Skip to main content
Log in

Resistance to and Immunomodulation Effects of Cephalosporin Antibiotics

  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Summary

In order to be effective, cephalosporins must penetrate the outer membrane of bacteria to reach the β-lactam target enzymes, avoid hydrolysis by β-lactamases and bind to the bacterial penicillin-binding proteins (PBPs) corresponding to the peptidases responsible for catalysing the cross-linking of peptidoglycan. Resistance to cephalosporins can arise if the targets are modified, or if they are protected by other cell products (β-lactamases) or structures (permeability barriers). Target modification can involve either reduced affinity of an existing PBP or the acquisition of supplementary β-lactam-resistant PBPs. β-Lactamases are produced universally by bacteria and may be chromosomally or plasmid-mediated. Although generally species specific, chromosomal enzymes from Gram-negative bacteria can be divided into 4 main categories: chromosomal cephalosporinases (not inhibited by clavulanic acid), cefuroximases, broad spectrum β-lactamases, and β-lactamases of anaerobic species. Plasmid-mediated enzymes include 3 categories: penicillinases from Staphylococcus aureus, broad spectrum β-lactamases (e.g. TEM-1, -2; SHV-1) and extended broad spectrum β-lactamases (TEM-3, -5; SHV-2 to SHV-5). The degree of β-lactamase-mediated resistance is related to the amount of enzyme produced, the location of the enzyme and the kinetics of the enzyme’s activity. β-Lactamases of Gram-positive organisms are usually extracellular, while those of Gram-negative bacteria are retained within the cell periplasm. While synthesis of β-lactamases by streptococci is of little or no clinical importance, these enzymes play a major role in the resistance of staphylococci. The outer membrane of Gram-negative organisms constitutes a substantial permeability barrier retarding the entry of β-lactams into the cell. Nevertheless, specialised outer membrane proteins called ‘porins’ create pores in this membrane, enabling the diffusion of small aqueous solutes, such as cephalosporins. Shielding by permeability barriers is minimal in Gram-positive bacteria, as the PBPs of such organisms are located on the outer aspect of the cytoplasmic membrane.

The ever-increasing problem of bacterial resistance to antibiotics combined with the increased number of immunocompromised patients explains the upsurge of interest in the interplay between host defences and antibacterial agents. A number of difficulties and controversies are associated with the analysis of immunomodulation by antimicrobial agents. Many of these problems are a consequence of using in vitro data, which do not accurately reflect the dynamic interactions occurring in vivo. Extrapolation of data derived from experimental animal models of infection to human therapy should also be viewed with much caution. The possible occurrence of neutropenia in patients administered some β-lactam antibiotics appears to be related either to an immune-mediated process involving peripheral leucocytes or to a direct toxic effect of the drug on bonemarrow precursors. Several studies have now investigated the oxidant scavenging properties of cephalosporins. Interestingly, inhibition of neutrophil myeloperoxidase activity has been observed with cefdinir, in contrast to the significant enhancement of this activity observed with cefaclor.

Subinhibitory concentrations of some antibacterial agents can influence bacterial morphology and physiology. While few β-lactams directly interfere with the phagocyte oxidative burst, indirect enhancement by β-lactam-modified bacteria may account for the inflammatory response that may be observed during therapy with these agents. Potentiation of the oxidative burst may also be accompanied by increased bacterial susceptibility to phagocytic killing and is referred to as postantibiotic leucocyte enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spratt BG. Penicillin-binding proteins and the future of β-lactam antibiotics. J Gen Microbiol 1983; 129: 1247

    PubMed  CAS  Google Scholar 

  2. Tipper DJ. Mode of action of β-lactam antibiotics. Pharmacol Ther 1985; 27: 1

    Article  PubMed  CAS  Google Scholar 

  3. Malouin F, Bryan LE. Modification of penicillin-binding proteins as mechanisms of β-lactam resistance. Antimicrob Agents Chemother 1986; 30: 1–5

    Article  PubMed  CAS  Google Scholar 

  4. Ubukata K, Yamashita N, Konno M. Occurrence of a β-lactaminducible penicillin-binding protein in methicillin-resistant staphylococci. Antimicrob Agents Chemother 1985; 27: 851

    Article  PubMed  CAS  Google Scholar 

  5. Dougherty TJ, Koller AE, Tomasz A. Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 1980; 18: 730

    Article  PubMed  CAS  Google Scholar 

  6. Dougherty TJ, Koller AE, Tomasz A. Competition of β-lactam antibiotics for the penicillin-binding proteins of Neisseria gonorrhoeae. Antimicrob Agents Chemother 1981; 20: 109

    Article  PubMed  CAS  Google Scholar 

  7. Matsuhashi M, Takagaki Y, Maruyama IN, Tamaki S, Nishimura Y, et al. Mutants of Escherichia coli lacking highly penicillin sensitive D-alanine carboxypeptidase activity. Proceedings of the Natl Acad Sci (USA) 1977; 74: 2976

    Article  CAS  Google Scholar 

  8. Matsuhashi M, Nakagawa J, Tomioka S, et al. Mechanism of peptidoglycan synthesis by penicillin binding proteins in bacteria and effects of antibiotics. In Mitsuhashi (Ed.) Drug resistance in bacteria- genetics, biochemistry and molecular biology, p. 297, Jpn Sci Soc Press, Tokyo, 1982

    Google Scholar 

  9. Tamura T, Imae Y, Strominger JL. Purification to homogeneity and properties of two D-alanine carboxypeptidases I from Escherichia coli. J Biol Chem 1976; 251: 414

    PubMed  CAS  Google Scholar 

  10. Mirelman D. Assembly of wall peptidoglycan polymers. In Salton and Shockman (Eds) β-Lactam antibiotics, mode of action, new developments and future prospects, p. 67, Acad Press, New York, 1981

    Google Scholar 

  11. Parr TR, Bryan LE. Mechanism of resistance of an ampicillinresistant β-lactamase-negative clinical isolate of Haemophilus influenzae Type b to β-lactam antibiotics. Antimicrob Agents Chemother 1984; 25: 747

    Article  PubMed  CAS  Google Scholar 

  12. Serfass DA, Mendelman OM, Chaffin DO, Needham CA. Ampicillin resistance and penicillin-binding proteins of Haemophilus influenzae. J Gen Microbiol 1986; 132: 2855

    PubMed  CAS  Google Scholar 

  13. Handwerger S, Tomasz A. Alterations in the penicillin-binding proteins of clinical and laboratory isolates of Streptococcus pneumoniae with low levels of penicillin resistance. J Infect Dis 1986; 153: 83

    Article  PubMed  CAS  Google Scholar 

  14. Kitano K, Williamson R, Tomasz A. Murine hydrolase defect in beta-lactam-tolerant mutants of Escherichia coli. FEMS Microbiol Letters 1980; 7: 133

    Article  CAS  Google Scholar 

  15. Sabath LD, Wheeler N, Laverdier M, et al. A new type of penicillin resistance of Staphylococcus aureus. Lancet 1977; 1: 443

    Article  PubMed  CAS  Google Scholar 

  16. Tomasz A, Albino A, Zanati E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nat 1970; 227: 138

    Article  CAS  Google Scholar 

  17. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature 1940; 146: 839

    Article  Google Scholar 

  18. Richmond MH, Sykes RB. The β-lactamases of Gram-negative bacteria and their possible physiological role. Ad Microb Physiol 1973; 9: 31–88

    Article  CAS  Google Scholar 

  19. Bush K. Characterization of β-lactamases. Antimicrob Agents Chemother 1989; 33: 259–63

    Article  PubMed  CAS  Google Scholar 

  20. Bush K. Classification of β-lactamases: groups 1, 2a, 2b and 2′ Antimicrob Agents and Chemother 1989; 33: 264–70

    Article  CAS  Google Scholar 

  21. Bush K. Classification of β-lactamases: groups 2c, 2d, 2e, 3 and 4. Antimicrob Agents Chemother 1989; 33: 271–76

    Article  PubMed  CAS  Google Scholar 

  22. Quinn JP. Mechanisms of resistance to β-lactam antibiotics. Hosp Formul 1989; 24: 204–15

    CAS  Google Scholar 

  23. Hamilton-Miller JMT, Ramsay J. Synergism between β-lactam antibiotics: a test of theoretical predictions made with Staphylococcus aureus. J Med Microbiol 1973; 6: 377

    Article  PubMed  CAS  Google Scholar 

  24. Zimmermann W. Penetration through the Gram-negative cell wall: a co-determinant of the efficacy of β-lactam antibiotics. Int J Clinic Pharmacol Biopharm 1979; 17

  25. Bauernfeind A. Classification of β-lactamases. Rev Infect Dis 8 1986; (Suppl. 5): 5470–81

    Google Scholar 

  26. Sanders CC. Inducible β-lactamases and non-hydrolytic resistance mechanisms. J Antimicrob Chemother 1984; 13: 1

    Article  PubMed  CAS  Google Scholar 

  27. Medeiros AA. β-Lactamases. Br Med Bull 1984; 40: 18

    PubMed  CAS  Google Scholar 

  28. Sykes RB, Matthew M. The β-lactamases of Gram-negative bacteria and their role in resistance to β-lactam antibiotics. J Antimicrob Chemother 1976; 2: 115

    Article  PubMed  CAS  Google Scholar 

  29. Cullmann W. The threat of resistance to the new oral cephalosporins. Workshop at the 5th ECCMID, Oslo, 1991. Chemother 38 1992; (Suppl. 2): 10–17

    Article  CAS  Google Scholar 

  30. García-Rodríguez JA, Sánchez JEG, Bellido JLM, et al. Current status of bacterial resistance to third-generation cephalosporins. Diagn Microbiol and Infect Dis 1992; 15: 67–72

    Article  Google Scholar 

  31. Wise R, Andrews JM, Hancox J. SQ 26776, a novel β-lactam: an in vitro comparison with other antimicrobial drugs. J Antimicrob Chemother 1981; 8(Suppl. E): 39

    PubMed  CAS  Google Scholar 

  32. Payne DJ, Amyes SGB. Transferable resistance to extendedspectrum β-lactarns: a major threat or a minor inconvenience? J Antimicrob Chemother 1991; 27: 255–61

    Article  PubMed  CAS  Google Scholar 

  33. Williams RJ, Livermore DM, Lindridge MA, et al. Mechanisms of resistance to beta-lactam antibiotics in British isolates of Pseudomonas aeruginosa. J Med Microbiol 1984; 17: 283

    Article  PubMed  CAS  Google Scholar 

  34. Sougakoff W, Goussard S, Gerbaud G, et al. Plasmid-mediated resistance to third-generation cephalosporins caused by point mutations in TEM-type penicillinase genes. Rev Infect Dis 1988; 10: 879–84

    Article  PubMed  CAS  Google Scholar 

  35. Dyke KGH. β-Lactamases of Staphylococcus aureus. In: Hamilton-Miller and Smith, editors. Beta-lactamases, London: Academic Press, 1979: 291

    Google Scholar 

  36. Sabath LD, Garner C, Wilcox C, et al. Effect of inoculum and β-lactamase on the antistaphylococcal activity of thirteen penicillins and cephalosporins. Antimicrob Agents Chemother 1975; 8: 344

    Article  PubMed  CAS  Google Scholar 

  37. Cole M. ‘β-Lactams’ as β-lactamase inhibitors. Philos Trans R Soc Lond 1980; 289B: 207

    Article  Google Scholar 

  38. Livermore DM, Yang YJ. β-Lactamase lability and inducer power of newer β-lactams in relation to their activity against β-lactamase inducibility mutants of Pseudomonas aeruginosa. J Infect Dis 1987; 155: 775

    Article  PubMed  CAS  Google Scholar 

  39. Bryan LE. Antimicrobial drug resistance. Acad Press, Orlando, 1984

    Google Scholar 

  40. Nikaido H. Non-specific transport through the outer membrane. In Inouye, editor. Bacterial outer membranes: biogenesis and function. New York: John Wiley & Sons, 1979: 361

    Google Scholar 

  41. Richmond MH, Clark DC, Wotton S. Indirect method for assessing the penetration of β-lactamase non-susceptible penicillins and cephalosporins in Escherichia coli strains. Antimicrob Agents Chemother 1976; 10: 215

    Article  PubMed  CAS  Google Scholar 

  42. Coulton JW, Mason P, Dorrance D. The permeability barrier of Haemophilus influenzae type b against β-lactam antibiotics. J Antimicrob Chemother 1983; 12: 435

    Article  PubMed  CAS  Google Scholar 

  43. Woodruff WA, Parr Jr TR, Hancock REW, et al. Expression in Escherichia coli and function of Pseudomonas aeruginosa outer membrane porin protein F. J Bacteriol 1986; 167: 473–79

    PubMed  CAS  Google Scholar 

  44. Labro MT, Babin-Chevaye C, Hakim J. Effects of cefotaxime and cefodizime on human granulocyte functions in vitro. J Antimicrob Chemother 1986; 18: 233–37

    Article  PubMed  CAS  Google Scholar 

  45. Nielsen H. Antibiotics and human monocyte function II. Phagocytosis and oxidative metabolism. Acta Pathol Microbiol Immunol Scand 1989; 97: 447–51

    CAS  Google Scholar 

  46. Briheim G, Dahlgren C. Influence of antibiotics on formylmethionyl-leucyl-phenylalanine-induced leukocyte chemiluminescence. Antimicrob Agents and Chemother 1987; 31: 763–67

    Article  CAS  Google Scholar 

  47. Labro MT, El Benna J. Effects of monodesethyl amodiaquine on human polymorphonuclear neutrophil function in vitro. J Antimicrob Agents Chemother 1991; 35: 824–30

    Article  CAS  Google Scholar 

  48. Dammaco F, Halbert F, Carandente F. Antimicrobial agents as biological response modifiers (BRM) and chrono-immunomodulation: an emerging relationship. Chronobiol 1988; 15: 25–39

    Google Scholar 

  49. Ritts RE. Antibiotics as biological response modifiers. J Antimicrob Chemother 1990; 26(Suppl. C): 31–6

    PubMed  CAS  Google Scholar 

  50. Labro MT. Immunomodulation by antibacterial agents. Is it clinically relevant? Drugs 1993; 45: 319–28

    Article  PubMed  CAS  Google Scholar 

  51. Neftel KA, Hauser SP, Müller MR. Inhibition of granulopoiesis in vivo and in vitro by β-lactam antibiotics. J Infect Dis 1985; 152: 90–8

    Article  PubMed  CAS  Google Scholar 

  52. Murphy MF, Metcalfe P, Grint PCA, et al. Cephalosporin-in-duced immune neutropenia. Br J Haematol 1985; 59: 9–14

    Article  PubMed  CAS  Google Scholar 

  53. Neftel KA, Hübscher U. Effects of β-lactam antibiotics on proliferating eucaryotic cells. Antimicrob Agents Chemother 1987; 31: 1657–61

    Article  PubMed  CAS  Google Scholar 

  54. Maruyama T, Kobayashi F, Uchida K, et al. Effect of antibiotics on colony formation from mouse granulocyte-macrophage progenitors (CFU-GM), megakaryocyte progenitors (CFUM) and erythrocyte progenitors (CFU-E, BFU-E) in vitro. Pharmacol Toxicol 1989; 64: 391–396

    Article  PubMed  CAS  Google Scholar 

  55. Rey D, Martin T, Albert A, et al. Cerftriaxone-induced granulopenia related to a peculiar mechanism of granulopoiesis inhibition. Am J Med 1989; 87: 591–92

    Article  PubMed  CAS  Google Scholar 

  56. Labro MT, Amit N, Babin-Chevaye C, et al. Cefodizime (HR 221) potentiation of human neutrophil oxygen-independent bactericidal activity. J Antimicrob Chemother 1987; 19: 331–41

    Article  PubMed  CAS  Google Scholar 

  57. Rodriguez AB, Hernanz A, de la Fuente M. Effect of three β-lactam antibiotics on ascorbate content, phagocytic activity and Superoxide anion production in human neutrophils. Cell Physiol Biochem 1991; 1: 170–76

    Article  CAS  Google Scholar 

  58. Labro MT. Cefodizime as a biological response modifier: a review of its in-vivo, ex-vivo and in-vitro immunomodulatory properties. J Antimicrob Chemother 1990; 26(Suppl. C): 37–47

    PubMed  CAS  Google Scholar 

  59. Ottonello L, Dallegri F, Dapino P, et al. Cytoprotection against neutrophil-delivered oxidant attack by antibiotics. Biochem Pharmacol 1991; 42: 2317–21

    Article  PubMed  CAS  Google Scholar 

  60. Labro MT, El Benna J, Jemni A. C1-983 (cefdinir) has different effects on polymorphonuclear neutrophil oxidative burst triggered by soluble and particulate stimuli. 92nd General ASM Meeting, Abstract no. D 10, p. 97, New Orleans, 1992

  61. Labro MT, El Benna J, Charlier N, et al. Cefdinir (CI-983), a new oral amino-2-thiazolyl cephalosporin, inhibits human neutrophil myeloperoxidase in the extracellular medium but not the phagolysosome. J Immunol 1994; 152: 2447–55

    PubMed  CAS  Google Scholar 

  62. Labro MT, Abdelghaffar H, Cooper R, et al. Structure-activity realtionships of new carbacephems with antioxidant properties [abstract no. 925]. Abstracts of the 33rd ICAAC, New Orleans 1993; 288

  63. Grant M, Raeburn JA, Sutherland R, et al. Effect of two antibiotics on human granulocyte activities. J Antimicrob Chemother 1983; 11: 543–54

    Article  PubMed  CAS  Google Scholar 

  64. Van Rensburg CEJ, Anderson R, Eftychis HA, Jooné GH. Effects of cefotaxime on neutrophil and lymphocyte functions. S Afr Med J 1983; 64: 346–48

    PubMed  Google Scholar 

  65. Hand WL, King-Thompson N, Holman JW. Entry of roxithromycin (RV963), imipenem, cefotaxime, trimethoprim and metronidazole into human polymorphonuclear leucocytes. Antimicrob Agents Chemother 1987; 31: 1553–57

    Article  PubMed  CAS  Google Scholar 

  66. Cuffini AM, Tullio V, Allocco A, et al. Carine NA. The entry of imipenem into human macrophages and its immunomodulating activity. J Antimicrob Chemother 1993; 32: 695–703

    Article  PubMed  CAS  Google Scholar 

  67. Chang HR, Vladoianu IR, Pechere C. Effects of ampicillin, ceftriaxone, chloramphenicol, pefloxacin and trimethoprim-sulphamethoxazole on Salmonella typhi within human monocyte-derived macrophages. J Antimicrob Chemother 1990; 26: 689–94

    Article  PubMed  CAS  Google Scholar 

  68. Van den Broek PJ. Activity of antibiotics against microorganisms ingested by mononuclear phagocytes. European J Clinic Microbiol Infect Dis 1991; 10: 114–18

    Article  Google Scholar 

  69. Van den Broek PJ, Buys LFM, Aleman BMP. The antibacterial activity of benzylpenicillin against Staphylococcus aureus ingested by granulocytes. J Antimicrob Chemother 1990; 25: 931–40

    Article  PubMed  Google Scholar 

  70. Gemmell CG. Antibiotics and neutrophil function — potential immunomodulating activities. J Antimicrob Chemother 31 1993; (Suppl. B): 23–33

    PubMed  CAS  Google Scholar 

  71. Kawana M, Kawana C, Giebink GS. Penicillin treatment accelerates middle ear inflammation in experimental pneumococcal otitis media. Infect Immun 1992 60: 1908–12

    PubMed  CAS  Google Scholar 

  72. Lorian V. Low concentrations of antibiotics. J Antimicrob Chemother 1985; 15(Suppl. A): 15–26

    PubMed  CAS  Google Scholar 

  73. McDonald PJ, Wetherall BL, Pruul H. Postantibiotic leukocyte enhancement: increased susceptibility of bacteria pretreated with antibiotics to activity of leukocytes. Rev Infect Dis 1981; 3: 38–44

    Article  PubMed  CAS  Google Scholar 

  74. Pruul H, McDonald PJ. Cefdinir-induced modification of the susceptibility of bacteria to the antibacterial activity of human serum and polymorphonuclear neutrophils. Eur J Clin Microbiol Infect Dis 1993; 12: 170–76

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labro, M.T. Resistance to and Immunomodulation Effects of Cephalosporin Antibiotics. Clin. Drug Invest. 9 (Suppl 3), 31–44 (1995). https://doi.org/10.2165/00044011-199500093-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00044011-199500093-00006

Keywords

Navigation