Skip to main content

Advertisement

Log in

Interleukin-5

Immunological Functions and Therapeutic Potential of a Putative Antagonist

  • Review Article
  • Biopharmaceuticals
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

Interleukin-5 (IL-5) is an interdigitating homodimeric glycoprotein and features the 4-α-helical-bundle motif which is conserved among several haemopoietic cytokines. It is a potent cytokine which induces proliferation and differentiation of activated B cells and induces eosinophil production and activation. IL-5 acts on target cells by binding to its specific receptor. The IL-5 receptor consists of a unique α chain and a β (βc) chain that is shared with the receptors for interleukin-3 and granulocyte-macrophage colony-stimulating factor. The βc chain is indispensable for signal transduction. Both subunits contain motifs conserved among the superfamily of cytokine receptors.

Stimulation of cells by IL-5 induces rapid tyrosine phosphorylation of various cellular proteins, including the βc chain, and activates the Bruton tyrosine (Btk) and JAK2 kinases. The cytoplasmic domain of the βc chain and the membrane-proximal proline-rich sequence of the cytoplasmic domain of the α chain are both essential for the IL-5-induced proliferative response, for expression of nuclear proto-oncogenes and for activation of the Btk and JAK2 kinases. B cells from X-linked immunodeficient (XID) mice, which have an abnormality of Btk and lack functionally mature B cells, including CD5+ B cells, show impaired responsiveness to IL-5, whereas eosinophils from these animals respond normally.

In several pathophysiological conditions, increases in serum and tissue levels of IL-5 and eosinophil numbers have been described. Of clinical relevance is a role for IL-5 in hypereosinophilic syndromes and atopic disease. An animal model of local allergen (airways) sensitisation was employed to study the effects of anti-IL-5 monoclonal antibody on infiltration of eosinophils into inflammatory regions and the development of the antigen-induced late-phase asthmatic response and subsequent bronchial responsiveness. Treatment with the anti-IL-5 antibody decreased the enhanced bronchial responsiveness to acetylcholine induced by allergen sensitisation via the airways.

These diverse biological consequences of IL-5 provide the basis for elucidating the functional structure of IL-5 and its receptor complex, as well as the mechanisms of IL-5 signal transduction. Furthermore, clinical studies provide insight into the role of IL-5 in health and disease and provide a strong impetus for investigating means of modulating the effects of IL-5. In concert with advances in understanding the biology of other cytokines and growth factors, entirely new approaches to patient care should emerge in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takatsu K, Takaki S, Hitoshi Y. Interleukin-5 and its receptor system in the immune system and inflammation. Adv Immunol 1994; 54: 145–90

    Article  Google Scholar 

  2. Rozwarski DA, Gronenborn AM, Clore GM, et al. Structural comparison among the short-chain helical cytokines. Structure 1994; 2: 159–73

    Article  PubMed  CAS  Google Scholar 

  3. Milburn MV, Hassell AM, Lambert MH, et al. A novel dimer configuration revealed by the crystal structure at 2.4 Å resolution of human interleukin-5. Nature 1993; 363: 172–6

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi T, Yamaguchi N, Mita S, et al. Structural comparison of murine T-cell (B151K12)-derived T-cell-replacing factor (IL-5) with rIL-5: dimer formation is essential for the expression of biological activity. Mol Immunol 1990; 9: 911–20

    Article  Google Scholar 

  5. Arai KI, Lee F, Miyajima A, et al. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 1990; 59: 783–835

    Article  PubMed  CAS  Google Scholar 

  6. Kinashi T, Harada N, Severinson E, et al. Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature 1986; 324: 70–3

    Article  PubMed  CAS  Google Scholar 

  7. Takatsu K. Interleukin-5 and its receptor system: from genes to disease. Austin: R.G. Landes Company, 1995: 1–167

    Google Scholar 

  8. Sanderson CJ. Interleukin-5, eosinophils, and disease. Blood 1992; 79: 3101–9

    PubMed  CAS  Google Scholar 

  9. Mita S, Tominaga A, Hitoshi Y, et al. Characterization of high-affinity receptors for interleukin 5 on interleukin 5-dependent cell lines. Proc Natl Acad Sci USA 1989; 86: 2311–5

    Article  PubMed  CAS  Google Scholar 

  10. Takaki S, Tominaga A, Hitoshi Y, et al. Molecular cloning and expression of the murine interleukin-5 receptor. EMBO J 1990; 9: 4367–74

    PubMed  CAS  Google Scholar 

  11. Murata Y, Takaki S, Migita M, et al. Molecular cloning and expression of the human interleukin 5 receptor. J Exp Med 1992; 175: 341–51

    Article  PubMed  CAS  Google Scholar 

  12. Tavernier J, Devos R, Cornelis S, et al. A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 1991; 66: 1175–84

    Article  PubMed  CAS  Google Scholar 

  13. Takaki S, Mita S, Kitamura T, et al. Identification of the second subunit of the murine interleukin-5 receptor: interleukin-3 receptor-like protein, AIC2B is a component of the high affinity interleukin-5 receptor. EMBO J 1991; 10: 2833–8

    PubMed  CAS  Google Scholar 

  14. Takaki S, Murata Y, Kitamura T, et al. Reconstitution of the functional receptors for murine and human interleukin 5. J Exp Med 1993; 177: 1523–9

    Article  PubMed  CAS  Google Scholar 

  15. Kitamura T, Sato N, Arai K, et al. Expression cloning of the human IL-3 receptor cDNA reveals a shared β subunit for the human IL-3 and GM-CSF receptors. Cell 1991; 66: 1165–74

    Article  PubMed  CAS  Google Scholar 

  16. Miyajima A, Mui AL, Ogorochi T, et al. Receptor for granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 1993; 82: 1960–74

    PubMed  CAS  Google Scholar 

  17. Honjo T, Takatsu K. Interleukin 5. In: Sporn MA, Roberts AB, editors. Peptide growth factors and their receptors. Handbook of Experimental Pharmacology. Vol 95/I. Berlin: Springer-Verlag, 1990: 609–32

    Chapter  Google Scholar 

  18. Bourke PF, van Leeuwen BH, Campbell HG, et al. Localization of the inducible enhancer in the mouse interleukin-5 gene that is responsive to T-cell receptor stimulation. Blood 1995; 85: 2069–77

    PubMed  CAS  Google Scholar 

  19. Naora H, Young IG. Comparison of the mechanism regulating IL-5, IL-4, and three other lymphokines genes in the Th2 clone D10.G4.1. Exp Hematol 1995; 23: 597–602

    PubMed  CAS  Google Scholar 

  20. Lee HJ, Koyano-Nakagawa N, Naito Y, et al. cAMP activates the IL-5 promoter synergistically with phorbol ester through the signaling pathway involving protein kinase A in mouse thymoma line EL-4. J Immunol 1993; 151: 6135–42

    PubMed  CAS  Google Scholar 

  21. Wang Y, Campbell HD, Young IG. Sex hormones and dexamethasone modulate interleukin-5 gene expression in T lymphocytes. J Steroid Biochem Mol Biol 1993; 44: 203–10

    Article  PubMed  CAS  Google Scholar 

  22. Takatsu K, Dickason R, Huston D. Interleukin 5. In: Le Roith D, editor. Growth factors and cytokines in health and disease. Volume II. Cytokines: 1997. In press

    Google Scholar 

  23. Johanson K, Appelbaum E, Doyle M, et al. Binding interactions of human interleukin 5 with its receptor alpha subunit. J Biol Chem 1995; 270: 9459–71

    Article  PubMed  CAS  Google Scholar 

  24. McKenzie AN, Barry SC, Strath M, et al. Structure-function analysis of interleukin-5 utilizing mouse/human chimeric molecules. EMBO J 1991; 10: 1193–9

    PubMed  CAS  Google Scholar 

  25. Shanafelt AB, Miyajima A, Kitamura T, et al. The amino-terminal helix of GM-CSF and IL-5 governs high affinity binding to their receptors. EMBO J 1991; 10: 4105–12

    PubMed  CAS  Google Scholar 

  26. Dickason RR, Huston MM, Huston DP. Delineation of IL-5 domains predicted to engage the IL-5 receptor complex. J Immunol 1996; 156: 1030–7

    PubMed  CAS  Google Scholar 

  27. Graber P, Proudfoot AEI, Talabot R, et al. Identification of key charged residues of human interleukin-5 in receptor binding and cellular activation. J Biol Chem 1995; 270: 15762–9

    Article  PubMed  CAS  Google Scholar 

  28. Tavernier J, Tuypens T, Verhee A, et al. Identification of receptor-binding domains on human interleukin 5 and design of an interleukin 5-derived receptor antagonist. Proc Natl Acad Sci USA 1995; 92: 5194–8

    Article  PubMed  CAS  Google Scholar 

  29. Dickason RR, Huston DP. Creation of a biologically active interleukin-5 monomer. Nature 1996; 379: 652–5

    Article  PubMed  CAS  Google Scholar 

  30. Isobe M, Kumura Y, Murata Y, et al. Localization of the gene encoding the alpha subunit of human interleukin-5 receptor (IL5Rα) to chromosome region 3p24–3p26. Genomics 1992; 14: 755–8

    Article  PubMed  CAS  Google Scholar 

  31. Imamura F, Takaki S, Akagi K, et al. The murine interleukin-5 receptor alpha-subunit gene: characterization of the gene structure and chromosome mapping. DNA Cell Biol 1994; 13: 283–92

    Article  PubMed  CAS  Google Scholar 

  32. Tavernier J, Tuypens T, Plaetinck G, et al. Molecular basis of the membrane-anchored and two soluble isoforms of the human interleukin 5 receptor alpha subunit. Proc Natl Acad Sci USA 1992; 89: 7041–5

    Article  PubMed  CAS  Google Scholar 

  33. Bazan JF. Haemopoietic receptor and helical cytokines. Immunol Today 1990; 11: 350–4

    Article  PubMed  CAS  Google Scholar 

  34. Devos R, Guisez Y, Cornelis S, et al. Recombinant soluble human interleukin-5 (hIL-5) receptor molecules: cross-linking and stoichiometry of binding to IL-5. J Biol Chem 1993; 268: 6581–7

    PubMed  CAS  Google Scholar 

  35. Hayashida K, Kitamura T, Gorman DM, et al. Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci USA 1990; 87: 9655–9

    Article  PubMed  CAS  Google Scholar 

  36. Mita S, Takaki S, Tominage A, et al. Comparative analysis of kinetics of binding and internalization of IL-5 by murine IL-5 receptor of high and low affinity. J Immunol 1993; 151: 6924–32

    PubMed  CAS  Google Scholar 

  37. Kikuchi Y, Migita M, Takaki S, et al. Biochemical and functional characterization of soluble form of IL-5 receptor alpha (sIL-5R alpha): development of ELISA system for detection of sIL-5R alpha. J Immunol Methods 1994; 167: 289–98

    Article  PubMed  CAS  Google Scholar 

  38. Taga T, Hibi M, Hirata Y, et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp 130. Cell 1989; 58: 573–81

    Article  PubMed  CAS  Google Scholar 

  39. Devos R, Guisez Y, Plaetinck G, et al. Covalent modification of the interleukin-5 receptor by isothiazolones leads to inhibition of the binding of interleukin-5. Eur J Biochem 1994; 225: 635–40

    Article  PubMed  CAS  Google Scholar 

  40. Cornelis S, Plaetinck G, Devos R, et al. Detailed analysis of the IL-5-IL-5Rα interaction: characterization of crucial residues on the ligand and the receptor. EMBO J 1995; 4: 3395–402

    Google Scholar 

  41. Woodcock JM, Zacharakis B, Plaetinck G, et al. Three residues in the common beta chain of the human GM-CSF, IL-3 and IL-5 receptors are essential for GM-CSF and IL-5 but not IL-3 high affinity binding and interact with Glu21 of GM-CSF. EMBO J 1994; 13: 5176–85

    PubMed  CAS  Google Scholar 

  42. Takaki S, Kanazawa H, Shiiba M, et al. A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor alpha chain and its function in IL-5-mediated growth signal transduction. Mol Cell Biol 1994; 14: 7404–13

    PubMed  CAS  Google Scholar 

  43. Sato S, Katagiri T, Takaki S, et al. IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton’s tyrosine and Janus 2 kinases. J Exp Med 1994; 180: 2101–11

    Article  PubMed  CAS  Google Scholar 

  44. Ihle JN. Cytokine receptor signaling. Nature 1995; 377: 591–4

    Article  PubMed  CAS  Google Scholar 

  45. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994; 76: 253–62

    Article  PubMed  CAS  Google Scholar 

  46. Taniguchi T. Cytokine signal transduction through nonreceptor protein tyrosine kinase. Science 1995; 268: 251–5

    Article  PubMed  CAS  Google Scholar 

  47. Darnell Jr JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extra-cellular signaling transduction. Science 1994; 264: 1415–8

    Article  PubMed  CAS  Google Scholar 

  48. Schilinder C, Darnell Jr JE. Transcriptional responses to polypeptide ligands: JAK-Sat pathway. Annu Rev Biochem 1995; 64: 621–51

    Article  Google Scholar 

  49. Kouro T, Kikuchi Y, Kanazawa H, et al. Critical proline residues of the cytoplasmic domain of the IL-5 receptor alpha chain and its function in IL-5 mediated activation of JAK kinase and STAT5. Int Immunol 1996; 8: 237–46

    Article  PubMed  CAS  Google Scholar 

  50. Mui AL-F, Wakao H, O’Farrell A-M, et al. Interleukin-3, granulocyte-macrophage colony-stimulating factor and interleukin-5 transduce signals through two STAT5 homologues. EMBO J 1995; 14: 1166–72

    PubMed  CAS  Google Scholar 

  51. Takagi M, Hara T, Ichihara M, et al. Multi-colony stimulating activity of interleukin-5 (IL-5) on hematopoietic progenitors from transgenic mice that express IL-5 receptor alpha subunit constitutively. J Exp Med 1995; 181: 889–99

    Article  PubMed  CAS  Google Scholar 

  52. Pazdrak K, Stafford S, Alam R. The activation of the Jak-STAT 1 signaling pathway by IL-5 in eosinophils. J Immunol 1995; 155: 397–402

    PubMed  CAS  Google Scholar 

  53. Van der Brugger T, Caldenhover E, Kanters D, et al. IL-5 signaling in human eosinophils involves JAK2 tyrosine kinase and Stat la. Blood 1995; 85: 1442–8

    Google Scholar 

  54. Tsukada S, Rawlings DJ, Witte ON. Role of Bruton’s tyrosine kinase in human and murine B cell immunodeficiency. Curr Opin Immunol 1994; 6: 623–30

    Article  PubMed  CAS  Google Scholar 

  55. Hitoshi Y, Sonoda E, Kikuchi Y, et al. Interleukin-5 receptor positive B cells, but not eosinophils are functionally and numerically influenced in the mice carried with X-linked immunodeficiency. Int Immunol 1993; 5: 1183–90

    Article  PubMed  CAS  Google Scholar 

  56. Koike M, Kikuchi Y, Tominaga A, et al. Defect of IL-5-recep-tor-mediated signaling in B cells of X-linked immunodeficient (XID) mice. Int Immunol 1995; 7: 21–30

    Article  PubMed  CAS  Google Scholar 

  57. Appleby MW, Kerner JD, Chien S, et al. Involvement of p59fynT in IL-5 receptor signaling. J Exp Med 1995; 182: 811–20

    Article  PubMed  CAS  Google Scholar 

  58. Li T, Tsukada S, Satterthwaite A, et al. Activation of Bruton’s tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity 1995; 2: 451–60

    Article  PubMed  CAS  Google Scholar 

  59. Sakamaki K, Miyajima I, Kitamura T, et al. Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J 1992; 11: 3541–9

    PubMed  CAS  Google Scholar 

  60. Sato N, Sakamaki K, Terada N, et al. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common b subunit responsible for different signaling. EMBO J 1993; 12: 4181–9

    PubMed  CAS  Google Scholar 

  61. Takatsu K, Tominaga A, Harada N, et al. T cell-replacing factor (TRF)/interleukin 5 (IL-5): molecular and functional properties. Immunol Rev 1988; 102: 107–35

    Article  PubMed  CAS  Google Scholar 

  62. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145–73

    Article  PubMed  CAS  Google Scholar 

  63. Trinchieri G. Biology of human natural killer cells. Adv Immunol 1989; 47: 187–376

    Article  PubMed  CAS  Google Scholar 

  64. Hsieh CS, Macatonia SE, Tripp CS, et al. Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993; 260: 547–9

    Article  PubMed  CAS  Google Scholar 

  65. Bradding P, Feather IH, Wilson S, et al. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J Immunol 1993; 151: 3853–65

    PubMed  CAS  Google Scholar 

  66. Plaut M, Pierce JH, Watson CJ, et al. Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature 1989; 339: 64–7

    Article  PubMed  CAS  Google Scholar 

  67. Hitoshi Y, Yamaguchi N, Mita S, et al. Distribution of IL-5 receptor-positive B cells. Expression of IL-5 receptor on Ly-1(CD5)+ B cells. J Immunol 1990; 144: 4218–25

    PubMed  CAS  Google Scholar 

  68. Tominaga A, Mita S, Kikuchi Y, et al. Establishment of IL-5-dependent early B cell lines by long-term bone marrow cultures. Growth Factors 1989; 1: 135–46

    Article  PubMed  CAS  Google Scholar 

  69. Katoh S, Tominaga A, Migita M, et al. Conversion of normal LY-1-positive B lineage cells into Ly-1-positive macrophages in long-term bone marrow cultures. Dev Immunol 1990; 1: 113–25

    Article  PubMed  CAS  Google Scholar 

  70. Tominaga A, Takaki S, Koyama N, et al. Transgenic mice expressing a B cell growth and differentiation factor gene (interleukin 5) develop eosinophilia and autoantibody production. J Exp Med 1991; 173: 429–37

    Article  PubMed  CAS  Google Scholar 

  71. Herron LR, Coffman RL, Bond MW, et al. Increased autoantibody production by NZB/NZW B cells in response to IL-5. J Immunol 1988; 141: 842–8

    PubMed  CAS  Google Scholar 

  72. Huston MM, Moore JP, Mettes H, et al. Human B cells express IL-5 receptor messenger ribonucleic acid and respond to IL-5 with enhanced IgM production after mitogenic stimulation with Moraxella catarrhalis. J Immunol 1996; 156: 1392–1401

    PubMed  CAS  Google Scholar 

  73. Clutterbuck E, Shields JG, Gordon J, et al. Recombinant human interleukin 5 is an eosinophil differentiation factor but has no activity in standard human B cell growth factor assays. Eur J Immunol 1987; 17: 1743–50

    Article  PubMed  CAS  Google Scholar 

  74. Bertolini JN, Sanderson CJ, Benson EM. Human interleukin-5 induces staphylococcal A Cowan 1 strain-activated human B cells to secrete IgM. Eur J Immunol 1993; 23: 398–402

    Article  PubMed  CAS  Google Scholar 

  75. Morikawa K, Oseko F, Morikawa S, et al. Recombinant human IL-5 augments immunoglobulin generation by human B lymphocytes in the presence of IL-2. Cell Immunol 1993; 149: 390–401

    Article  PubMed  CAS  Google Scholar 

  76. Hamid Q, Azzawi M, Ying S, et al. Expression of mRNA for interleukin-5 in mucosal bronchial biopsies from asthma. J Clin Invest 1991; 87: 541–6

    Article  Google Scholar 

  77. Kay AB, Ying S, Varney V, et al. Messenger RNA expression of the cytokine gene cluster, interleukin 3 (IL-3), IL-4, IL-5, and granulocyte/macrophage colony-stimulating factor, in allergen-induced late-phase cutaneous reactions in atopic subjects. J Exp Med 1991; 173: 775–8

    Article  PubMed  CAS  Google Scholar 

  78. Yamaguchi Y, Hayashi Y, Sugama Y, et al. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med 1988; 167: 1737–42

    Article  PubMed  CAS  Google Scholar 

  79. Yamaguchi Y, Suda T, Ohta S, et al. Analysis of the survival of mature human eosinophils: interleukin-5 prevents apoptosis in mature human eosinophils. Blood 1991; 78: 2542–7

    PubMed  CAS  Google Scholar 

  80. Lopez AF, Sanderson CJ, Gamble JR, et al. Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 1988; 167: 219–24

    Article  PubMed  CAS  Google Scholar 

  81. Owen WF, Rothenberg ME, Petersen J, et al. Interleukin 5 and phenotypically altered eosinophils in the blood of patients with the idiopathic hypereosinophilic syndrome. J Exp Med 1989; 170: 343–8

    Article  PubMed  CAS  Google Scholar 

  82. Martinez OM, Ascher NL, Ferrell L, et al. Evidence for a non-classical pathway of graft rejection involving interleukin 5 and eosinophils. Transplantation 1993; 55: 909–18

    Article  PubMed  CAS  Google Scholar 

  83. Bischoff SC, Brunner T, De-Weck AL, et al. Interleukin 5 modifies histamine release and leukotriene generation by human basophils in response to diverse agonists. J Exp Med 1990; 72: 1577–82

    Article  Google Scholar 

  84. Schwartz LB, Austen KF. The mast cell and mediators of immediate hyperreactivity. In: Samter M, Talmage D, Frank MM, et al., editors. Immunological diseases. Boston: Little Brown, 1988: 157–201

    Google Scholar 

  85. Lemanske RF, Kaliner MA. Late-phase allergic reactions. In: Middleton E, Reed CE, Ellis EF, editors. Allergy: principles and practices. Vol. I. St Louis: Mosby, 1994: 224–46

    Google Scholar 

  86. Frew AJ, Kay AB. The relationship between infiltrating CD4+ lymphocytes, activated eosinophils, and the magnitude of the allergen-induced late phase cutaneous reaction in man. J Immunol 1988; 141: 4158–64

    PubMed  CAS  Google Scholar 

  87. Till S, Li B, Durham S, et al. Secretion of the eosinophil-active cytokines interleukin-5, granulocyte/macrophage colony-stimulating factor and interleukin-3 by bronchoalveolar lavage CD4+ and CD8+ T cells lines in atopic asthmatics, and atopic and non-atopic controls. Eur J Immunol 1995; 25: 2727–31

    Article  PubMed  CAS  Google Scholar 

  88. Coyle AJ, Erard F, Bertrand C, et al. Virus-specific CD8+ cells can switch to interleukin 5 production and induce airway eosinophilia. J Exp Med 1995; 181: 1229–33

    Article  PubMed  CAS  Google Scholar 

  89. Akutsu I, Kojima K, Kariyone A, et al. Passive administration of anti-IL-5 antibody into chronically ovalbumin-sensitized guinea pigs induces suppression of eosinophilia and bronchial hyperreactivity. Immunol Lett 1995; 45: 109–16

    Article  PubMed  CAS  Google Scholar 

  90. Kung TT, Stelts DM, Zurcher JA, et al. Involvement of IL-5 in a murine model of allergic pulmonary inflammation: prophylactic and therapeutic effect of an anti-IL-5 antibody. Am J Respir Cell Mol Biol 1995; 13: 360–5

    PubMed  CAS  Google Scholar 

  91. Mauser PJ, Pitman A, Witt A, et al. Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Respir Dis 1993; 148: 1623–7

    Article  PubMed  CAS  Google Scholar 

  92. Mauser PJ, Pitman AM, Fernandez X, et al. Effects of an antibody to IL-5 in a monkey model of asthma. Am J Respir Crit Care Med 1995; 152: 467–72

    PubMed  CAS  Google Scholar 

  93. Foster PS, Hogan SP, Ramsay AJ, et al. Interleukin-5 deficiency abolishes eosinophilia, airway hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 1996; 183: 195–201

    Article  PubMed  CAS  Google Scholar 

  94. Nishinakamura R, Nakayama N, Hirabayashi Y, et al. Mice deficient for the IL-3/GM-CSF/IL-5 βc exhibit lung pathology and impaired immune response, while bIL3 receptor-deficient mice are normal. Immunity 1995; 2: 211–22

    Article  PubMed  CAS  Google Scholar 

  95. Kopf M, Brombacher F, Hodgkin PD, et al. IL-5 deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 1996; 4: 15–24

    Article  PubMed  CAS  Google Scholar 

  96. Yoshida T, Ikuta I, Sugaya H, et al. Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5Ra deficient mice. Immunity 1996; 4: 483–94

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takatsu, K. Interleukin-5. BioDrugs 8, 33–45 (1997). https://doi.org/10.2165/00063030-199708010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199708010-00005

Keywords

Navigation