Skip to main content
Log in

Induction of Allograft Tolerance

An End to Immunosuppressive Therapy in Transplantation?

  • Review Article
  • Immunology-Based Agents
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

Organ transplantation can be one of the therapeutic modalities for various terminal diseases. However, the morbidity and mortality associated with this procedure are still major problems. Discontinuation of immunosuppression or induction of allograft tolerance is the ideal goal in organ transplantation. In fact, there are reports of patients who have been able to stop all conventional immunosuppression and remain clinically stable and drug free over long periods. The mechanism underlying this phenomenon has not yet been clarified.

Recent advances in molecular biology shed light on the molecular mechanisms involved in allograft rejection. Depletion of passenger leucocytes and the reduction of immunogenicity of the allografted tissue lead to significant prolongation of graft survival. Some of the new immunosuppressive drugs have the potential for inducing unresponsiveness when combined with appropriate antigen presentation. Adhesion molecules participating in the interactions of lymphocytes and endothelial cells, and of antigen-presenting cells and T cells, have been identified, and monoclonal antibodies against each molecule have been shown to block full T cell activation, leading to antigen-specific unresponsiveness in certain situations. Some of these modalities are applicable to a large animal model, which could lead to an end to immunosuppressive treatment in clinical organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Timothy MC, Harian JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84: 2068–101

    Google Scholar 

  2. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a co-stimulatory outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989; 7: 445–80

    Article  PubMed  CAS  Google Scholar 

  3. Ochiai T, Skamoto K, Nagata M, et al. Studies on FK506 in experimental organ transplantation. Transplant Proc 1988; 20 Suppl. 1: 209–14

    PubMed  CAS  Google Scholar 

  4. Lafferty KJ, Cooley MA, Woolnough J, et al. Thyroid allograft immunogenicity is reduced after a period in organ culture. Science 1975; 188: 259–61

    Article  PubMed  CAS  Google Scholar 

  5. Gotoh M, Maki T, Satomi S, et al. Immunological characteristics of purified pancreatic islet grafts. Transplantation 1986; 42: 387–90

    Article  PubMed  CAS  Google Scholar 

  6. Murase N, Kim DG, Todo S, et al. FK506 suppression of heart and liver allograft rejection. II. The induction of graft acceptance in rats. Transplantation 1990; 50: 739–44

    Article  PubMed  CAS  Google Scholar 

  7. Ueda Y, Todo S, Eiras G, et al. Induction of graft acceptance after dog kidney or liver transplantation. Transplant Proc 1990; 22 Suppl. 1: 80–2

    PubMed  CAS  Google Scholar 

  8. Kamada N, Davies HS, Roger B. Reversal of transplantation immunity by liver grafting. Nature 1981; 292: 840–2

    Article  PubMed  CAS  Google Scholar 

  9. Calne R, Davies H. Organ graft tolerance: the liver effect. Lancet 1995; 343: 67–8

    Article  Google Scholar 

  10. Starzl TE, Demetris AJ, Trucco M, et al. Cell migration and chimerism after whole organ transplantation: the basis of graft acceptance. Hepatology 1993; 17: 1127–52

    Article  PubMed  CAS  Google Scholar 

  11. Schlitt HJ, Hundrieser J, Hisanaga M, et al. Patterns of donor-type microchimerism after heart transplantation. Lancet 1995; 343: 1469–71

    Article  Google Scholar 

  12. Schwartz RH. A cell culture model for T lymphocyte clonal anergy. Science 1990; 248: 1349–56

    Article  PubMed  CAS  Google Scholar 

  13. Mayumi H, Good RA. Long-lasting skin allograft tolerance in adult mice induced across fully allogeneic (multimajor H-2 plus multiminor histocompatibility) antigen barriers by a tolerance-inducing method using cyclophosphamide. J Exp Med 1989; 169: 213–38

    Article  PubMed  CAS  Google Scholar 

  14. Kilshaw PJ, Brent L, Pinto M. Suppressor T cells in mice made unresponsive to skin allografts. Nature 1975; 255: 489–91

    Article  PubMed  CAS  Google Scholar 

  15. Batchelor JR, Phillips BE, Grennan D. Suppressor cells and their role in the survival of immunologically enhanced rat kidney allografts. Transplantation 1984; 37: 43–6

    Article  PubMed  CAS  Google Scholar 

  16. Gotoh M, Porter J, Monaco AP, et al. Induction of antigen specific unresponsiveness to pancreatic islet allografts by anti-lymphocyte serum. Transplantation 1988; 45: 429–33

    Article  PubMed  CAS  Google Scholar 

  17. Isobe M, Yagita H, Okumura K, et al. Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1. Science 1992; 255: 1125–7

    Article  PubMed  CAS  Google Scholar 

  18. Nakano Y, Monden M, Valdivia LA, et al. Permanent acceptance of liver allografts by intraportal injection of donor spleen cells in rats. Surgery 1992; 111: 668–76

    PubMed  CAS  Google Scholar 

  19. Gianello PR, Blancho G, Fishbein JF, et al. Mechanism of cyclosporin-induced tolerance to primarily vascularised allografts in miniature swine: effect of administration of exogenous IL-2. J Immunol 1994; 153: 4788–97

    PubMed  CAS  Google Scholar 

  20. Boussiotis VA, Barber DL, Nakarai T, et al. Prevention of T cell anergy by signaling through the gamma-c chain of the IL-2 receptor. Science 1994; 266: 1039–42

    Article  PubMed  CAS  Google Scholar 

  21. Beverly B, Kang SM, Lenardo MJ, et al. Reversal of in vitro T-cell clonal anergy by IL-2 stimulation. Int Immunol 1992; 4: 661–71

    Article  PubMed  CAS  Google Scholar 

  22. Qin S, Cobbold SP, Pope H, et al. Infectious transplantation tolerance. Science 1993; 259; 974–7

    Article  PubMed  CAS  Google Scholar 

  23. Lacy PE, Davie JM, Finke EH. Prolongation of islet allograft survival following in vitro culture (24°C) and a single injection of ALS. Science 1979; 204: 312–3

    Article  PubMed  CAS  Google Scholar 

  24. Bowen KM, Andrus L, Lafferty K. Successful allotransplantation of mouse pancreatic islets to non-immunosuppressed recipients. Diabetes 1980; 29 Suppl. 1: 98–104

    PubMed  Google Scholar 

  25. Lau H, Reetsma K, Hardy MA. Prolongation of rat islet allograft survival by direct ultraviolet irradiation of the graft. Science 1984; 223: 607–9

    Article  PubMed  CAS  Google Scholar 

  26. Gotoh M, Porter J, Monaco AP, et al. Prolongation of islet xenograft survival by islet irradiation and antilymphocyte serum treatment of recipients. Transplant Proc 1988; 20 Suppl. 1: 997–9

    Google Scholar 

  27. Faustman DL, Hauptfels V, Lacy PE, et al. Prolongation of murine islet allograft survival by pretreatment of islets with antibody directed to la determinants. Proc Natl Acad Sci USA 1981; 78: 5156–9

    Article  PubMed  CAS  Google Scholar 

  28. Gotoh M, Porter J, Kanai T, et al. Multiple donor allotransplantation. Transplantation 1988; 45: 1008–12

    Article  PubMed  CAS  Google Scholar 

  29. Evavold BD, Sloan-Lancaster J, Allen PM. Tickling the TCR: selective T cell functions stimulated by altered peptide ligands. Immunol Today 1993; 14: 602–9

    Article  PubMed  CAS  Google Scholar 

  30. Lu CY, Sicher SC, Vazquez MA. Prevention and treatment of renal allograft rejection: new therapeutic approaches and new insights into established therapies. J Am Soc Nephrol 1993; 4: 1239–56

    PubMed  CAS  Google Scholar 

  31. Thomson AW, Starzl TE. New immunosuppressive drugs: mechanistic insights and potential therapeutic advances. Immunol Rev 1993; 136: 71–98

    Article  PubMed  CAS  Google Scholar 

  32. Hutchinson I. Transplantation and rejection. In: Roitt I, Brostoff J, Male D, editors. Immunology. London: Mosby, 1993: 23.1–23.14

    Google Scholar 

  33. Knudsen PJ, Dinarello CA, Strom TB. Glucocorticoids inhibit transcription and post-transcriptional expression of interleukin-1. J Immunol 1987; 139: 4129–34

    PubMed  CAS  Google Scholar 

  34. Schreiber SC. Immunophilin-sensitive protein phosphatase activation in cell signaling pathways. Cell 1992; 70: 365–8

    Article  PubMed  CAS  Google Scholar 

  35. O’Keefe SI, Tamura J, Kincaid RL, et al. FK506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature 1992; 357: 692–4

    Article  PubMed  Google Scholar 

  36. Gotoh M, Monden M, Kanai T, et al. Tolerance induction by liver grafting and FK-506 treatment in nonhuman primates. Transplant Proc 1991; 23: 3265–8

    PubMed  CAS  Google Scholar 

  37. Calne RY, Watson CJ, Brons IG, et al. Tolerance of porcine renal allografts induced by donor spleen cells and seven days treatment with cyclosporine. Transplantation 1994; 57: 1433–5

    PubMed  CAS  Google Scholar 

  38. Fishbein JM, Rosengard BR, Gianello P, et al. Development of tolerance to class II-mismatched renal transplants after a short course of cyclosporine therapy in miniature swine. Transplantation 1994; 57: 1303–8

    Article  PubMed  CAS  Google Scholar 

  39. Liu J. FK506 and cyclosporin: molecular probes for studying intracellular signal transduction. Immunol Today 1993; 14; 290–5

    Article  PubMed  CAS  Google Scholar 

  40. Murase N, Kim DG, Todo S, et al. Suppression of allograft rejection with FK506; prolonged cardiac and liver survival in rats following short-course therapy. Transplantation 1990; 50: 186–9

    Article  PubMed  CAS  Google Scholar 

  41. Ochiai T, Nakajima K, Nagata M, et al. Studies of the induction and maintenance of long-term graft acceptance by treatment with FK506 in heterotopic cardiac allotransplantation in rats. Transplantation 1987; 44: 734–8

    Article  PubMed  CAS  Google Scholar 

  42. Todo S, Ueda Y, Demetris JA, et al. Immunosuppression of canine, monkey, and baboon allografts by FK506 with special reference to synergism with other drugs and to tolerance induction. Surgery 1988; 104: 239–49

    PubMed  CAS  Google Scholar 

  43. Nourse J, Firpo E, Flanagan WH, et al. Interleukin-2-mediated elimination of the p27kipl cyclin-dependent kinase inhibitor prevented by rapamycin. Nature 1994; 372: 570–3

    Article  PubMed  CAS  Google Scholar 

  44. Chong A, Finnegan SF, Jiang XL, et al. Leflunomide, a novel immunosuppressive agent. Transplantation 1993; 55: 1361–6

    Article  PubMed  CAS  Google Scholar 

  45. Schmidbauer G, Hancock WW, Badger AM, et al. Induction of nonspecific x-irradiation-resistant suppressor cell activity in vivo and prolongation of vascularised allograft survival by SK&F 105685, a novel immunomodulatory azaspirane. Transplantation 1993; 55: 1236–43

    Article  PubMed  CAS  Google Scholar 

  46. Platz KP, Sollinger HW, Hullett DA, et al. RS-61443: a new, potent immunosuppressive agent. Transplantation 1991; 51: 27–31

    Article  PubMed  CAS  Google Scholar 

  47. Makowka L, Sher LS, Cramer DV. The development of brequinar as an immunosuppressive drug for transplantation. Immunol Rev 1993; 136: 51–70

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki S. Deoxyspergualin: mode of action and effects on graft rejection. In: Thomson AW, Starzl TE, editors. Immunosuppressive drugs: developments in anti-rejection therapy. London: Edward Arnold, 1993: 187–202

    Google Scholar 

  49. Yuh DD, Morris RE. The immunopharmacology of immunosuppression by 15-deoxyspergualin. Transplantation 1993; 55: 578–591

    Article  PubMed  CAS  Google Scholar 

  50. Wood ML, Monaco AP. Suppressor cells in specific unresponsiveness to skin allografts in ALS-treated, marrow-injected mice. Transplantation 1980; 29: 196–200

    Article  PubMed  CAS  Google Scholar 

  51. Isobe M, Suzuki J, Yagita H, et al. Immunosuppression to cardiac allografts and soluble antigens by antivascular cellular adhesion molecule-1 and anti-very late antigen-4 monoclonal antibodies. J Immunol 1994; 153: 5810–8

    PubMed  CAS  Google Scholar 

  52. Springer TA. Adhesion receptors of the immune system. Nature 1990; 346: 425–34

    Article  PubMed  CAS  Google Scholar 

  53. Boussiotis VA, Gribben JG, Freeman GJ, et al. Blockade of the CD28 co-stimulatory pathway: a means to induce tolerance. Curr Opin Immunol 1994; 6: 797–807

    Article  PubMed  CAS  Google Scholar 

  54. Pearson TC, Darby CR, Bushell AR, et al. The assessment of transplantation tolerance induced by anti-CD4 monoclonal antibody in the murine model. Transplantation 1993; 55: 361–7

    Article  PubMed  CAS  Google Scholar 

  55. Shizuru JA, Alters SE, Fathman CG. Anti-CD4 monoclonal antibodies in therapy: creation of nonclassical tolerance in the adult. Immunol Rev 1992; 129: 105–30

    Article  PubMed  CAS  Google Scholar 

  56. Kishimoto TK, Larson RS, Corbi AL, et al. The leukocyte integrins. Adv Immunol 1989; 46: 149–82

    Article  PubMed  CAS  Google Scholar 

  57. Krensky AM, Sanchez-Madrid F, Robbins E, et al. The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions. J Immunol 1983; 131: 611–6

    PubMed  CAS  Google Scholar 

  58. Gotoh M, Fukuzaki T, Dono K, et al. A potential immunosuppressive effect of anti-LFA-1 monoclonal antibody on islet transplantation. Transplantation 1993; 57: 1123–7

    Google Scholar 

  59. Nakakura EK, McCabe SM, Zheng B, et al. Potent and effective prolongation by anti-LFA-1 monoclonal antibody monotherapy of non-primarily vascularised heart allograft survival in mice without T cell depletion. Transplantation 1993; 55: 412–7

    PubMed  CAS  Google Scholar 

  60. Talento A, Nguyen M, Blake T, et al. A single administration of LFA-1 antibody confers prolonged allograft survival. Transplantation 1993; 55: 418–22

    PubMed  CAS  Google Scholar 

  61. June CH, Bluestone JA, Nadler LM, et al. The B7 and CD28 receptor families. Immunol Today 1994; 15: 321–31

    Article  PubMed  CAS  Google Scholar 

  62. Lenschow DJ, Zeng Y, Thistlethwaite JR, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 1992; 257: 789–92

    Article  PubMed  CAS  Google Scholar 

  63. Lin H, Boiling SF, Linsley PS, et al. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA-4Ig plus donor-specific transfusion. J Exp Med 1993; 178: 1801–6

    Article  PubMed  CAS  Google Scholar 

  64. Blazar BR, Taylor PA, Linsley PS, et al. In vivo blockade of CD28/CTLA4: B7/BB1 interaction with CTLA4-Ig reduces lethal murine graft-versus-host disease across the major histocompatibility complex barrier in mice. Blood 1994; 83: 3815–25

    PubMed  CAS  Google Scholar 

  65. Benson EM, Covin RB, Russel PS. Induction of la antigens in murine renal transplants. J Immunol 1985; 134: 7–9

    PubMed  CAS  Google Scholar 

  66. Hart DNJ, Fuggle SV, Williams KA, et al. Localization of HLAABC and DR antigens in human kidney. Transplantation 1981; 31: 428–33

    Article  PubMed  CAS  Google Scholar 

  67. Pescovitz MD, Sacks DH, Lunney JK, et al. Localization of class II MHC antigens on porcine renal vascular endothelium. Transplantation 1984; 37: 627–30

    Article  PubMed  CAS  Google Scholar 

  68. Fischer A, Griscelli C, Blanche S, et al. Prevention of graft failure by an anti-HLFA-1 monoclonal antibody in HLA-mismatched bone-marrow transplantation. Lancet 1989; II: 1058–61

    Google Scholar 

  69. Mauff BL, Hourmant M, Rougier JP, et al. Effect of anti-LFA-1 (CD11a) monoclonal antibodies in acute rejection in human kidney transplantation. Transplantation 1991; 52: 291–6

    Article  PubMed  Google Scholar 

  70. Haug CE, Colvin RB, Delmonico FL, et al. A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. Transplantation 1993; 55: 766–73

    Article  PubMed  CAS  Google Scholar 

  71. Co MS, Queen C. Humanized antibodies for therapy. Nature 1991; 351: 501–2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotoh, M., Miyasaka, M., Ohzato, H. et al. Induction of Allograft Tolerance. BioDrugs 8, 56–67 (1997). https://doi.org/10.2165/00063030-199708010-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199708010-00007

Keywords

Navigation