5): B35

    Google Scholar 

  96. Popov A, Dillehay GL, Barath P. Infiltrator angioplasty balloon catheter: histological and efficiency study [abstract]. Circulation 1996; 94: 1–618

    Google Scholar 

  97. Serruys PW, de Jaegere P, Kiemeneij F, Benestent Study Group, et al. Acomparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994; 331(8): 489–95

    PubMed  CAS  Google Scholar 

  98. Fischman DL, Leon MB, Baim DS, Stent Restenosis Study Investigators, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl JMed 1994; 331(8): 496–501

    CAS  Google Scholar 

  99. Kruse KR, Tanguay J, Williams MS, et al. A polymer-metal composite stent. Semin Intervent Cardiol 1996; 1: 46–8

    CAS  Google Scholar 

  100. Lincoff AM, Furst JG, Ellis SG, et al. Sustained local drug delivery by a novel intravascular eluting stent to prevent restenosis in the porcine coronary artery. J Am Coll Cardiol 1997; 29: 808–16

    PubMed  CAS  Google Scholar 

  101. Serruys PW, Emanuelsson H, van der Giessen W, et al. Heparin-coated Palmaz-Schatz stents in human coronary arteries: early outcome of the Benestent-II Pilot Study. Circulation 1996; 93(3): 412–22

    PubMed  CAS  Google Scholar 

  102. Dichek DA, Neville RF, Zwiebel JA, et al. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 1989; 80(5): 1347–53

    PubMed  CAS  Google Scholar 

  103. Baker JE, Nikolaychik V, Zulich A, et al. Fibrin coated stents as a depot to deliver RGD peptide inhibit vascular reaction in atherosclerotic rabbit model [abstract]. J Am Coll Cardiol 1996; 27(2 Suppl. A): 197A

    Google Scholar 

  104. Stefanadis C, Toutouzas K, Vlachopoulos C, et al. Autologous vein graft-coated stent for treatment of coronary artery disease. Cathet Cardiovasc Diagn 1996; 38: 159–70

    PubMed  CAS  Google Scholar 

  105. Colon PJ, Ramee SR, Mulingtapang R, et al. Percutaneous bailout therapy of a perforated vein graft using a stentautologous vein patch. Cathet Cardiovasc Diagn 1996; 38: 175–8

    PubMed  Google Scholar 

  106. Colombo A, Itoh A, di Mario C, et al. Successful closure of a coronary vessel rupture with a vein graft stent. Cathet Cardiovasc Diagn 1996; 38: 172–4

    PubMed  CAS  Google Scholar 

  107. Schwartz RS, Murphy JG, Edwards WD, et al. Bioabsorbable, drug-eluting, intracoronary stents: design and future applications. In: Sigwart, U, Frank, GI, editors. Coronary stents. Barlin, Heidelberg: Springer Verlag, 1992: 135–53

    Google Scholar 

  108. Ye YW, Landau C, Meidell RS, et al. Improved bioresorbable microporous intravascular stents for gene therapy. Asaio J 1996; 42(5): M823–7

    PubMed  CAS  Google Scholar 

  109. van der Giessen WJ, Lincoff AM, Schwartz RS, et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 1996; 94: 1690–7

    PubMed  Google Scholar 

  110. Murphy JG, Schwartz RS, Edwards WD, et al. Percutaneous polymeric stents in porcine coronary arteries: initial experience with polyethylene terephthalate stents. Circulation 1992; 86(5): 1596–604

    PubMed  CAS  Google Scholar 

  111. Beyar R. New devices in interventional cardiology: present and future. Isr J Med sci 1996; 32(7): 515–25

    PubMed  CAS  Google Scholar 

  112. Khorsandi MJ, Eigler NL, Litvack F, et al. Heat activated recoverable temporary stents: histopathologic and angiographic observations for implantations of up to six weeks [abstract]. J Am Coll Cardiol 1993; 21: 439A

    Google Scholar 

  113. Amols HI, Reinstein LE, Weinberger J. Dosimetry of a radioactive coronary balloon dilatation catheter for treatment of neointimal hyperplasia. Med Phys 1996; 36: 1783–8

    Google Scholar 

  114. Carter AJ, Laird JR. Experimental results with endovascular irradiation via a radioactive stent. Int J Radiat Oncol Biol Phys 1996; 36: 797–803

    PubMed  CAS  Google Scholar 

  115. van der Giessen WJ, Serruys PW. Beta-particle-emitting stents radiate enthusiasm in the search for effective prevention of restenosis [editorial]. Circulation 1996; 94: 2358–60

    PubMed  Google Scholar 

  116. Wilcox JN, Waksman R, King SB, et al. The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation. Int J Radiat Oncol Biol Phys 1996; 36(4): 789–96

    PubMed  CAS  Google Scholar 

  117. Verin V, Urban P, Popowski Y, et al. Feasibility of intracoronary beta-irradiation to reduce restenosis after balloon angioplasty: a clinical pilot study. Circulation 1997 (95): 1138–44

    PubMed  CAS  Google Scholar 

  118. Jani SK, Massullo V, Tripuraneni P, et al. Radiation parameters associated with coronary irradiation pilot study to inhibit restenosis after stenting [abstract]. J Am Coll Cardiol 1996; 27: 362A

    Google Scholar 

  119. Teirstein PS, Massullo V, Jani S, et al. Radiation therapy following coronary stenting: 6 month follow-up of a randomized clinical trial [abstract]. Circulation 1997; 94:1–210

    Google Scholar 

  120. Massullo V, Teirstein PS, Jani S, et al. Endovascular brachytherapy to inhibit coronary artery restenosis: an introduction to the SCRIPPS Coronary Radiation to Inhibit Proliferation Post Stenting trial [abstract]. Circulation 1996; 94:I–210

    Google Scholar 

  121. Conado JA, Popma JJ, Lansky AJ, et al. Effect of intracoronary 192-iridium on late quantitative angiographic outcomes after PTCA [abstract]. J Am Coll Cardiol 1997; 29: 418A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Nikol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikol, S., Maier, A., Krausz, E. et al. Current Biotechnological Approaches to the Prevention of Restenosis. BioDrugs 9, 375–388 (1998). https://doi.org/10.2165/00063030-199809050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199809050-00003

Keywords

Navigation