Skip to main content
Log in

CTLA4-Ig

Progress with a Novel Immunosuppressive Agent in Experimental Solid Organ Transplantation

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

The process of allograft rejection is a T cell-dependent phenomenon that occurs as a result of binding of foreign antigen and major histocompatibility complex (MHC) expressed on antigen-presenting cells to the T cell receptor/CD3 complex. Evidence suggests that binding of the alloantigen-MHC complex to the T cell receptor is insufficient by itself to initiate allograft rejection and induction of T cell responses, and a second or ‘costimulatory’ signal is required. This costimulatory response occurs as a result of activation of a distinct T cell surface molecule, CD28, by antigen-presenting cells that express a specific surface antigen, B7, that functions as a natural ligand to CD28. A similar T cell surface molecule, encoded on human chromosome 2 adjacent to CD28 and sharing 32% homology with CD28, has been cloned and termed CTLA4. CTLA4 is a member of the immunoglobulin gene superfamily, and exists as a complex on the surface of activated T cells.

A fusion protein, CTLA4-Ig, consisting of the extracellular domain of CTLA4 in combination with the constant region of the human immunoglobulin Cy chain, has been developed to investigate the effects of inhibition of the B7/CD28 costimulatory pathway on transplant rejection. CTLA4-Ig acts as a competitive inhibitor of CD28 by specifically binding B7 and preventing the binding of CD28 to B7. CTLA4-Ig, administered alone, has been shown to prolong graft survival in in vivo models of allo- and xeno-transplantation, as well as to potentiate the effects of other immunosuppressive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. June CH, Ledbetter JA, Linsley PS et al. Role of the CD28 receptor in T cell activation. Immunol Today 1990; 11: 211–6

    Article  PubMed  CAS  Google Scholar 

  2. Schwartz RH. A cell culture model for T-lymphocyte clonal anergy. Science 1990; 248: 1349

    Article  PubMed  CAS  Google Scholar 

  3. Marrack P, Kappler J. The Tcell receptor. Science 1987; 238: 1073

    Article  PubMed  CAS  Google Scholar 

  4. Azuma M, Ito D, Yagita H et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 1993; 366: 76–9

    Article  PubMed  CAS  Google Scholar 

  5. Hathcock KS, Laszlo G, Dickler HB et al. Identification of an alternative CTLA-4 ligand co-stimulatory for T cell activation. Science 1993; 262: 905–7

    Article  PubMed  CAS  Google Scholar 

  6. Young JW, Koulova L, Soergel SA et al. The B7/BB1 antigen provides one of several co-stimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J Clin Invest 1992; 90: 229

    Article  PubMed  CAS  Google Scholar 

  7. Fargeas CA, Truneh A, Reddy M et al. Identification of residues in the V domain of CD80 (B7-1) implicated in functional interactions with CD28 and CTLA4. J Exp Med 1995; 182: 667–75

    Article  PubMed  CAS  Google Scholar 

  8. Freeman G, Bordello F, Hodes R et al. Murine B7-2, an alternative CTLA4Ig counter-receptor that co-stimulates T cell proliferation and interleukin-2 production. J Exp Med 1993; 178: 2185

    Article  PubMed  CAS  Google Scholar 

  9. Jenkins MK, Taylor PS, Norton SD et al. CD28 delivers a co-stimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 1991; 147: 2461–6

    PubMed  CAS  Google Scholar 

  10. Har T, Fu SM, Hansen JA. Human T cell activation II: a new activation pathway used by a major T cell population via a disulfide-bonded dimer of a 44 kilodalton polypeptide (9.3 antigen). J Exp Med 1985; 161: 1513–24

    Article  Google Scholar 

  11. Linsley PS, Brady W, Grosmaire L et al. Binding of the B cell activation antigen B7 to CD28 co-stimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med 1991; 173: 721–30

    Article  PubMed  CAS  Google Scholar 

  12. Fraser JD, Irving BA, Crabtree GR et al. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 1991; 251: 313–6

    Article  PubMed  CAS  Google Scholar 

  13. Thompson CB, Lindsten T, Ledbetter JA et al. CD28 activation pathway regulates the production of multiple T cell-derived lymphokines/cytokines. Proc Natl Acad Sci USA 1989; 86: 1333–7

    Article  PubMed  CAS  Google Scholar 

  14. Azumo M, Cayabyab M, Buck D et al. CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. J Exp Med 1992; 175: 353–60

    Article  Google Scholar 

  15. Harding FA, Allison JR. CD28-B7 interactions allow the induction of CD8+ cytotoxic T lymphocytes in the absence of exogenous help. J Exp Med 1993; 177: 1791–6

    Article  PubMed  CAS  Google Scholar 

  16. Brunet JF, Denizot F, Luciani MF et al. A new member of the immunoglobulin superfamily — CTLA-4. Nature 1987; 328: 267–70

    Article  PubMed  CAS  Google Scholar 

  17. Linsley PS, Brady W, Urnes M et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 1991; 174: 561–9

    Article  PubMed  CAS  Google Scholar 

  18. Linsley PS, Wallace PM, Johnson J et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 1992; 257: 792

    Article  PubMed  CAS  Google Scholar 

  19. Turka LA, Linsley PS, Lin H et al. T cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992; 89: 11102–5

    Article  PubMed  CAS  Google Scholar 

  20. Lenschow DJ, Zeng Y, Thistlethwaite JR et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992; 257: 789–92

    Article  PubMed  CAS  Google Scholar 

  21. Lin H, Boiling SF, Linsley PS et al. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J Exp Med 1993; 178: 1801–6

    Article  PubMed  CAS  Google Scholar 

  22. Perico N, Imberti O, Bontempelli M et al. Toward novel antirejection strategies; in vivo immunosuppressive properties of CTLA4Ig. Kidney Int 1995; 47: 241–6

    Article  PubMed  CAS  Google Scholar 

  23. Matsumura Y, Zuo XJ, Prehn J et al. Soluble CTLA4Ig modifies acute rejection of rat lung allografts without blocking accumulation of key cytokine transcripts. Transplant Proc 1995; 27: 406–8

    PubMed  CAS  Google Scholar 

  24. Matsumura Y, Zuo XJ, Prehn J et al. Soluble CTLA4Ig modifies parameters of acute inflammation in rat lung allograft rejection without altering lymphocytic infiltration or transcription of key cytokines. Transplantation 1995; 27: 551–8

    Google Scholar 

  25. Pescovitz MD, Yeng R, Liu Q et al. CD28-pathway blockade with CTLA4Ig leads to prolongation of small bowel transplant survival in rats. Transplant Proc 1994; 26: 1618–9

    PubMed  CAS  Google Scholar 

  26. Baliga P, Chavin KD, Qin L et al. CTLA4Ig prolongs allograft survival while suppressing cell-mediated immunity. Transplantation 1994; 58: 1082–90

    PubMed  CAS  Google Scholar 

  27. Tepper MA, Linsley PS, Tritschler D et al. Tolerance induction by soluble CTLA4 in a mouse skin transplant model. Transplant Proc 1994; 26: 3151–4

    PubMed  CAS  Google Scholar 

  28. Pearson TC, Alexander DZ, Winn KJ et al. Transplantation tolerance induced by CTLA4Ig. Transplantation 1994; 57: 1701–6

    PubMed  CAS  Google Scholar 

  29. Boiling SF, Kunkel SL, Lin H. Prolongation of cardiac allograft survival in rats by anti-TNF and cyclosporine combination therapy. Transplantation 1992; 53: 283

    Article  PubMed  CAS  Google Scholar 

  30. Boiling SF, Lin H, Wei RQ et al. The effect of combination cyclosporine and CTLA4Ig therapy on cardiac allograft survival. J Surg Res 1994; 57: 60–4

    Article  PubMed  CAS  Google Scholar 

  31. Yin D, Fathman CG. Induction of tolerance to heart allografts in high responder rats by combining anti-CD4 with CTLA4Ig. J Immunol 1995; 155: 1655–9

    PubMed  CAS  Google Scholar 

  32. Chahine AA, Yu M, McKernan M et al. Local CTLA4Ig synergizes with one-dose anti-LFA-1 to achieve long-term acceptance of pancreatic islet allografts. Transplant Proc 1994; 26: 3296

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven F. Bolling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagani, F.D., Bolling, S.F. CTLA4-Ig. BioDrugs 8, 81–86 (1997). https://doi.org/10.2165/00063030-199708020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199708020-00001

Keywords

Navigation