Skip to main content

Advertisement

Log in

Current Status of CD4-Based Therapies for Prophylaxis and Treatment of HIV Infection

  • Immunology-Based Agents
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

CD4 is a member of the immunoglobulin superfamily. It is usually found as a surface glycoprotein on mature circulating T lymphocytes with helper/inducer function. The first step of HIV infection involves binding of the CD4 of host cells to the gp120 portion of viral envelope glycoprotein. In addition, uninfected CD4+ cells with free gp120 bound to their surfaces are the target of antibody-dependent cellular cytotoxicity, and a CD4-gp120 interaction is necessary for the cell-to-cell spread of HIV.

Early enthusiasm for therapy with recombinant soluble CD4 (rsCD4) was supported by evidence of potent antiviral effects against acquisition and spread of HIV-1 infection in vitro. Subsequent in vivo results were not as encouraging; the pharmacokinetics of rsCD4 were unfavourable, and there was little apparent effect on clinical markers of infection.

With the recognition that laboratory strains and clinical strains of HIV-1 differ enormously in their response to rsCD4, it was realised that early trials had used subtherapeutic doses. High dose intravenous rsCD4 abrogates HIV-1 viraemia in a dose-dependent fashion, with the duration of effect limited by the pharmacokinetics of rsCD4.

With the intention of improving pharmacokinetics, and of broadening the mechanism of action, further molecules combining rsCD4 and immunoglobulin molecules were developed. Their pharmacokinetics had improved as anticipated, with a marked increase in half-life, and the molecules retained the Fc-mediated effector functions of the parent immunoglobulin molecule. However, therapeutic benefit in the treatment of established HIV-1 infection has been limited, with some animal evidence of prevention of infection after known exposure to HIV, and possible implications for the prevention of perinatal and needle-stick infection.

Synergism between different retroviral therapies, using rsCD4 and CD4-IgG molecules in combination with various other agents, has been demonstrated in vitro, but the clinical effectiveness of this strategy has not been demonstrated. Synergism between CD4-IgG and naturally occurring or monoclonal HIV-1 antibodies is being evaluated.

Attempts to use the CD4 molecule to give Pseudomonas toxin access to HIV-1 for specific killing have demonstrated potent in vitro effectiveness, but dose-limiting toxicity in phase I human studies made this strategy ineffective. Attempts using other toxins are continuing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith DH, Bryn RA, Marsters SA, et al. Blocking of HIV-1 infectivity by a soluble secreted form of the CD4 antigen. Science 1987 Dec; 238: 1704–7

    Article  PubMed  CAS  Google Scholar 

  2. Deen KC, McDougal JS, Inacker R, et al. A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature 1988 Jan; 331: 82–4

    Article  PubMed  CAS  Google Scholar 

  3. Trunecker A, Luke W, Karjalainen K. Soluble CD4 molecules neutralise human immunodeficiency virus type 1. Nature 1988 Jan; 331: 84–6

    Article  Google Scholar 

  4. Fisher RA, Bertonis JM, Meier W, et al. HIV infection is blocked in vitro by recombinant soluble CD4. Nature 1988 Jan; 331: 76–8

    Article  PubMed  CAS  Google Scholar 

  5. Hussey RE, Richardson NE, Kowalski M, et al. A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature 1988 Jan; 331: 87–91

    Article  Google Scholar 

  6. Moore JP, McKeating JA, Weiss RA, et al. Dissociation of gp120 from HIV-1 virons induced by soluble CD4. Science 1990 Nov; 250: 1139–42

    Article  PubMed  CAS  Google Scholar 

  7. Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven transmembrane G protein-coupled receptor. Science 1996 May; 272: 872–7

    Article  PubMed  CAS  Google Scholar 

  8. Deng H, Liu R, Ellmeir W et al. Identification of a major coreceptor for primary isolates of HIV-1. Nature 1996; 381: 661–6

    Article  PubMed  CAS  Google Scholar 

  9. Choe H, Farzan M, Sun Y et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85: 1135–48

    Article  PubMed  CAS  Google Scholar 

  10. Alkhatib G, Combadiere C, Broder C et al. Cc CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-trophic HIV-1. Science 1996; 272: 1955–8

    Article  PubMed  CAS  Google Scholar 

  11. Doranz B, Rucker J, Yi Y et al. A dual-trophic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996; 85: 1149–58

    Article  PubMed  CAS  Google Scholar 

  12. Dragic T, Litwin V, Allaway G et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–73

    Article  PubMed  CAS  Google Scholar 

  13. Moore JP, McKeating JA, Norton WA, et al. Direct measurement of soluble CD4 binding to human immunodeficiency virus type 1 virons: gp120 dissociation and its implications for virus-cell binding and fusion reactions and their neutralisation by soluble CD4. J Virol 1991 Mar; 65 (3): 1133–40

    PubMed  CAS  Google Scholar 

  14. Gomatos PJ, Stamatos NM, Gendelman HE, et al. Relative inefficiency of soluble recombinant CD4 for inhibition of infection by monocyte-trophic HIV in monocytes and T cells. J Immunol 1990 Jun; 144 (11): 4183–8

    PubMed  CAS  Google Scholar 

  15. Watanabe M, Reimann KA, DeLong PA, et al. Effect of recombinant soluble CD4 in Rhesus monkeys infected with simian immunodeficiency virus of macaques. Nature 1989 Jan; 337: 267–70

    Article  PubMed  CAS  Google Scholar 

  16. Kahn JO, Allan JD, Hodges TL, et al. The safety and pharmacokinetics of recombinant soluble CD4 (rCD4) in subjects with the acquired immunodeficiency syndrome (AIDS) and AIDS related complex. Ann Intern Med 1990 Feb; 112 (4): 254–61

    PubMed  CAS  Google Scholar 

  17. Schooley RT, Merigan TC, Gaut P, et al. Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Ann Intern Med 1990 Feb; 112 (4): 247–53

    PubMed  CAS  Google Scholar 

  18. Daar ES, Li XL, Moudgil T, et al. High concentrations of recombinant soluble CD4 are required to neutralise primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci USA 1990 Sept; 87: 6574–8

    Article  PubMed  CAS  Google Scholar 

  19. Ashkenazi A, Smith DH, Marsters SA, et al. Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4-rgp120 binding affinity. Proc Natl Acad Sci USA 1991 Aug; 88: 7056–60

    Article  PubMed  CAS  Google Scholar 

  20. Brighty DW, Rosenburg M, Chen ISY, et al. Envelope proteins from clinical isolates of human immunodeficiency virus type 1 that are refractory to neutralisation by soluble CD4 possess high affinity for the CD4 receptor. Proc Natl Acad Sci USA 1991 Sep; 88: 7802–5

    Article  PubMed  CAS  Google Scholar 

  21. Moore JP, McKeating JA, Huang Y, et al. Virons of human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralisation differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. J Virol 1992 Jan; 66(1): 235–43

    PubMed  CAS  Google Scholar 

  22. Sato H, Orenstein J, Dimitrov D et al. Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 1992; 186: 721–4

    Article  Google Scholar 

  23. Gupta P, Balachandran R, Ho M, et al. Cell-to-cell transmission of human immunodeficiency virus type 1 in the presence of azidothymidine and neutralizing antibody. J Virol 1989 May; 63 (5): 2361–5

    PubMed  CAS  Google Scholar 

  24. Phillips DM. The role of cell-to-cell transmission in HIV infection. AIDS 1994; 8: 719–31

    Article  PubMed  CAS  Google Scholar 

  25. Pantaleo G, Graziosi C, Demarest JF, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 1993 Mar; 362: 355–8

    Article  PubMed  CAS  Google Scholar 

  26. Schacker T, Coombs RW, Collier AC, et al. The effects of high dose recombinant soluble CD4 on human immunodeficiency virus type 1 viraemia. J Infect Dis 1994 Jan; 169: 37–40

    Article  PubMed  CAS  Google Scholar 

  27. Capon DJ, Chamow SM, Mordenti J, et al. Designing CD4 immunoadhesins for AIDS therapy. Nature 1989 Feb; 337: 525–31

    Article  PubMed  CAS  Google Scholar 

  28. Traunecker A, Schneider J, Kiefer H, et al. Highly efficient neutralisation of HIV with recombinant CD4-immunoglobulin molecules. Nature 1989 May; 339: 68–70

    Article  PubMed  CAS  Google Scholar 

  29. Byrn RA, Mordenti J, Lucas C, et al. Biological properties of a CD4 immunoadhesin. Nature 1990 Apr; 344: 667–70

    Article  PubMed  CAS  Google Scholar 

  30. Spear GT, Ghassemi M, Takefman DM. HIV-1 strain dependence of complement-mediated virolysis induced by recombinant CD4-IgG [letter]. J Acquir Immune Defic Syndr 1994; 7: 100–1

    PubMed  CAS  Google Scholar 

  31. Allaway GP, Davis-Bruno KL, Beaudry GA et al. Expression and characterisation of CD4-IgG2, a novel heterotetramer that neutralises primary HIV type 1 isolates. AIDS Res Hum Retrovir 1995; 11: 533–9

    Article  PubMed  CAS  Google Scholar 

  32. Gauduin M, Allaway GP, Maddon PJ et al. Effective ex vivo neutralisation of plasma HIV-1 by recombinant immunoglobulin molecules. J Virol 1996; 70: 2586–92

    PubMed  CAS  Google Scholar 

  33. Davey R, Davey V, Polis M, et al. A phase 1 trial of recombinant human CD4-immunoglobulin (rCD4-IgG) in HIV-1 infection [abstract no. SB481]. Proc VIth International Conference on AIDS; 1990 Jun; San Francisco: 206

  34. Hodges TL, Kahn JO, Kaplan LD, et al. Phase 1 study of recombinant human CD4-immunoglobulin G therapy of patients with AIDS and AIDS-related complex. Antimicrob Agents Chemother 1991 Dec; 35 (12): 2580–6

    Article  PubMed  CAS  Google Scholar 

  35. Collier AC, Coombs RW, Katzenstein D, et al. Safety, pharmacokinetics, and antiviral response of CD4-immunoglobulin G by intravenous bolus in AIDS and AIDS-related complex. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10 (2): 150–6

    Article  PubMed  CAS  Google Scholar 

  36. Yarchoan Y, Plauda JM, Adamo D, et al. Phase 1 study of rCD4-IgG administered by continuous intravenous (IV) infusion to patients with AIDS or ARC [abstract no. SB479]. Proc VIth International Conference on AIDS; 1990 June; San Francisco: 205

  37. Mulligan M, Duliege A, Nail C, et al. HIV-1 therapy with high dose CD4-IgG [abstract no. 2007]. Proc IXth International Conference on AIDS; 1993 Jun 6–11; Berlin

  38. Clerici M, Yarchoan R, Blatt S, et al. Effect of a recombinant CD4-IgG on in vitro T helper cell function: data from a phase I/II study of patients with AIDS. J Infect Dis 1993 Oct; 168: 1012–6

    Article  PubMed  CAS  Google Scholar 

  39. Roilides E, Clerici M, DePalma L et al. Helper T cell responses in children infected with human immunodeficiency virus type I. JPediatr 1991; 118: 724–30

    Article  CAS  Google Scholar 

  40. Lucey DR, Melcher GP, Hendrix CW et al. Human immunodeficiency virus infection in the US Air Force: seroconversions, clinical staging, and assessment of T helper functional assay to predict change in CD4+ T cell counts. J Infect Dis 1991; 164: 631–7

    Article  PubMed  CAS  Google Scholar 

  41. Tokars JI, Marcus R, Culver DH et al. CDC Cooperative Needlestick Surveillance Group: surveillance of HIV infection and zidovudine use among health care workers after occupational exposure to HIV-infected blood. Ann Intern Med 1993; 118: 913–9

    PubMed  CAS  Google Scholar 

  42. Gerberding JL. Managing occupational exposures to HIV. In: Broder S, Merigan TC, Bolognesi D, editors. Textbook of AIDS medicine. Baltimore: Williams & Wilkins, 1994: 841–3

    Google Scholar 

  43. Connor EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. N Engl J Med 1994 Nov; 331(18): 1173–80

    Article  PubMed  CAS  Google Scholar 

  44. Ward RHR, Capon DJ, Jett CM, et al. Prevention of HIV-1 IIIB infection in chimpanzees by CD4 immunoadhesion. Nature 1991 Aug; 352: 434–6

    Article  PubMed  CAS  Google Scholar 

  45. Shearer WT, Duliege AM, Kline MK, et al. Transport of recombinant CD4-immunoglobulin G across the human placenta: pharmacokinetics and safety in six mother-infant pairs in AIDS Clinical Trial Group Protocol 146. Clin Lab Diag Immunol 1995 May; 2 (3): 281–5

    CAS  Google Scholar 

  46. Johnson VA, Barlow BD, Chou T, et al. Synergistic inhibition of human immunodeficiency virus type 1 replication in vitro by recombinant soluble CD4 and 3′-azido-3′-deoxythymidine. J Infect Dis 1989 May; 159 (5): 837–44

    Article  PubMed  CAS  Google Scholar 

  47. Johnson VA, Barlow BD, Merrill DP, et al. Three drug synergistic inhibition of HIV-1 replication in vitro by zidovudine, recombinant soluble CD4, and recombinant interferon-alpha A. J Infect Dis 1990 June; 161: 1059–67

    Article  PubMed  Google Scholar 

  48. Koup RA, Brewster F, Grob P. Nevaripine synergistically inhibits HIV-1 replication in combination with zidovudine, in-terferon or CD4 immunoadhesion. AIDS 1993; 7 (9): 1181–4

    Article  PubMed  CAS  Google Scholar 

  49. Ushijima H, Kunisada T, Kitamura T et al. Synergistic effect of recombinant CD4-immunoglobulin in combination with azidothymidine, dideoxyinosine, and 0.5 β monoclonal antibody on human immunodeficiency virus infection in vitro. Lett Appl Microbiol 1994; 19: 1–5

    Article  PubMed  CAS  Google Scholar 

  50. Meng TC, Fischl MA, Cheeseman SH, et al. Combination therapy with recombinant human soluble CD4-immunoglobulin G and zidovudine in patients with HIV infection: a phase 1 study. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8 (2): 152–60

    PubMed  CAS  Google Scholar 

  51. Kennedy MS, Orloff S, Ibegbu CC, et al. Analysis of synergism/antagonism between HIV-1 antibody positive human sera and soluble CD4 in blocking HIV-1 binding and infectivity. AIDS Res Hum Retrovir 1991; 7 (12): 975–81

    Article  PubMed  CAS  Google Scholar 

  52. McKeating JA, Cordell J, Dean CJ et al. Synergistic interaction between ligands binding to the CD4 binding site and V3 domain of human immunodeficiency virus type 1 gp 120. Virology 1992; 191: 732–42

    Article  PubMed  CAS  Google Scholar 

  53. Allaway GP, Ryder AM, Beaudry GA, et al. Synergistic inhibition of HIV-1 envelope mediated cell fusion by CD4 based molecules in combination with antibodies to gp120 or gp41. AIDS Res Hum Retrovir 1993; 9 (7): 581–7

    Article  PubMed  CAS  Google Scholar 

  54. Chaudhary VK, Mizukami T, Fuerst TR, et al. Selective killing of HIV-1 infected cells by recombinant human CD4-Pseudomonas exotoxin hybrid protein. Nature 1988 Sept; 335: 369–72

    Article  PubMed  CAS  Google Scholar 

  55. Berger EA, Clouse KA, Chaudhary VK, et al. CD4-Pseudomonas exotoxin hybrid protein blocks the spread of human immunodeficiency virus in vitro and is active against cells expressing the envelope glycoproteins from diverse primate immunodeficiency retroviruses. Proc Natl Acad Sci USA 1989 Dec; 86: 9539–43

    Article  PubMed  CAS  Google Scholar 

  56. Ashorn P, Moss B, Weinstein JN, et al. Elimination of infectious human immunodeficiency virus from human T-cell culture by synergistic action of CD4-Pseudomonas exotoxin and reverse transcriptase inhibitors. Proc Natl Acad Sci USA 1990 Nov; 87: 8889–93

    Article  PubMed  CAS  Google Scholar 

  57. Berger EA, Chaudhary VK, Clouse KA, et al. Recombinant CD4-Pseudomonas exotoxin hybrid protein displays HIV-specific cytotoxicity without affecting MHC class II dependent functions. AIDS Res Hum Retrovir 1990; 6 (6): 795–804

    Article  PubMed  CAS  Google Scholar 

  58. Ramachandran R, Katzenstein DA, Wood R, et al. Failure of short term CD4-PE40 infusion to reduce virus load in human immunodeficiency virus infected persons. J Infect Dis 1994 Oct; 170: 1009–13

    Article  PubMed  CAS  Google Scholar 

  59. Flasher D, Konopka K, Chamow SM et al. Liposome targeting to human immunodeficiency virus type 1 infected cells via recombinant soluble CD4 and CD4 immunoadhesin (CD4-IgG). Biochim Biophys Acta 1994; 1194: 185–96

    Article  PubMed  CAS  Google Scholar 

  60. NIH AIDS Clinical Trial Group. Concept sheet for study #351: a phase I/II trial of CD4-IgG2 in HIV-viremic children

  61. Mofenson LM, Wolinsky SM. Current insights regarding vertical transmission. In Pizzo PA, Wilfert CM, editors. Pediatrie AIDS: the challenge of HIV infection in infants, children and adolescents. 2nd ed. Baltimore: Williams & Wilkins, 1994: 179–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Shearer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinclair, J.P., Shearer, W.T. Current Status of CD4-Based Therapies for Prophylaxis and Treatment of HIV Infection. BioDrugs 8, 128–138 (1997). https://doi.org/10.2165/00063030-199708020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199708020-00006

Keywords

Navigation