Overview of the Clinical Pharmacokinetics of Oxcarbazepine

Abstract

Oxcarbazepine (GP 47680, 10, 11-dihydro-10-oxo-5H-dibenz[b, f]azepine-5-carboxamide) is an antiepileptic drug registered worldwide by Novartis under the trade name Trileptal®. Trileptal® is approved as adjunctive therapy or monotherapy for the treatment of partial seizures in adults and in children. In the US, Trileptal® is approved as adjunctive therapy in adults and in children ≥4 years of age and as monotherapy in adults and in children.

Trileptal® is currently marketed as 150, 300 and 600mg film-coated tablets for oral administration. A 60 mg/mL (6%) oral suspension formulation has also been registered worldwide.

Oxcarbazepine and its pharmacologically active metabolite, 10-monohydroxy derivative (MHD; 10, 11-dihydro-10-hydro-carbamazepine; GP 47779) show potent antiepileptic activity in animal models comparable to that of carbamazepine (Tegretol®) and phenytoin. Oxcarbazepine and MHD have been shown to exert antiepileptic activity by blockade of voltage-dependent sodium channels in the brain.

Oxcarbazepine is rapidly reduced by cytosolic enzymes in the liver to MHD, which is responsible for the pharmacological effect of the drug. This step is mediated by cytosolic arylketone reductases. MHD is eliminated by conjugation with glucuronic acid. Minor amounts (4% of the dose) are oxidised to the pharmacologically inactive dihydroxy derivative (DHD). The absorption of oxcarbazepine is complete. In plasma after a single oral administration of oxcarbazepine the mean apparent elimination half-life (t½) of MHD in adults was 8–9h. Food has no effect on the bioavailability of the highest strength of the final market image tablet (600mg). At steady state MHD displays predictable linear pharmacokinetics at doses ranging from 300 to 2400mg. In children with normal renal function, renal clearance of MHD is higher than in adults, with a corresponding reduction in the terminal t1/2 of MHD. Consequently, although no special dose recommendation is needed, an increase in the dose of oxcarbazepine may be necessary to achieve similar plasma levels to those in adults. In patients with moderate to severe renal impairment (creatinine clearance <30 mL/min), the elimination t½ of MHD is prolonged with a corresponding 2-fold increase in area under the concentration-time curve. Therefore, a dose reduction of at least 50% and a prolongation of the titration period is necessary in these patients. Mild-to-moderate hepatic impairment does not affect the pharmacokinetics of MHD. Based on in vitro and in vivo findings and compared with antiepileptic drugs such as carbamazepine, phenytoin and phenobarbital, oxcarbazepine has a low propensity for drug-drug interactions. In vitro, MHD inhibits the cytochrome P450 (CYP) 2C19 (ki [inhibition constant] = 88 μmol/L). At oxcarbazepine doses above 1.2g, a 40% increase in the concentration of phenytoin and a 15% increase in phenobarbital levels were observed. Oxcarbazepine/MHD at high doses may slightly increase phenobarbital and phenytoin plasma concentrations. Therefore, when using high doses of oxcarbazepine an adjustment in the dose of phenytoin may be required. In vitro, MHD is only a weak inducer of uridine diphospate (UDP)-glucuronyltransferase (UDPGT) and therefore is unlikely to have an effect on drugs that are mainly eliminated by conjugation through the UDPGT enzymes (e.g. valproic acid and lamotrigine). Weak interactions between MHD and antiepileptic drugs that are strong inducers of CYP enzymes have been identified. Carbamazepine, phenobarbital and phenytoin have been shown to reduce MHD levels by 30–40% when coadministered with oxcarbazepine, with no decrease in efficacy. Oxcarbazepine decreases the plasma hormone levels (ethinylestradiol and levonorgestrel) of oral contraceptives and may therefore have the potential to cause oral contraception failure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Table II
Table III
Table IV
Table V
Table VI
Table VII
Fig. 6
Table VIII

Notes

  1. 1.

    The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. 1.

    Wellington K, Goa KL. Oxcarbazepine: an update of its efficacy in the management of epilepsy. CNS Drags 2001; 15(2): 137–63

    Article  CAS  Google Scholar 

  2. 2.

    Rabasseda X. Oxcarbazepine: anticonvulsant profile and safety. Drugs Today (Barc) 2001; 37(5): 333–5

    Article  CAS  Google Scholar 

  3. 3.

    Schmidt D, Arroyo S, Baulac M, et al. Recommendations on the clinical use of oxcarbazepine in the treatment of epilepsy: a consensus view. Acta Neurol Scand 2001; 104(3): 167–70

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Glauser TA. Oxcarbazepine in the treatment of epilepsy. Pharmacotherapy 2001; 21(8): 904–19

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Schuetz H, Feldmann KF, Faigle JW, et al. The metabolism of 14C-oxcarbazepine in man. Xenobiotica 1986; 16: 769–78

    Article  CAS  Google Scholar 

  6. 6.

    Flesch G, Czendlik C, Ehrhart F, et al. Pharmacokinetics of the mono-hydroxy derivative of oxcarbazepine and its enantiomers after a single i.v. dose given as racemate compared with a single oral dose of oxcarbazepine [abstract]. Eur J Pharm Sci 1999; 8/2: 89

    Google Scholar 

  7. 7.

    McLean MJ, Schmutz M, Wamil AW, et al. Oxcarbazepine: mechanisms of action. Epilepsia 1994; 35Suppl. 3: S5–9

    PubMed  Article  Google Scholar 

  8. 8.

    Wamil AW, Schmutz M, Portet C, et al. Effects of oxcarbazepine on action potential firing and generalized seizures. Eur J Pharmacol 1994; 271: 301–8

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Schmutz M, Bragger M, Gentsch C, et al. Oxcarbazepine: preclinical anticonvulsant profile and putative mechanisms of action. Epilepsia 1994; 35Suppl. 5: S47–50

    PubMed  Article  Google Scholar 

  10. 10.

    Schmutz M, Ferrat T, Heckendorn R, et al. MHD, the main human metabolite of oxcarbazepine (Trileptal) and both enantiomers have equal anticonvulsant activity [abstract]. Epilepsia 1993; 34Suppl. 2: 122

    Google Scholar 

  11. 11.

    Menge G, Dubois JP. Determination of OXC in human plasma by high-performance liquid chromatography. J Chromatogr 1983; 275: 189–94

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Menge G, Dubois JP, Bauer G. Simultaneous determination of carbamazepine, oxcarbazepine and their main metabolites in plasma by liquid chromatography. J Chromatogr 1987; 414: 477–83

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Rouan MC, Decherf M, LeClanche V, et al. Automated microanalysis of oxcarbazepine and its monohydroxy and transdiol metabolites in plasma by liquid chromatography. J Chromatogr 1994; 358: 167–72

    Google Scholar 

  14. 14.

    Flesch G, Francotte E, Hell F, et al. Determination of the R- (−) and S- (+) enantiomers of the monohydroxylated metabolite of OXC in human plasma by enantioselective high performance liquid chromatography. J Chromatogr 1992; 581: 147–51

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Felsted RL, Bachur NR. Mammalian carbonyl reductases. Drug Metab Rev 1980; 11: 1–60

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Prelog V. Specification of the stereoselectivity of some ox-idoreductases by diamant lattice sections. Pure Appl Chem 1964; 9: 119–30

    Article  CAS  Google Scholar 

  17. 17.

    Patsalos PN, Elyas AA, Zakrzewska JM. Protein binding of oxcarbazepine and its primary metabolite, 10-hydroxy-carbazepine, in patients with trigeminal neuralgia. Eur J Clin Pharmacol 1990; 39: 413–5

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Buelau P, Paar WD, von Unruh GE. Pharmacokinetics of oxcarbazepine and 10-hydroxy-carbazepine in the newborn child of an oxcarbazepine-treated mother. Eur J Clin Pharmacol 1988; 34: 311–3

    Article  CAS  Google Scholar 

  19. 19.

    Pienimäki P, Lampela E, Hakkola J, et al. Pharmacokinetics of oxcarbazepine and carbamazepine in human placenta. Epilepsia 1997; 38(3): 309–16

    PubMed  Article  Google Scholar 

  20. 20.

    Pedersen B. Oxcarbazepine in breast milk [abstract]. 17th Epilepsy International Congress, Jerusalem, Israel. Book of Abstracts; 1987 Sep 6–ll; 91

  21. 21.

    Hooper WD, Dickinson RG, Dunstan PR, et al. Oxcarbazepine: preliminary clinical and pharmacokinetic studies on a new anticonvulsant. Clin Exp Neurol 1987; 24: 105–12

    PubMed  CAS  Google Scholar 

  22. 22.

    Flesch G, Tudor D, Souppart C, et al. Oxcarbazepine final market image tablet formulation bioequivalence study after single administration and at steady state in healthy volunteers. Int J Clin Pharmacol Ther 2002; 40(11): 524–32

    PubMed  CAS  Google Scholar 

  23. 23.

    Bares G, Walker EB, Elger CE, et al. Oxcarbazepine placebocontrolled, dose-ranging trial in refractory partial epilepsy. Epilepsia 2000; 41(12): 1597–607

    Article  Google Scholar 

  24. 24.

    Augusteijn R, Van Parys JAP. Oxcarbazepine: dose-concentration relationship in patients with epilepsy [abstract]. Proceedings Northern European Epilepsy Symposium; 1990 Sep 5–8; Aalborg. Acta Neurol Scand 1990; 82Suppl. 133: 37

    Google Scholar 

  25. 25.

    Flesch G, Tudor D, Denouel J, et al. Comparison of the bioavailability of the oxcarbazepine oral suspension and the final market image after single administration in healthy volunteers. Int J Clin Pharmacol Ther 2003; 41(11): 299–308

    PubMed  CAS  Google Scholar 

  26. 26.

    Van Heiningen PNM, Eve MD, Oosterhuis B, et al. The influence of age on the pharmacokinetics of the antiepileptic agent oxcarbazepine. Clin Pharmacol Ther 1991; 50(4): 410–9

    PubMed  Article  Google Scholar 

  27. 27.

    Rouan MC, Lecaillon JB, Godbillon J, et al. The effect of renal impairment on the pharmacokinetics of oxcarbazepine and its metabolites. Eur J Clin Pharmacol 1994; 47: 161–7

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Calbresi P, De Murtas M, Stefani A, et al. Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system I: modulation of corticostriatal synaptic transmission. Epilepsia 1995; 36(10): 990–6

    Article  Google Scholar 

  29. 29.

    Stefani A, Pisani A, De Murtas M, et al. Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system II: modulation of corticostriatal synaptic transmission. Epilepsia 1995; 36(10): 997–1002

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Tripp SL, Hundal J, Kapeghian JC, et al. Evaluation of oxcarbazepine and itsmono-hydroxy metabolite for potential drug interaction in vitro [abstract]. Epilepsia 1996; 37Suppl. 5: 22

    Google Scholar 

  31. 31.

    Larkin JG, McKee PJ, Forrest G, et al. Lack of enzyme induction with oxcarbazepine (600mg daily) in healthy subjects. Br J Clin Pharmacol 1991; 31: 65–71

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    McKee PJW, Blacklaw J, Forrest G, et al. A double-blind, placebo-controlled interaction study between oxcarbazepine and carbamazepine, sodium valproate and phenytoin patients. Br J Clin Pharmacol 1994; 37: 27–32

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Levy RH, Wurden CJ. Carbamazepine interactions with other drugs. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 543–54

    Google Scholar 

  34. 34.

    Kutt H. Phenytoin: interactions with other drugs: clinical aspects. In Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 315–28

    Google Scholar 

  35. 35.

    Anderson GD, Levy RH. Phenobarbital: chemistry and biotransformation. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 371–7

    Google Scholar 

  36. 36.

    Hargraves JA, Howald WN, Racha JK, et al. Identification of enzymes responsible for the metabolism of phenobarbital [abstract]. Int Soc Stud Xenobiotics Proc 1996; 10: 259

    Google Scholar 

  37. 37.

    Nation RL, Evans AM, Milne RW. Pharmacokinetic drug interactions with phenytoin. Clin Pharmacokinet 1990; 18: 37–60

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Bajpai M, Roskos LK, Shen DD, et al. Roles of cytochrome P4502C9 and cytochrome P4502C19 in the stereoselective metabolism of phenytoin to its major metabolite. Drug Metab Dispos 1996; 24: 1401–3

    PubMed  CAS  Google Scholar 

  39. 39.

    Donahue SR, Flockhart DA, Abernathy DR, et al. Ticlopidine inhibition of phenytoin metabolism mediated by potent inhibition of CYP2C19. Clin Pharmacol Ther 1997; 62(5): 572–7

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Tartara A, Galimberti CA, Manni R, et al. The pharmacokinetics of oxcarbazepine and its active metabolite 10-hydroxy-carbazepine in healthy subjects and in epileptic patients treated with phenobarbitone or valproic acid. Br J Clin Pharmacol 1993; 36(4): 366–8

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Arnoldussen W, Hulsman J, Rentmeester T. Interaction of valproate and clobazam on the metabolism of oxcarbazepine [abstract]. Epilepsia 1993; 34Suppl. 2: 160

    Google Scholar 

  42. 42.

    May TW, Rambeck B, Jürgens U. Influence of oxcarbazepine and methsuximide on lamotrigine concentrations in epileptic patients with or without valproic acid comedications: results of a retrospective study. Ther Drug Monit 1999; 21: 175–81

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Hulsman JARJ, Rentmeester TW, Banfield CR, et al. Effects of felbamate on the pharmacokinetics of the monohydroxy metabolites of oxcarbazepine. Clin Pharmacol Ther 1995; 58: 383–9

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Sallas WM, Milosavljev S, D’Souza J, et al. Pharmacokinetic drug interactions in children taking oxcarbazepine. Clin Pharmacol Ther 2003; 74(2): 138–49

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Keränen T, Jolkkonen J, Klosterskov-Jensen P, et al. Oxcarbazepine does not interact with cimetidine in healthy volunteers. Acta Neurol Scand 1992; 85: 39–42

    Article  Google Scholar 

  46. 46.

    Mogensen PH, Jogensen L, Boas J, et al. Effects of dextropropoxyphene on the steady-state kinetics of oxcarbazepine and its metabolites. Acta Neurol Scand 1992; 85: 14–7

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Jensen PK, Saano V, Haring P, et al. Possible interaction between oxcarbazepine and an oral contraceptive. Epilepsia 1992; 33(6): 1149–52

    Article  CAS  Google Scholar 

  48. 48.

    Fattore C, Cippola G, Gatti G, et al. Induction of ethinylestradiol and levonorgestrel metabolism in healthy women. Epilepsia 1999; 40: 783–7

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Keränen T, Jolkkonen J, Klosterskov-Jensen P, et al. Absence of interaction between oxcarbazepine and erythromycin. Acta Neurol Scand 1992; 86: 120–3

    PubMed  Article  Google Scholar 

  50. 50.

    Zaccara G, Gangemi PF, Bendoni L, et al. Influence of single and repeated doses of oxcarbazepine on the pharmacokinetic profile of felodipine. Ther Drug Monit 1993; 15: 39–42

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Krämer G, Tettenborn B, Flesch G. Oxcarbazepine-verapamil drug interaction in healthy volunteers. Epilepsia 1991; 32Suppl. 1: 70–1

    Google Scholar 

  52. 52.

    Barditch CP, Trapnell CB, Ette E, et al. The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 1999; 65(4): 428–38

    Article  Google Scholar 

  53. 53.

    Wong SL, O’Dea RF, Dube LM, et al. Effects of ABT-761, a novel 5-lipoxygenase inhibitor, on the pharmacokinetics of a single dose of ethinyl estradiol and levonorgestrel in healthy female volunteers. J Clin Pharmacol 1998; 38(7): 642–8

    PubMed  CAS  Google Scholar 

  54. 54.

    Krämer G, Tettenborn B, Klosterkov-Jensen P, et al. Oxcarbazepine does not affect the anticoagulant activity of warfarin. Epilepsia 1992; 3(6): 1145–8

    Article  Google Scholar 

  55. 55.

    Pisani F, Oteri G, Russo M, et al. Double-blind, within-patient study to evaluate the influence of viloxazine on the steady-state plasma levels of oxcarbazepine and its metabolites [abstract]. Epilepsia 1991; 32Suppl. 1: 70

    Google Scholar 

  56. 56.

    Isojärvi JIT, Pakarinen A, Rautio A, et al. Serum sex hormone levels after replacing carbamazepine with oxcarbazepine. Eur J Clin Pharmacol 1995; 47: 461–4

    PubMed  Article  Google Scholar 

  57. 57.

    Volosov A, Xiaodong S, Perucca E, et al. Enantioselective pharmacokinetics of 10-hydroxycarbazepine after oral administration of oxcarbazepine to healthy Chinese subjects. Clin Pharmacol Ther 1999; 66: 547–53

    PubMed  CAS  Google Scholar 

  58. 58.

    May TW, Korn-Merker E, Rambeck B. Clinical pharmacokinetics of oxcarbazepine. Clin Pharmacokinet 2003; 42(12): 1023–42

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study had no funding.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flesch, G. Overview of the Clinical Pharmacokinetics of Oxcarbazepine. Clin. Drug Investig. 24, 185–203 (2004). https://doi.org/10.2165/00044011-200424040-00001

Download citation

Keywords

  • Carbamazepine
  • Lamotrigine
  • Phenobarbital
  • Felodipine
  • Trigeminal Neuralgia