Skip to main content

Advertisement

Log in

Interleukin-11

Biological Activity and Clinical Studies

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

Interleukin-11 (IL-11) is a cytokine which interacts with a variety of haemopoietic and non-haemopoietic cell types. Recombinant human IL-11 (rhIL-11; oprelvekin) is produced in Escherichia coli and differs from the naturally occurring protein only in the absence of the amino-terminal proline residue.

In synergy with other factors, rhIL-11 stimulates the growth of myeloid, erythroid, and megakaryocyte progenitor cells in vitro. In vivo, rhIL-11 is active in mice, rats, dogs, guinea pigs, hamsters and non-human primates, where the principal activity measured was stimulation of megakaryocytopoiesis and thrombopoiesis. rhIL-11 has shown benefit in 2 clinical trials by significantly reducing severe chemotherapy-induced thrombocytopenia.

In addition to its thrombopoietic activity, rhIL-11 has also shown activity in models of acute gastrointestinal mucosal damage. rhIL-11 enhanced survival in mice following cytoablative therapy and in a hamster model of chemotherapyinduced oral mucositis, where treatment with rhIL-11 was associated with decreased mucosal damage, accelerated healing and reduced numbers of deaths. rhIL-11 is currently in clinical trials for the treatment of chemotherapy-induced mucositis.

In rat models of acute colonic injury and inflammatory bowel disease, rhIL-11 treatment reduced intestinal mucosal damage and alleviated clinical signs. rhIL-11 has direct effects on activated macrophages to reduce the production of proinflammatory mediators. In animal models of endotoxaemia, rhIL-11 treatment reduced serum levels of pro-inflammatory cytokines and blocked hypotension. rhIL-11 increased survival in models of Gram-negative sepsis and toxic shock. Based on these studies, rhIL-11 is currently in clinical trials for treatment of Crohn’s disease. Other inflammatory conditions are being further evaluated.

Mechanistically, rhIL-11 functions at many levels to control inflammation, ameliorate tissue damage and maintain haemostasis in the face of trauma or infection. rhIL-11 has direct effects on hepatocytes, inducing the production of acute phase reactant proteins, haem oxygenase and tissue inhibitor of metalloproteinase-1 (TIMP-1). TIMP-1 expression can also be induced in synoviocytes and chondrocytes by treatment with rhIL-11. rhIL-11 administration has been associated with increased plasma levels of von Willebrand factor and fibrinogen.

rhIL-11 treatment potentially offers multiple benefits for cancer chemotherapy patients, such as prevention of thrombocytopenia, gastrointestinal epithelial protection and subsequent reduction of mucositis, and amelioration of inflammatory complications. In addition, rhIL-11 is being evaluated further in the treatment of inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner KJ, Clark SC. Interleukin-11: biological and clinical perspectives. In: Mertelsmann R, Herrmann F, editors. Hematopoietic growth factors in clinical applications. New York: Marcel Dekker, 1995: 315–6

    Google Scholar 

  2. Du XX, Williams DA. Interleukin-11: a multifunctional growth factor derived from the hematopoietic microenvironment. Blood 1994; 83: 2023–30

    PubMed  CAS  Google Scholar 

  3. Trepicchio WL, Bozza M, Pednault G, et al. Recombinant human interleukin-11 attenuates the inflammatory response through downregulation of proinflammatory cytokine release and nitric oxide production. J Immunol 1996; 157: 3627–34

    PubMed  CAS  Google Scholar 

  4. Paul SR, Bennett F, Calvetti JA, et al. Molecular cloning of a cDNA encoding interleukin-11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci USA 1990; 87: 7512–6

    Article  PubMed  CAS  Google Scholar 

  5. McKinley D, Wu Q, Yang-Feng T, et al. Genomic sequence and chromosomal location of human interleukin-11 gene (IL-11). Genomics 1992; 13: 814–9

    Article  PubMed  CAS  Google Scholar 

  6. Elias JA, Zheng T, Einarsson O. Epithelial interleukin-11: regulation by cytokines, respiratory syncytial virus, and retinoic acid. J Biol Chem 1994; 269: 22261–8

    PubMed  CAS  Google Scholar 

  7. Einarsson O, Geba P, Zhu Z, et al. Interleukin-11: stimulation in vivo and in vitro by respiratory viruses and induction of airways hyperresponsiveness. J Clin Invest 1996; 97: 915–24

    Article  PubMed  CAS  Google Scholar 

  8. Elias JA, Zheng T, Whiting NL. IL-1 and transforming growth factor-β regulation of fibroblast-derived IL-11. J Immunol 1994; 152: 2421–9

    PubMed  CAS  Google Scholar 

  9. Zheng T, Nathanson MH, Elias JA. Histamine augments cytokine-stimulated IL-11 production by human lung fibroblasts. J Immunol 1994; 153: 4742–52

    PubMed  CAS  Google Scholar 

  10. Maier R, Ganu V, Lotz M. Interleukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases. J Biol Chem 1993; 268: 21527–32

    PubMed  CAS  Google Scholar 

  11. Suen Y, Chang M, Min Lee S, et al. Regulation of interleukin-11 protein and mRNA expression in neonatal and adult fibroblasts and endothelial cells. Blood 1994; 84: 4125–34

    PubMed  CAS  Google Scholar 

  12. Elias JA, Tang W, Horowitz MC. Cytokine and hormonal stimulation of human osteosarcoma interleukin-11 production. Endocrinology 1995; 136: 489–98

    Article  PubMed  CAS  Google Scholar 

  13. Chang M, Suen Y, Meng G, et al. Differential mechanisms in the regulation of endogenous levels of thrombopoietin and interleukin-11 during thrombocytopenia: insight into the regulation of platelet production. Blood 1996; 88: 3354–62

    PubMed  CAS  Google Scholar 

  14. Du X, Everett ET, Wang G, et al. Murine interleukin-11 (IL-11) is expressed at high levels in the hippocampus and expression is developmentally regulated in the testis. J Cell Physiol 1996; 168: 362–72

    Article  PubMed  CAS  Google Scholar 

  15. Davidson AJ, Freeman S-A, Crosier KE. Expression of murine interleukin-11 and its receptor α-chain in adult and embryonic tissues. Stem Cells 1997; 15(2): 119–124

    Article  PubMed  CAS  Google Scholar 

  16. Taga T, Yoshida K, Hirota H, et al. Physiological and pathological role of gp 130, a common signal transducer for IL-6 family of cytokines. In: Kehara SI, Takaku F, Good RA, editors. Bone marrow transplant: basic and clinical studies. Tokyo: Springer-Verlag, 1996: 101–9

    Chapter  Google Scholar 

  17. Stahl N, Boulton TG, Farruggella T, et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 β-receptor components. Science 1994; 263: 92–5

    Article  PubMed  CAS  Google Scholar 

  18. Narazaki M, Witthuhn BA, Yoshida K, et al. Activation of JAK2 kinase mediated by the interleukin 6 signal transducer gp130. Proc Natl Acad Sci USA 1994; 91: 2285–9

    Article  PubMed  CAS  Google Scholar 

  19. Yin T, Yang Y-C. Mitogen-activated protein kinases and ribosomal S6 protein kinases are involved in signalling pathways shared by interleukin-11, interleukin-6, leukemia inhibitory factor, and oncostatin M in mouse 3T3-L1 cells. J Biol Chem 1994; 269: 3731–8

    PubMed  CAS  Google Scholar 

  20. Boulton TG, Stahl N, Yancopoulos GD. Ciliary neutrotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J Biol Chem 1994; 269: 11648–55

    PubMed  CAS  Google Scholar 

  21. Wegenka UM, Lutticken C, Buchmann J, et al. The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transduce and activator of transcription (STAT) family. Mol Cell Biol 1994; 14: 3186–96

    PubMed  CAS  Google Scholar 

  22. Hilton DJ, Hilton AA, Raicevic A, et al. Cloning of a murine IL-11 receptor α-chain; requirement for gp130 for high affinity binding and signal transduction. EMBO J 1994; 13: 4765–75

    PubMed  CAS  Google Scholar 

  23. Neuhaus H, Bettenhausen B, Bilinski P, et al. Et12, a novel putative type-1 cytokine receptor expressed during mouse embryogenesis at high levels in skin and cells with skeletogenic potential. Dev Biol 1994; 166: 531–42

    Article  PubMed  CAS  Google Scholar 

  24. Van Leuven F, Stas L, Hillicker C, et al. Molecular cloning and characterization of the human interleukin-11 receptor α-chain gene, IL11 RA, located on chromosome 9p13. Genomics 1996; 31: 65–70

    Article  PubMed  Google Scholar 

  25. Neben TY, Loebelenz J, Hayes L, et al. Recombinant human interleukin-11 stimulates megakaryocytopoiesis and increases peripheral platelets in normal and splenectomized mice. Blood 1993; 81: 901–8

    PubMed  CAS  Google Scholar 

  26. Schlerman FJ, Bree AG, Kaviani MD, et al. Thrombopoietic activity of recombinant human interleukin 11 (rhIL-11) in normal and myelosuppressed nonhuman primates. Stem Cells 1996 14: 517–32

    Article  PubMed  CAS  Google Scholar 

  27. Kaviani MD, Mason LE, Nagle SL, et al. Effects of subcutaneously administered recombinant human interleukin-11 on platelet reactivity and ultrastructure in nonhuman primates [abstract]. Blood 1996; 88 (10 Suppl. 1): 26a

    Google Scholar 

  28. Hangoc G, Yin T, Cooper S, et al. In vivo effects of recombinant interleukin-11 on myelopoiesis in mice. Blood 1993; 81: 965–72

    PubMed  CAS  Google Scholar 

  29. Leonard JP, Quinto CM, Kozitza MK, et al. Recombinant human interleukin-11 stimulates multilineage hematopoietic recovery in mice after a myelosuppressive regimen of sublethal irradiation and carboplatin. Blood 1994; 83: 1499–506

    PubMed  CAS  Google Scholar 

  30. Maze R, Moritz T, Williams DA. Increased survival and multi-lineage hematopoietic production from delayed and severe myelosuppressive effects of a nitrosourea with recombinant interleukin-11 (IL-11). Cancer Res 1994; 54: 4947–51

    PubMed  CAS  Google Scholar 

  31. Du XX, Neben TY, Goldman SJ, et al. Effects of recombinant human interleukin 11 on hematopoietic reconstitution in transplant mice: acceleration of recovery of peripheral blood neutrophils and platelets. Blood 1993; 81: 27–34

    PubMed  CAS  Google Scholar 

  32. Paul SR, Hayes LL, Palmer R, et al. Interleukin-11 expression in donor bone marrow cells improves hematological reconstitution in lethally irradiated mice. Exp Hematol 1994; 22: 295–301

    PubMed  CAS  Google Scholar 

  33. Hawley RG, Hawley TS, Fong AZ, et al. Thrombopoietic potential and serial repopulating ability of murine hematopoietic stem cells constitutively expressing interleukin-11. Proc Natl Acad Sci USA 1996; 93: 10297–302

    Article  PubMed  CAS  Google Scholar 

  34. Gordon MS, McCaskill-Stevens WJ, Battiato LA, et al. A phase I trial of recombinant human interleukin-11 (Neumega®, rhIL-11 growth factor) in women with breast cancer receiving chemotherapy. Blood 1996; 87: 3615–24

    PubMed  CAS  Google Scholar 

  35. Tepler I, Elias L, Smith II JW, et al. A randomized placebo-controlled trial of recombinant human interleukin-11 in cancer patients with severe thrombocytopenia due to chemotherapy. Blood 1996; 87: 3607–14

    PubMed  CAS  Google Scholar 

  36. Du XX, Doerschuk CM, Williams DA. A bone marrow stromalderived growth factor, interleukin-11, stimulates recovery of small intestinal mucosal cells after cytoablative therapy. Blood 1994; 83: 33–7

    PubMed  CAS  Google Scholar 

  37. Orazi A, Du XX, Yang Z, et al. Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Invest 1996 75: 33–42

    PubMed  CAS  Google Scholar 

  38. Sonis ST, Muska A, O’Brien JO, et al. Alteration in the frequency, severity and duration of chemotherapy-induced mucositis in hamsters by interleukin-11. Eur J Cancer B Oral Oncol 1995; 31B: 261–6

    Article  PubMed  CAS  Google Scholar 

  39. Sonis ST, Dotoli EA, Muska AD, et al. Effect of topical and subcutaneous administration of interleukin-11 on chemotherapy-induced ulcerative mucositis in hamsters [abstract]. Proc Am Assoc Cancer Res 1995 Mar; 36: A2190

    Google Scholar 

  40. Potten CS. Interleukin-11 protects the clonogenic stem cells in murine small intestinal crypts from impairment of their reproductive capacity by radiation. Int J Cancer 1995; 62: 356–61

    Article  PubMed  CAS  Google Scholar 

  41. Peterson RL, Bozza MM, Dorner AJ. Interleukin-11 induces intestinal epithelial cell growth arrest through effects on retinoblastoma protein phosphorylation. Am J Pathol 1996; 149: 895–902

    PubMed  CAS  Google Scholar 

  42. Booth C, Potten CS. Effects of IL-11 on the growth of intestinal epithelial cells in vitro. Cell Prolif 1995; 28: 581–94

    Article  PubMed  CAS  Google Scholar 

  43. Paglia D, Oran A, Lu C, et al. Expression of leukemia inhibitory factor and interleukin-11 by human melanoma cell lines: LIF, IL-6, and IL-11 are not coregulated. J Interferon Cytokine Res 1995; 15: 455–60

    Article  PubMed  CAS  Google Scholar 

  44. Teicher BA, Chen YN, Ara G, et al. Interaction of interleukin-11 with cytotoxic therapies in vitro against CEM cells and in vivo against EMT-6 murine mammary carcinoma. Int J Cancer 1996; 67(6): 864–70

    Article  PubMed  CAS  Google Scholar 

  45. Hammer RE, Maika SD, Richardson JA, et al. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63: 1099–112

    Article  PubMed  CAS  Google Scholar 

  46. Keith JC, Albert A, Sonis ST, et al. IL-11 a pleiotropic cytokine: exciting new effects of IL-11 on gastrointestinal mucosal biology. Stem Cells 1994; 12 Suppl. 1: 79–90

    PubMed  Google Scholar 

  47. Keith Jr JC, Albert LM, Ferranti TJ, et al. Recombinant human interleukin-11 (rhIL-11) decreases inflammatory bowel disease in HLA-B27 transgenic rats [abstract]. Gastroenterology 1995; 108 Suppl. 4: A317

    Google Scholar 

  48. Albert LM, Ferranti TJ, Erickson JE, et al. Dose response and schedule studies of recombinant human interleukin-11 in acetic acid-induced colonic injury in rats [abstract]. Gastroenterology 1995; 108 Suppl. 4: A316

    Google Scholar 

  49. Qiu B, Pfeiffer CJ, Keith Jr JC. Protection by recombinant human interleukin-11 against experimental TNB-induced colitis in rats. Dig Dis Sci 1996; 41(8): 1625–30

    Article  PubMed  CAS  Google Scholar 

  50. Castagliuolo I, Kelly CP, Qui BS, et al. IL-11 inhibits Clostridium difficile toxin A enterotoxicity in rat ileum. Am J Physiol 1997; 273: G333–41

    PubMed  CAS  Google Scholar 

  51. Redlich CA, Gao X, Rockwell S, et al. IL-11 enhances survival and decreases TNF production after radiation-induced thoracic injury. J Immunol 1996; 157: 1705–10

    PubMed  CAS  Google Scholar 

  52. Opal SM, Keith Jr JC. Potential role for human interleukin-11 in bacterial sepsis. In: Vincent J-L, editor. Yearbook of intensive care and emergency medicine. Berlin: Springer Verlag, 1996: 111–8

    Chapter  Google Scholar 

  53. Barton BE, Shortall J, Jackson JV. Interleukins 6 and 11 protect mice from mortality in a staphylococcal enterotoxin-induced toxic shock model. Infect Immun 1996; 64: 714–8

    PubMed  CAS  Google Scholar 

  54. Misra BR, Ferranti TJ, Keith Jr JC, et al. Recombinant human interleukin-11 prevents hypotension in LPS-treated anesthetized rabbits. J Endotoxin Res 1996 3(4): 297–305

    CAS  Google Scholar 

  55. Morgan GW, Breit SN. Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury. Int J Rad Oncol Biol Phys 1995; 31: 361–9

    Article  CAS  Google Scholar 

  56. Baumann H, Schendel P. Interleukin-11 regulates the hepatic expression of the same plasma protein genes as interleukin-6. J Biol Chem 1991; 266: 20424–7

    PubMed  CAS  Google Scholar 

  57. Fukuda Y, Sassa S. Effect of interleukin-11 on the levels of mRNAs encoding heme oxygenase and haptoglobin in human HepG2 hepatoma cells. Biochem Biophys Res Commun 1993; 193: 297–302

    Article  PubMed  CAS  Google Scholar 

  58. Willis D, Moore AR, Frederick R, et al. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nature Med 1996; 2: 87–90

    Article  PubMed  CAS  Google Scholar 

  59. Roeb E, Graeve L, Hoffman R, et al. Regulation of tissue inhibitor of metalloproteinases-1 gene expression by cytokines and dexamethasone in rat hepatocyte primary cultures. Hepatology 1993; 18: 1437–42

    Article  PubMed  CAS  Google Scholar 

  60. Kaye JA, Loewy J, Blume J, et al. Recombinant human interleukin eleven (Neumega™, rhIL-11 growth factor) increases plasma von Willebrand factor and fibrinogen concentrations in normal human subjects [abstract]. Blood 1994; 84 (10 Suppl. 1): 276a

    Google Scholar 

  61. Ault K, Mitchell J, Knowles C, et al. Recombinant human interleukin eleven (Neumega™, rhIL-11 growth factor) increases plasma volume and decreases sodium excretion in normal human subjects [abstract]. Blood 1994; 84 (10 Suppl. 1): 276a

    Google Scholar 

  62. Keith Jr JC, Badalone V, Schaub RG. Concurrent Lasix administration with recombinant human interleukin-11 (rhIL-11) attenuates plasma volume expansion in dogs [abstract]. Blood 1995; 86 (10 suppl.1): 997a

    Google Scholar 

  63. Dykstra K, Rogge H, Stone A, et al. Effect of diuretic treatment on rhIL-11-induced salt and water retention [abstract]. Blood 1996; 88 (10 Suppl. 1): 346a

    Google Scholar 

  64. Bank S, Sninsky C, Robinson M, et al. Safety and activity evaluation of rhIL-11 in subjects with active Crohn’s disease [abstract]. Gastroenterology 1997; 112 (4 Suppl. 1): A927

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Keith Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorner, A.J., Goldman, S.J. & Keith, J.C. Interleukin-11. BioDrugs 8, 418–429 (1997). https://doi.org/10.2165/00063030-199708060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199708060-00002

Keywords

Navigation