Skip to main content
Log in

Dual Peroxisome Proliferator-Activated Receptor-α/γ Agonists

In the Treatment of Type 2 Diabetes Mellitus and the Metabolic Syndrome

  • Leading Article
  • Published:
Treatments in Endocrinology

Abstract

The metabolic syndrome consists of a combination of cardiovascular risk factors that include hyperglycemia with or without type 2 diabetes mellitus, visceral obesity, elevated blood pressure, and atherogenic dyslipidemia. These interrelated disorders and their associated lipotoxicity, oxidative stress, and inflammatory state predispose to a constellation of cardiovascular conditions leading to high risk of heart attack, stroke, renal failure, blindness, and lower extremity amputation. Visceral obesity, a prime risk factor for type 2 diabetes and a major component of the metabolic syndrome, potentiates atherogenesis, atherosclerosis, organ lipotoxicity, and oxidative tissue damage.

Peroxisome proliferator-activated receptors (PPARs) are relatively recently discovered nuclear transcription factors that are modulated by dietary fatty acids, including the essential polyunsaturated fatty acids, arachidonic acid and its metabolites, and are essential to the control of energy metabolism. Of the three PPAR isoforms (α, γ, and δ), synthetic pharmaceutical ligands that activate PPARα (the antidyslipidemic fibric acid derivatives [‘fibrates’]) and PPARγ (the antidiabetic thiazolidinediones) have been studied extensively. Recently developed dual PPARα/γ agonists may combine the therapeutic effects of these drugs, creating the expectation of greater efficacy, and perhaps other advantages in the treatment of type 2 diabetes and the metabolic syndrome. However, thiazolidinediones are hampered by adverse effects related to increased weight gain and fluid overload. It remains to be seen whether the dual PPARα/γ agonists currently under development have similar limitations. Nevertheless, existing clinical data imply that the combined effects of thiazolidinediones and fibrates are likely to be emulated by dual PPARα/γ agonists, providing superior efficacy to these classes for the treatment of type 2 diabetes, the metabolic syndrome, and their cardiovascular and other end-organ complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Table III

Similar content being viewed by others

References

  1. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782–7

    PubMed  CAS  Google Scholar 

  2. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365: 1415–28

    PubMed  CAS  Google Scholar 

  3. Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 1997; 14Suppl. 5: S1–85

    PubMed  Google Scholar 

  4. Haffner SM, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with or without prior myocardial infarction. N Engl J Med 1998; 339: 229–34

    PubMed  CAS  Google Scholar 

  5. Grundy SM, Brewer JR HB, Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004; 109: 433–8

    PubMed  Google Scholar 

  6. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 2005; 28: 1769–78

    PubMed  Google Scholar 

  7. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am 2004; 33: 351–75

    PubMed  Google Scholar 

  8. Park YW, Zhu S, Palaniappan L, et al. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch Intern Med 2003; 163: 427–36

    PubMed  Google Scholar 

  9. Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 2003; 14: 398–403

    PubMed  CAS  Google Scholar 

  10. Kahn R, Buse J, Ferrannini E, et al. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care 2005; 28: 2289–304

    PubMed  Google Scholar 

  11. Kliewer SA, Umesono K, Noonan DJ, et al. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 1992; 358: 771–4

    PubMed  CAS  Google Scholar 

  12. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 83: 841–50

    PubMed  CAS  Google Scholar 

  13. Schoonjans K, Martin G, Staels B, et al. Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 1997; 8: 159–66

    PubMed  CAS  Google Scholar 

  14. Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995; 270: 12953–6

    PubMed  CAS  Google Scholar 

  15. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000; 405: 421–4

    PubMed  CAS  Google Scholar 

  16. Willson TM, Brown PJ, Sternbach DD, et al. The PPARs: from orphan receptor to drug discovery. J Med Chem 2000; 43: 527–50

    PubMed  CAS  Google Scholar 

  17. Miller AR, Etgen GJ. Novel peroxisome proliferator-activated receptor ligands for type 2 diabetes and the metabolic syndrome. Expert Opin Investig Drugs 2003; 12: 1489–500

    PubMed  CAS  Google Scholar 

  18. Henke BR. Peroxisome proliferator-activated receptor alpha/gamma dual agonists for the treatment of type 2 diabetes. J Med Chem 2004 Aug 12; 47(17): 4118–27

    PubMed  CAS  Google Scholar 

  19. Staels B, Fruchart JC. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 2005; 54: 2460–70

    PubMed  CAS  Google Scholar 

  20. Shulman AI, Mangelsdorf DJ. Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 2005; 353: 604–15

    PubMed  CAS  Google Scholar 

  21. Berger JP, Akiyama TE, Meinke PT. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 2005; 26: 244–51

    PubMed  CAS  Google Scholar 

  22. Kliewer SA, Xu HE, Lambert MH, et al. Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 2001; 56: 239–63

    PubMed  CAS  Google Scholar 

  23. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002; 288: 2709–16

    PubMed  Google Scholar 

  24. O’Brien PE, Dixon JB. The extent of the problem of obesity. Am J Surg 2002; 184: 4S–8S

    PubMed  Google Scholar 

  25. Unger RH. Lipotoxic diseases. Annu Rev Med 2002; 53: 319–36

    PubMed  CAS  Google Scholar 

  26. Laaksonen DE, Lakka HM, Niskanen LK, et al. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol 2002; 156: 1070–7

    PubMed  Google Scholar 

  27. NCEP/ATP III. Executive summary of the third report of the national cholesterol education program expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–97

    Google Scholar 

  28. World Health Organization. Report of a WHO consultation. In: Alwan A, King H, editors. Definition, diagnosis and classification of diabetes mellitus and its complications: part 1. Diagnosis and classification of diabetes mellitus. Geneva: World Health Organization, Department of Noncommunicable Disease Surveillance, 1999: 1–59

    Google Scholar 

  29. Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 2005; 56: 45–62

    PubMed  CAS  Google Scholar 

  30. International Diabetes Federation. International Diabetes Federation worldwide definition of the metabolic syndrome [online]. Available from URL: http://www.idf.org/webdata/docs/IDF_Metasyndrome_definition.pdf [Accessed 2005 Nov 20]

  31. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91

    PubMed  CAS  Google Scholar 

  32. Kern PA, Saghizadeh M, Ong JM, et al. The expression of tumor necrosis factor in human adipose tissue: regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995; 95: 2111–9

    PubMed  CAS  Google Scholar 

  33. Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Ann N Y Acad Sci 1999; 892: 146–54

    PubMed  CAS  Google Scholar 

  34. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adiposespecific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–9

    PubMed  CAS  Google Scholar 

  35. Kumada M, Kihara S, Sumitsuji S, et al. Osaka CAD Study Group: coronary artery disease: association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 2003; 23: 85–9

    PubMed  CAS  Google Scholar 

  36. Funahashi T, Nakamura T, Shimomura I, et al. Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. Intern Med 1999; 38: 202–6

    PubMed  CAS  Google Scholar 

  37. Adamczak M, Wiecek A, Funahashi T, et al. Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens 2003; 16: 72–5

    PubMed  CAS  Google Scholar 

  38. Yamamoto Y, Hirose H, Saito I, et al. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population. Clin Sci (Lond) 2002; 103: 137–42

    CAS  Google Scholar 

  39. Kazumi T, Kawaguchi A, Sakai K, et al. Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care 2002; 25: 971–6

    PubMed  Google Scholar 

  40. Pershadsingh HA. Treating the metabolic syndrome using angiotensin receptor antagonists that selectively modulate peroxisome proliferator-activated receptor-gamma. Int J Biochem Cell Biol. Epub 2005 Sep 9

  41. Staels B. PPARγ and atherosclerosis. Curr Med Res Opin 2005; 21Suppl. 1: S13–20

    PubMed  CAS  Google Scholar 

  42. Israelian-Konaraki Z, Reaven PD. Peroxisome proliferator-activated receptor-alpha and atherosclerosis: from basic mechanisms to clinical implications. Cardiology 2005; 103: 1–9

    PubMed  Google Scholar 

  43. Kliewer SA, Sundseth SS, Jones SA, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 1997; 94: 4318–23

    PubMed  CAS  Google Scholar 

  44. Xu HE, Lambert MH, Montana VG, et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 1999; 3: 397–403

    PubMed  CAS  Google Scholar 

  45. Delerive P, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 2001; 169: 453–9

    PubMed  CAS  Google Scholar 

  46. Marx N, Duez H, Fruchart JC, et al. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res 2004; 94: 1168–78

    PubMed  CAS  Google Scholar 

  47. Peters JM, Hennuyer N, Staels B, et al. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. J Biol Chem 1997; 272: 27307–12

    PubMed  CAS  Google Scholar 

  48. Hunninghake DB, Peters JR. Effect of fibric acid derivatives on blood lipid and lipoprotein levels. Am J Med 1987; 83: 44–9

    PubMed  CAS  Google Scholar 

  49. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–93

    PubMed  CAS  Google Scholar 

  50. Hertz R, Bishara-Shieban J, Bar-Tana J. Mode of action of peroxisome proliferators as hypolipidemic drugs: suppression of apolipoprotein C-III. J Biol Chem 1995; 270: 13470–5

    PubMed  CAS  Google Scholar 

  51. Ziouzenkova O, Perrey S, Asatryan L, et al. Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc Natl Acad Sci U S A 2003; 100: 2730–5

    PubMed  CAS  Google Scholar 

  52. Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 2003; 144: 2201–7

    PubMed  CAS  Google Scholar 

  53. Gotto Jr AM. Risk factor modification: rationale for management of dyslipidemia. Am J Med 1998; 104: 6S–8S

    PubMed  Google Scholar 

  54. Gotto Jr AM, Grundy SM. Lowering LDL cholesterol: questions from recent meta-analyses and subset analyses of clinical trial data issues from the Interdisciplinary Council on Reducing the Risk for Coronary Heart Disease, ninth council meeting. Circulation 1999; 99: E1–7

    PubMed  Google Scholar 

  55. Watts GF, Dimmitt SB. Fibrates, dyslipoproteinaemia and cardiovascular disease. Curr Opin Lipidol 1999; 10: 561–74

    PubMed  CAS  Google Scholar 

  56. Despres JP, Lemieux I, Robins SJ. Role of fibric acid derivatives in the management of risk factors for coronary heart disease. Drugs 2004; 64: 2177–98

    PubMed  CAS  Google Scholar 

  57. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol: Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341: 410–8

    PubMed  CAS  Google Scholar 

  58. Diabetes Atherosclerosis Intervention Study. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: DAIS a randomised study. Lancet 2001; 357: 905–10

    Google Scholar 

  59. BIP Study Group. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation 2000; 102: 21–7

    Google Scholar 

  60. Tenenbaum A, Motro M, Fisman EZ, et al. Bezafibrate for the secondary prevention of myocardial infarction in patients with metabolic syndrome. Arch Intern Med 2005; 165: 1154–60

    PubMed  CAS  Google Scholar 

  61. Tenenbaum A, Motro M, Fisman EZ, et al. Effect of bezafibrate on incidence of type 2 diabetes mellitus in obese patients. Eur Heart J. Epub 2005 May 4

  62. Xue JC, Schwarz EJ, Chawla A, et al. Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARgamma. Mol Cell Biol 1996; 16: 1567–75

    PubMed  CAS  Google Scholar 

  63. Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997; 272: 18779–89

    PubMed  CAS  Google Scholar 

  64. Elbrecht A, Chen Y, Cullinan CA, et al. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Commun 1996; 224: 431–7

    PubMed  CAS  Google Scholar 

  65. Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99: 2416–22

    PubMed  CAS  Google Scholar 

  66. Pershadsingh HA. Pharmacological peroxisome proliferator-activated receptor gamma ligands: emerging clinical indications beyond diabetes. Expert Opin Investig Drugs 1999; 8: 1859–72

    PubMed  CAS  Google Scholar 

  67. Hevener AL, He W, Barak Y, et al. Muscle-specific Pparg deletion causes insulin resistance. Nat Med 2003; 9: 1491–7

    PubMed  CAS  Google Scholar 

  68. Morikang E, Benson SC, Kurtz TW, et al. Effects of thiazolidinediones on growth and differentiation of human aorta and coronary myocytes. Am J Hypertens 1997; 10: 440–6

    PubMed  CAS  Google Scholar 

  69. Roberts AW, Thomas A, Rees A, et al. Peroxisome proliferator-activated receptor-gamma agonists in atherosclerosis: current evidence and future directions. Curr Opin Lipidol 2003; 14: 567–73

    PubMed  CAS  Google Scholar 

  70. Pershadsingh HA. Peroxisome proliferator-activated receptor-gamma: therapeutic target for diseases beyond diabetes: quo vadis? Expert Opin Investig Drugs 2004; 13: 215–28

    PubMed  CAS  Google Scholar 

  71. Way JM, Harrington WW, Brown KK, et al. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 2001; 142: 1269–77

    PubMed  CAS  Google Scholar 

  72. Young PW, Cawthorne MA, Coyle PJ, et al. Repeat treatment of obese mice with BRL 49653, a new potent insulin sensitizer, enhances insulin action in white adipocytes: association with increased insulin binding and cell-surface GLUT4 as measured by photoaffinity labeling. Diabetes 1995; 44: 1087–92

    PubMed  CAS  Google Scholar 

  73. Aitman TJ, Glazier AM, Wallace CA, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999 Jan; 21(1): 76–83

    PubMed  CAS  Google Scholar 

  74. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79: 1147–56

    PubMed  CAS  Google Scholar 

  75. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARalpha and PPAR-gamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15: 5336–48

    PubMed  CAS  Google Scholar 

  76. Martin G, Schoonjans K, Lefebvre AM, et al. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 1997; 272: 28210–7

    PubMed  CAS  Google Scholar 

  77. Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care 2002; 25: 376–80

    PubMed  CAS  Google Scholar 

  78. Miyazaki Y, Mahankali A, Wajcberg E, et al. Effect of pioglitazone on circulating adipocytokine levels and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2004; 89: 4312–9

    PubMed  CAS  Google Scholar 

  79. Kadowaki T, Hara K, Yamauchi T, et al. Molecular mechanism of insulin resistance and obesity. Exp Biol Med (Maywood) 2003; 228: 1111–7

    CAS  Google Scholar 

  80. Goldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005; 28: 1547–54

    PubMed  CAS  Google Scholar 

  81. Delea TE, Edelsberg JS, Hagiwara M, et al. Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: a retrospective cohort study. Diabetes Care 2003; 26: 2983–9

    PubMed  CAS  Google Scholar 

  82. Scheen AJ. Combined thiazolidinedione-insulin therapy: should we be concerned about safety? Drug Saf 2004; 27: 841–56

    PubMed  CAS  Google Scholar 

  83. Mudaliar S, Chang AR, Henry RR. Thiazolidinediones, peripheral edema, and type 2 diabetes: incidence, pathophysiology, and clinical implications. Endocr Pract 2003; 9: 406–16

    PubMed  Google Scholar 

  84. Shearer BG, Hoekstra WJ. Recent advances in peroxisome proliferator-activated receptor science. Curr Med Chem 2003; 10: 267–80

    PubMed  CAS  Google Scholar 

  85. Skrumsager BK, Nielsen KK, Muller M, et al. Ragaglitazar: the pharmacokinetics, pharmacodynamics, and tolerability of a novel dual PPAR alpha and gamma agonist in healthy subjects and patients with type 2 diabetes. J Clin Pharmacol 2003; 43: 1244–56

    PubMed  CAS  Google Scholar 

  86. Zhang H, Zhang A, Kohan DE, et al. Collecting duct-specific deletion of peroxisome proliferator-activated receptor gamma blocks thiazolidinedione-induced fluid retention. Proc Natl Acad Sci U S A 2005; 102: 9406–11

    PubMed  CAS  Google Scholar 

  87. Guan Y, Hao C, Cha DR, et al. Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat Med 2005; 11: 861–6

    PubMed  CAS  Google Scholar 

  88. Chaput E, Saladin R, Silvestre M, et al. Fenofibrate and rosiglitazone lower serum triglycerides with opposing effects on body weight. Biochem Biophys Res Commun 2000; 271: 445–50

    PubMed  CAS  Google Scholar 

  89. Guerre-Millo M, Gervois P, Raspe E, et al. Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem 2000; 275: 16638–42

    PubMed  CAS  Google Scholar 

  90. Jeong S, Kim M, Han M, et al. Fenofibrate prevents obesity and hypertriglyceridemia in low-density lipoprotein receptor-null mice. Metabolism 2004; 53: 607–13

    PubMed  CAS  Google Scholar 

  91. Citeline Intelligence Solutions (PO Box 869, Petaluma, CA 94953, USA). Metabolic syndrome: dual PPAR agonists and anti-obesity drugs dominate drug development efforts. A Citeline intelligence report, February 2005. Available to purchase from: http:ўw.citeline.com [Accessed 2005 Sep 22]

  92. Rubin CJ, Mohideen P, Ledeine J-M, et al. Improvement of glycemic control with muraglitazar, a novel dual PPAR-α/γ agonist, in combination with metformin in patients with type 2 diabetes: a double-blind, randomized, pioglitazone-controlled study: 65th Scientific Sessions [abstract no. 14-OR]. San Diego (CA): American Diabetes Association, 2005

    Google Scholar 

  93. Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovasular events in patients with type 2 diabetes mellitus. JAMA 2005; 294: 2581–6

    PubMed  CAS  Google Scholar 

  94. Goldstein BJ, Rosentock J, Anzalone D, et al. Tesaglitazar improves glucose and lipid abnormalities in patients with type 2 diabetes: 65th Scientific Sessions [abstract no. 83-OR]. San Diego (CA): American Diabetes Association, 2005

    Google Scholar 

  95. Fagerberg B, Edwards S, Halmos T, et al. Tesaglitazar, a novel dual peroxisome proliferator-activated receptor alpha/gamma agonist, dose-dependently improves the metabolic abnormalities associated with insulin resistance in a non-diabetic population. Diabetologia 2005; 48: 1716–25

    PubMed  CAS  Google Scholar 

  96. Langenfeld MR, Forst T, Hohberg C, et al. Pioglitazone decreases carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus: results from a controlled randomized study. Circulation 2005; 111: 2525–31

    PubMed  CAS  Google Scholar 

  97. Nakamura T, Matsuda T, Kawagoe Y, et al. Effect of pioglitazone on carotid intima-media thickness and arterial stiffness in type 2 diabetic nephropathy patients. Metabolism 2004; 53: 1382–6

    PubMed  CAS  Google Scholar 

  98. Sidhu JS, Kaposzta Z, Markus HS, et al. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 2004; 24: 930–4

    PubMed  CAS  Google Scholar 

  99. Takagi T, Yamamuro A, Tamita K, et al. Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: an intravascular ultrasound scanning study. Am Heart J 2003; 146: E5

    PubMed  Google Scholar 

  100. Choi D, Kim SK, Choi SH, et al. Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 2004; 27: 2654–60

    PubMed  CAS  Google Scholar 

  101. Osman A, Otero J, Brizolara A, et al. Effect of rosiglitazone on restenosis after coronary stenting in patients with type 2 diabetes. Am Heart J 2004; 147: e23

    PubMed  Google Scholar 

  102. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study: a randomized controlled trial. Lancet 2005; 366: 1279–89

    PubMed  CAS  Google Scholar 

  103. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005; 366: 1849–61

    PubMed  CAS  Google Scholar 

  104. Spoelstra-de Man AM, Brouwer CB, Stehouwer CD, et al. Rapid progression of albumin excretion is an independent predictor of cardiovascular mortality in patients with type 2 diabetes and microalbuminuria. Diabetes Care 2001; 24: 2097–101

    PubMed  CAS  Google Scholar 

  105. Guan Y. Peroxisome proliferator-activated receptor family and its relationship to renal complications of the metabolic syndrome. J Am Soc Nephrol 2004; 15: 2801–15

    PubMed  CAS  Google Scholar 

  106. Nakamura T, Ushiyama C, Osada S, et al. Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria. Metabolism 2001; 50: 1193–6

    PubMed  CAS  Google Scholar 

  107. Bakris G, Viberti G, Weston WM, et al. Rosiglitazone reduces urinary albumin excretion in type II diabetes. J Hum Hypertens 2003; 17: 7–12

    PubMed  CAS  Google Scholar 

  108. Pistrosch F, Herbrig K, Kindel B, et al. Rosiglitazone improves glomerular hyperfiltration, renal endothelial dysfunction, and microalbuminuria of incipient diabetic nephropathy in patients. Diabetes 2005; 54: 2206–11

    PubMed  CAS  Google Scholar 

  109. Hetzel J, Balletshofer B, Rittig K, et al. Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arterioscler Thromb Vasc Biol 2005; 25: 1804–9

    Google Scholar 

  110. Petrofsky J, Lee S, Cuneo M. Effects of aging and type 2 diabetes on resting and post occlusive hyperemia of the forearm; the impact of rosiglitazone. BMC Endocr Disord 2005; 5: 4

    PubMed  Google Scholar 

  111. Wang TD, Chen WJ, Lin JW. Effects of rosiglitazone on endothelial function, C-reactive protein, and components of the metabolic syndrome in nondiabetic patients with the metabolic syndrome. Am J Cardiol 2004; 93: 362–5

    PubMed  CAS  Google Scholar 

  112. Murata T, Hata Y, Ishibashi T, et al. Response of experimental retinal neovascularization to thiazolidinediones. Arch Ophthalmol 2001; 119: 709–17

    PubMed  CAS  Google Scholar 

  113. Murata T, He S, Hangai M, et al. Peroxisome proliferator-activated receptor-gamma ligands inhibit choroidal neovascularization. Invest Ophthalmol Vis Sci 2000; 41: 2309–17

    PubMed  CAS  Google Scholar 

  114. Te Sligte K, Bourass I, Sels JP, et al. Non-alcoholic steatohepatitis: review of a growing medical problem. Eur J Intern Med 2004; 15: 10–21

    Google Scholar 

  115. Promrat K, Lutchman G, Uwaifo GI, et al. A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology 2004; 39: 188–96

    PubMed  CAS  Google Scholar 

  116. Neuschwander-Tetri BA, Brunt EM, Wehmeier KR, et al. Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology 2003; 38: 1008–17

    PubMed  CAS  Google Scholar 

  117. Ruttmann E, Brant LJ, Concin H, et al. Gamma-glutamyltransferase as a risk factor for cardiovascular disease mortality: an epidemiological investigation in a cohort of 163,944 Austrian adults. Circulation 2005; 112: 2130–7

    PubMed  CAS  Google Scholar 

  118. Thamer C, Tschritter O, Haap M, et al. Elevated serum GGT concentrations predict reduced insulin sensitivity and increased intrahepatic lipids. Horm Metab Res 2005; 37: 246–51

    PubMed  CAS  Google Scholar 

  119. Sepilian V, Nagamani M. Effects of rosiglitazone in obese women with polycystic ovary syndrome and severe insulin resistance. J Clin Endocrinol Metab 2005; 90: 60–5

    PubMed  CAS  Google Scholar 

  120. Tarkun I, Cetinarslan B, Turemen E, et al. Effect of rosiglitazone on insulin resistance, C-reactive protein and endothelial function in non-obese young women with polycystic ovary syndrome. Eur J Endocrinol 2005; 153: 115–21

    PubMed  CAS  Google Scholar 

  121. Ortega-Gonzalez C, Luna S, Hernandez L, et al. Responses of serum androgen and insulin resistance to metformin and pioglitazone in obese, insulin-resistant women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90: 1360–5

    PubMed  CAS  Google Scholar 

  122. Brettenthaler N, De Geyter C, Huber PR, et al. Effect of the insulin sensitizer pioglitazone on insulin resistance, hyperandrogenism, and ovulatory dysfunction in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2004; 89: 3835–40

    PubMed  CAS  Google Scholar 

  123. Clark RB. The role of PPARs in inflammation and immunity. J Leukoc Biol 2002; 71: 388–400

    PubMed  CAS  Google Scholar 

  124. Ellis CN, Varani J, Fisher GJ, et al. Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte proliferation. Arch Dermatol 2000; 136: 609–16

    PubMed  CAS  Google Scholar 

  125. Feinstein DL, Galea E, Gavrilyuk V, et al. Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 2002; 51: 694–702

    PubMed  CAS  Google Scholar 

  126. Lovett-Racke AE, Hussain RZ, Northrop S, et al. Peroxisome proliferator-activated receptor alpha agonists as therapy for autoimmune disease. J Immunol 2004; 172: 5790–8

    PubMed  CAS  Google Scholar 

  127. Lewis JD, Lichtenstein GR, Stein RB, et al. An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis. Am J Gastroenterol 2001; 96: 3323–8

    PubMed  CAS  Google Scholar 

  128. Schupp M, Janke J, Clasen R, et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-γ activity. Circulation 2004; 109: 2054–7

    PubMed  CAS  Google Scholar 

  129. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARγ-modulating activity. Hypertension 2004; 43: 993–1002

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harrihar A. Pershadsingh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pershadsingh, H.A. Dual Peroxisome Proliferator-Activated Receptor-α/γ Agonists. Mol Diag Ther 5, 89–99 (2006). https://doi.org/10.2165/00024677-200605020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200605020-00003

Keywords

Navigation