Skip to main content

Advertisement

Log in

Optimisation of Azathioprine Immunosuppression After Organ Transplantation by Pharmacological Measurements

  • Disease Management
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

Azathioprine undergoes extensive metabolism in vivo. Most of its immunosuppressive and myelotoxic effects are exerted by the intracellular metabolites 6-thioguanine nucleotides (6-TGN). There is large individual variability in thiopurine pharmacokinetics. When transplant recipients are started on the standard azathioprine dosage, low and probably subtherapeutic 6-TGN concentrations [<100 pmol/8 × 108 red blood cells (RBC)] are measured in the majority of patients with normal kidney function. When renal function is severely impaired, 6-TGN concentrations rise 8- to 10-fold or higher. Due to genetic polymorphism, the activity of the enzyme thiopurine methyltransferase (TPMT) is intermediate to undetectable in approximately 11 % of the population. With low TPMT activity, transmethylation is reduced and more intermediate metabolites are left for alternative pathways such as 6-TGN formation. High 6-TGN concentrations are associated with increased frequency and severity of leucopenia. It has been suggested that active monitoring of azathioprine to keep 6-TGN concentrations between 100 and 200 pmol/8 × 108 RBC may contribute to more effective treatment by reducing the incidence of rejection episodes and leucopenia. Such monitoring is currently being evaluated in a controlled, prospective study of renal allograft recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elion GB. Historical background of 6-mercaptopurine. Toxicol Ind Health 1986; 2: 1–9

    PubMed  CAS  Google Scholar 

  2. Calne RY. The initial study of the immunosuppressive effects of 6-mercaptopurine and azathioprine in organ transplantation and a few words on cyclosporin A. World J Surg 1982; 6: 637–40

    Article  PubMed  CAS  Google Scholar 

  3. Weinshilboum RW, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980; 32: 651–62

    PubMed  CAS  Google Scholar 

  4. Lee D, Szumlanski C, Houtman J, et al. Thiopurine methyltransferase pharmacogenetics: cloning of human liver cDNA and a processed pseudogene on human chromosome 18q21.1. Drug Metab Dispos 1995; 23: 398–405

    PubMed  CAS  Google Scholar 

  5. Szumlanski C, Otterness D, Her C, et al. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol 1996; 15: 17–30

    Article  PubMed  CAS  Google Scholar 

  6. Tai HL, Krynetski EY, Yates CR, et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 1996; 58: 694–702

    PubMed  CAS  Google Scholar 

  7. Pazmiño PA, Sladek SL, Weinshilboum RM. Thiol S-methylation in uremia: erythrocyte enzyme activities and plasma inhibitors. Clin Pharmacol Ther 1980; 28: 356–67

    Article  PubMed  Google Scholar 

  8. Lysaa RA, Giverhaug T, Wold HL, et al. Inhibition of human thiopurine methyltransferase by furosemide, bendroflumethiazide and trichlormethiazide. Eur J Clin Pharmacol 1996; 49: 393–6

    Article  PubMed  CAS  Google Scholar 

  9. Lennard L, van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 1989; 46: 149–54

    Article  PubMed  CAS  Google Scholar 

  10. Bach JF, Dardenne M, Fournier C. In vitro evaluation of immunosuppressive drugs. Nature 1969; 222: 998–9

    Article  PubMed  CAS  Google Scholar 

  11. Herber S, Lennard L, Lilleyman JS, et al. 6-Mercaptopurine: apparent lack of relation between prescribed dose and biological effect in children with leukaemia. Br J Cancer 1982; 46: 138–41

    Article  PubMed  CAS  Google Scholar 

  12. Lennard L, Maddocks JL. Assay of 6-thioguanine nucleotide, a major metabolite of azathioprine, 6-mercaptopurine and 6-thioguanine, in human red blood cells. J Pharm Pharmacol 1983; 35: 15–8

    Article  PubMed  CAS  Google Scholar 

  13. Tidd DM, Paterson RP. A biochemical mechanism for the delayed cytotoxic reaction of 6-mercaptopurine. Cancer Res 1974; 34: 738–46

    PubMed  CAS  Google Scholar 

  14. Kim YA, King MT, Teague Jr WE, et al. Regulation of the purine salvage pathway in rat liver. Am J Physiol 1992; 262: E344–52

    PubMed  CAS  Google Scholar 

  15. Maybaum J, Mandel HG. Unilateral chromatid damage: a new basis for 6-thioguanine cytotoxicity. Cancer Res 1983; 43: 3852–6

    PubMed  CAS  Google Scholar 

  16. Waters TR, Swann PF. Cytotoxic mechanism of 6-thioguanine: hMutSalpha, the human mismatch binding heterodimer, binds to DNA containing S6-methylthioguanine. Biochemistry 1997; 36: 2501–6

    Article  PubMed  CAS  Google Scholar 

  17. De Abreu RA. Nucleotide metabolism: mode of action of thiopurines in leukemia. Adv Exp Med Biol 1994; 370: 195–200

    PubMed  Google Scholar 

  18. Elion GB, Callahan SW, Rundles RW, et al. Relationship between metabolic fates and antitumor activities of thiopurines. Cancer Res 1963; 23: 1207–17

    PubMed  CAS  Google Scholar 

  19. Loo TL, Luce JK, Sullivan MR, et al. Clinical pharmacologic observations on 6-mercaptopurine and 6-methylthiopurine ribonucleoside. Clin Pharmacol Ther 1968; 9: 180–94

    PubMed  CAS  Google Scholar 

  20. Zimmermann TP, Chu L-C, Buggé CJL, et al. Identification of 6-mercaptopurine ribonucleoside 5′-diphosphate and 5′-triphosphate as metabolites of 6-mercaptopurine in man. Cancer Res 1974; 34: 221–4

    Google Scholar 

  21. Lin S-N, Jessup K, Floyd M, et al. Quantitation of plasma azathioprine and 6-mercaptopurine levels in renal transplant patients. Transplantation 1980; 29: 290–4

    Article  PubMed  CAS  Google Scholar 

  22. Odlind B, Hartvig P, Lindström B, et al. Serum azathioprine and 6-mercaptopurine levels and immunosuppressive activity after azathioprine in uremic patients. Int J Immunopharmacol 1986; 8: 1–11

    Article  PubMed  CAS  Google Scholar 

  23. Salemans J, Hoitsma AJ, de Abreu RA, et al. Pharmacokinetics of azathioprine and 6-mercaptopurine after oral administration of azathioprine. Clin Transplant 1987; 1: 217–21

    Google Scholar 

  24. Chan GL, Erdmann GR, Gruber SA, et al. Azathioprine metabolism: pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J Clin Pharmacol 1990; 30: 358–63

    PubMed  CAS  Google Scholar 

  25. Ohlman S, Lafolie P, Lindholm A, et al. Large interindividual variability in bioavailability of azathioprine in renal transplant recipients. Clin Transplant 1993; 7: 65–70

    Google Scholar 

  26. Ohlman S, Albertioni F, Peterson C. Day-to-day variability in azathioprine pharmacokinetics in renal transplant recipients. Clin Transplant 1994; 8: 217–23

    PubMed  CAS  Google Scholar 

  27. Bergan S, Rugstad HE, Bentdal Ø, et al. Kinetics of mercaptopurine and thioguanine nucleotides in renal transplant recipients during azathioprine treatment. Ther Drug Monit 1994; 16: 13–20

    Article  PubMed  CAS  Google Scholar 

  28. Riccardi R, Balis FM, Ferrara P, et al. Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 1986; 3: 319–24

    Article  PubMed  CAS  Google Scholar 

  29. Lennard L. Cytotoxic agents; 6-mercaptopurine, 6-thioguanine and related compounds. In: Damani LA, editor. Sulphur-containing drugs and related organic compounds: chemistry, biochemistry and toxicology. Vol. 3: Part B. Metabolism and pharmacokinetics of sulphur-containing drugs. Chichester: Ellis Horwood Ltd., 1989: 9–46

    Google Scholar 

  30. Lennard L, Lilleyman JS, van Loon J, et al. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 1990; 336: 225–9

    Article  PubMed  CAS  Google Scholar 

  31. Schmiegelow K, Bruunshuus I. 6-Thioguanine nucleotide accumulation in red blood cells during maintenance chemotherapy for childhood acute lymphoblastic leukemia, and its relation to leukopenia. Cancer Chemother Pharmacol 1990; 26: 288–92

    Article  PubMed  CAS  Google Scholar 

  32. Lennard L, Brown CB, Fox M, et al. Azathioprine metabolism in kidney transplant recipients. Br J Clin Pharmacol 1984; 18: 693–700

    Article  PubMed  CAS  Google Scholar 

  33. Bergan S, Rugstad HE, Bentdal Ø, et al. Monitoring of azathioprine treatment by determination of 6-thioguanine nucleotide concentrations in erythrocytes. Transplantation 1994; 58: 803–8

    PubMed  CAS  Google Scholar 

  34. Schütz E, Gummert J, Mohr FW, et al. Should 6-thioguanine nucleotides be monitored in heart transplant recipients given azathioprine? Ther Drug Monit 1996; 18: 228–33

    Article  PubMed  Google Scholar 

  35. Lennard L, Welch J, Lilleyman JS. Intracellular metabolites of mercaptopurine in children with lymphoblastic leukaemia: a possible indicator of non-compliance? Br J Cancer 1995; 72: 1004–6

    Article  PubMed  CAS  Google Scholar 

  36. Bergan S, Rugstad HE, Bentdal Ø, et al. Optimization of azathioprine therapy by measuring 6-thioguanine nucleotides and methylated mercaptopurine in renal allograft recipients. Transplant Proc 1995; 27: 3426

    PubMed  CAS  Google Scholar 

  37. Bergan S, Bentdal Ø, Sødal G, et al. Patterns of azathioprine metabolites in neutrophils, lymphocytes, reticulocytes and erythrocytes: relevance to toxicity and monitoring in renal allograft recipients. Ther Drug Monit 1997; 19. In press

    Google Scholar 

  38. Murray JE, Merrill JP, Harrison JH, et al. Prolonged survival of human kidney homografts by immunosuppressive drug therapy. N Engl J Med 1963; 268: 1315–23

    Article  PubMed  CAS  Google Scholar 

  39. d’Apice AJ, Becker GJ, Kincaid-Smith P, et al. A prospective randomized trial of low-dose versus high-dose steroids in cadaveric renal transplantation. Transplantation 1984; 37: 373–7

    Article  PubMed  Google Scholar 

  40. d’Apice JF. Non-specific immunosuppression: azathioprine and steroids. In: Morris PJ, editor. Kidney transplantation: principles and practice. 2nd ed. London: Grune & Stratton, 1984: 239–59

    Google Scholar 

  41. Sollinger HW, U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60: 225–32

    Article  PubMed  CAS  Google Scholar 

  42. Koren G, Ferrazini G, Sulh H, et al. Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. N Engl J Med 1990; 323: 17–21

    Article  PubMed  CAS  Google Scholar 

  43. Endresen L, Lie SO, Storm-Mathisen I, et al. Pharmacokinetics of oral 6-mercaptopurine: relationship between plasma levels and urine excretion of parent drug. Ther Drug Monit 1990; 12: 227–34

    Article  PubMed  CAS  Google Scholar 

  44. Boulieu R, Lenoir A, Bertocchi M, et al. Intracellular thiopurine nucleotides and azathioprine myelotoxicity in organ transplant patients. Br J Clin Pharmacol 1997; 43: 116–8

    Article  PubMed  CAS  Google Scholar 

  45. Bergan S, Rugstad HE, Klemetsdal B, et al. Possibilities for therapeutic drug monitoring of azathioprine: 6-thioguanine nucleotide concentrations and thiopurine methyltransferase activity in red blood cells. Ther Drug Monit 1997; 19: 318–26

    Article  PubMed  CAS  Google Scholar 

  46. Lennard L, Singleton HJ. High-performance liquid Chromatographic assay of the methyl and nucleotide metabolites of 6-mercaptopurine: quantitation of red blood cell 6-thioguanine nucleotide, 6-thioinosinic acid and 6-methylmercaptopurine metabolites in a single sample. J Chromatogr 1992; 583: 83–90

    Article  PubMed  CAS  Google Scholar 

  47. Klemetsdal B, Tollefsen E, Loennechen T, et al. Interethnic difference in thiopurine methyltransferase activity. Clin Pharmacol Ther 1992; 51: 24–31

    Article  PubMed  CAS  Google Scholar 

  48. McLeod HL, Lin JS, Scott EP, et al. Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 1994; 55: 15–20

    Article  PubMed  CAS  Google Scholar 

  49. Mircheva J, Legendre C, Soria-Royer C, et al. Monitoring of azathioprine-induced immunosuppression with thiopurine methyltransferase activity in kidney transplant recipients. Transplantation 1995; 60: 639–42

    Article  PubMed  CAS  Google Scholar 

  50. Chocair PR, Duley JA, Simmonds HA, et al. The importance of thiopurine methyltransferase activity for the use of azathioprine in transplant recipients. Transplantation 1992; 53: 1051–6

    Article  PubMed  CAS  Google Scholar 

  51. Venkat RG, Sharman VL, Lee HA. Azathioprine and allopurinol: a potentially dangerous combination. J Intern Med 1990; 228: 69–71

    Article  Google Scholar 

  52. Chocair PR, Duley JA, Cameron JS, et al. Does low-dose allopurinol, with azathioprine, cyclosporin and prednisolone, improve renal transplant immunosuppression? Adv Exp Med Biol 1994; 370: 205–8

    PubMed  CAS  Google Scholar 

  53. Fox IH, Wyngaarden JB, Kelley WN. Depletion of erythrocyte phosphoribosylpyrophosphate in man. N Engl J Med 1970; 283: 1177–82

    Article  PubMed  CAS  Google Scholar 

  54. Opelz G. Influence of treatment with cyclosporine, azathioprine and steroids on chronic allograft failure: the Collaborative Transplant Study. Kidney Int Suppl 1995; 52: S89–92

    PubMed  CAS  Google Scholar 

  55. Hausen B, Demertzis S, Rohde R, et al. Low-dose cyclosporine therapy in triple-drug immunosuppression for heart transplant recipients. Ann Thorac Surg 1994; 58: 999–1004

    Article  PubMed  CAS  Google Scholar 

  56. Punch JD, Shieck VL, Campbell DA, et al. Corticosteroid withdrawal after liver transplantation. Surgery 1995; 118: 783–6

    Article  PubMed  CAS  Google Scholar 

  57. Bolman RI. Steroid-free heart transplantation: an analysis. Ann Thorac Surg 1993; 55: 1069–70

    Article  PubMed  Google Scholar 

  58. Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective randomized trial of FK506-based immunosuppression after renal transplantation. Transplantation 1995; 59: 485–90

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stein Bergan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergan, S. Optimisation of Azathioprine Immunosuppression After Organ Transplantation by Pharmacological Measurements. BioDrugs 8, 446–456 (1997). https://doi.org/10.2165/00063030-199708060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199708060-00005

Keywords

Navigation