Skip to main content
Log in

Optimizing Treatment of Hypothyroidism

  • Therapy In Practice
  • Published:
Treatments in Endocrinology

Abstract

Several thyroid hormone preparations are currently available, including levothyroxine sodium (thyroxine), liothyronine (triiodothyronine), and desiccated thyroid extract, as well as a combination of levothyroxine sodium and liothyronine. Levothyroxine sodium monotherapy at an appropriate daily dose provides uniform levels of both thyroxine and triiodothyronine in the circulation without diurnal variation. Therefore, it is the preparation of choice in most patients with hypothyroidism of both the primary and central types. A normal thyrotropin (TSH) level of 1–2 mU/L is considered the determinant of optimal daily levothyroxine sodium dose in patients with primary hypothyroidism, whereas normal thyroxine and triiodothyronine levels in the mid or upper normal range may denote optimal replacement in patients with central hypothyroidism.

Optimal daily levothyroxine sodium dose may be determined according to serum TSH level at the time of diagnosis of primary hypothyroidism. Initial administration of close to the full calculated dose of levothyroxine sodium is appropriate for younger patients, reducing the need for follow-up visits and repeated laboratory testing for dose titration. In the elderly and in patients with a history of coronary artery disease (CAD), the well established approach of starting with a low dose and gradually titrating to the full calculated dose is always the best option. Levothyroxine sodium can and should be continued in patients receiving treatment for CAD. Even minor over-replacement during initial titration of levothyroxine sodium should be avoided, because of the risk of cardiac events. Chronic over-replacement may induce osteoporosis, particularly in postmenopausal women, and should also be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Rees-Jones RW, Larsen PR. Triiodothyronine and thyroxine content of dessicated thyroid tablets. Metabolism 1977; 26(11): 1213–8

    Article  PubMed  CAS  Google Scholar 

  2. Larsen PR, Davies TF. Hypothyroidism and thyroidititis. In: Larsen PR, Kronenberg HM, Melmed S, et al., editors. Williams textbook of endocrinology. Philadelphia (PA): Saunders, 2003: 423–56

    Google Scholar 

  3. Ridgway EC, McCammon JA, Benotti J, et al. Acute metabolic responses in myxedema to large doses of intravenous L-thyroxine. Ann Intern Med 1972; 77: 549–55

    PubMed  CAS  Google Scholar 

  4. Fish LH, Schwartz HL, Cavanaugh J, et al. Replacement dose, metabolism, and bioavailability of levothyroxine in the treatment of hypothyroidism. N Engl J Med 1987; 316: 764–70

    Article  PubMed  CAS  Google Scholar 

  5. Blackshear JL, Schultz AL, Napier JS, et al. Thyroxine replacement requirements in hypothyroid patients receiving phenytoin. Ann Intern Med 1983; 99: 341–2

    PubMed  CAS  Google Scholar 

  6. Bunevicius R, Kazanavicius G, Zalinkevicius R, et al. Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N Engl J Med 1999; 340(6): 424–9

    Article  PubMed  CAS  Google Scholar 

  7. Walsh JP, Shiels L, Lim EM, et al. Combined thyroxine/liothyronine treatment dose not improve well-being, quality of life, or cognitive function compared to thyroxine alone: a randomized controlled trial in patients with primary hypothyroidism. J Clin Endocrinol Metab 2003; 88(10): 4543–50

    Article  PubMed  CAS  Google Scholar 

  8. Sawka AM, Gerstein HC, Marriott MJ, et al. Does a combination regimen of thyroxine (T4) and 3,5,3′-triiodothyroinine improve depressive symptoms better than T4 alone in patients with hypothyroidism? Results of a double-blind randomized, controlled trial. J Clin Endocinol Metab 2003; 88(10): 4551–5

    Article  CAS  Google Scholar 

  9. Kaplan MM, Sarne DH, Schneider AB. In search of the impossible dream? Thyroid hormone replacement therapy that treats all symptoms in all hypothyroid patients. J Clin Endocinol Metab 2003; 88(10): 4540–2

    Article  CAS  Google Scholar 

  10. Kabadi UM, Jackson T. Serum thyrotropin in primary hypothyroidism: a possible predictor of optimal daily levothyroxine dose in primary hypothyroidism. Arch Intern Med 1995; 155(10): 1046–8

    Article  PubMed  CAS  Google Scholar 

  11. Kabadi UM, Kabadi M. Serum thyrotropin in primary hypothyroidism: a reliable and accurate predictor of optimal daily levothyroxine dose. Endocr Pract 2001; 7(1): 16–8

    PubMed  CAS  Google Scholar 

  12. Kabadi UM. Normal thyrotrophin response to intravenous thyrotrophin releasing hormone administration: the best index of optimal L-thyroxine therapy in primary hypothyroidism. Postgrad Med J 1985; 61(718): 685–8

    Article  PubMed  CAS  Google Scholar 

  13. Gow SM, Caldwell G, Toft AD. Relationship between pituitary and other target organ responsiveness in hypothyroid patients receiving thyroxine replacement. J Clin Endocrinol Metab 1987; 64(2): 464–70

    Article  Google Scholar 

  14. McDermott MT, Haugen BR, Lezotte DC, et al. Management practices among primary care physicians and thyroid specialists in the care of hypothyroid patients. Thyroid 2001; 11(8): 757–64

    Article  PubMed  CAS  Google Scholar 

  15. Keating Jr FR, Parkin TW, Selby JB, et al. Treatment of heart disease associated with myxedema. Prog Cardiovasc Dis 1961; 3: 364–81

    PubMed  Google Scholar 

  16. Kabadi UM. ‘Subclinical hypothyroidism’: natural course of the syndrome during a prolonged follow-up study. Arch Intern Med 1993; 153(8): 957–61

    Article  PubMed  CAS  Google Scholar 

  17. Kabadi UM, Cech R. Normal thyroxine and elevated thyrotropin concentrations: evolving hypothyroidism or persistent euthyroidism with reset thyrostat. J Endocrinol Invest 1997; 20(6): 319–26

    PubMed  CAS  Google Scholar 

  18. Stock JM, Surks MI, Oppenheimer JH. Replacement dosage of L-thyroxine in hypothyroidism: a re-evaluation. N Engl J Med 1974; 290(10): 529–33

    Article  PubMed  CAS  Google Scholar 

  19. Sawin CT, Geller A, Wolf PA, et al. Low serum thyrotropin concentrations as a risk factor of atrial fibrillation in older persons. N Engl J Med 1994; 331(19): 1249–52

    Article  PubMed  CAS  Google Scholar 

  20. Uzzan B, Campos J, Cucherat M, et al. Effects on bone mass of long-term treatment with thyroid hormones: a meta-analysis. J Clin Endocrinol Metab 1996; 81(12): 4278–9

    Article  PubMed  CAS  Google Scholar 

  21. Grebe SK, Cooke RR, Ford HC, et al. Treatment of hypothyroidism with once weekly thyroxine. J Clin Endocrinol Metab 1997; 82(3): 870–5

    Article  PubMed  CAS  Google Scholar 

  22. Stathatos N, Wartofsky L. Perioperative management of patients with hypothyroidism. Endocrinol Metab Clin North Am 2003; 32(2): 503–18

    Article  PubMed  Google Scholar 

  23. Rosenbaum RL, Barzel US. Levothyroxine replacement dose for primary hypothyroidism decreases with age. Ann Intern Med 1982; 96(1): 53–5

    PubMed  CAS  Google Scholar 

  24. Davis FB, LaMantia RS, Spaulding SW, et al. Estimation of a physiologic replacement dose of levothyroxine in elderly patients with hypothyroidism. Arch Intern Med 1984; 144(9): 1752–4

    Article  PubMed  CAS  Google Scholar 

  25. Kabadi UM. Variability of L-thyroxine replacement dose in elderly patients with primary hypothyroidism. J Fam Pract 1987; 24(5): 473–7

    PubMed  CAS  Google Scholar 

  26. Kabadi UM. Influence of age on optimal daily levothyroxine dosage in patients with primary hypothyroidism grouped according to etiology. South Med J 1997; 90(9): 920–4

    Article  PubMed  CAS  Google Scholar 

  27. Burrow GN, Fisher DA, Larsen PR. Maternal and fetal thyroid function. N Engl J Med 1994; 331(16): 1072–8

    Article  PubMed  CAS  Google Scholar 

  28. Roti E, Minelli R, Salvi M. Clinical review 80: management of hyperthyroidism and hypothyroidism in the pregnant woman. J Clin Endocrinol Metab 1996; 81(5): 1679–82

    Article  PubMed  CAS  Google Scholar 

  29. Mandel SJ, Larsen PR, Seely EW, et al. Increased need for thyroxine during pregnancy in women with primary hypothyroidism. N Engl J Med 1990; 323(2): 91–6

    Article  PubMed  CAS  Google Scholar 

  30. Arafah BM. Increased need for thyroxine in women with hypothyroidism during estrogen therapy. N Engl J Med 2001; 344(23): 1743–9

    Article  PubMed  CAS  Google Scholar 

  31. Isley WL. Effect of rifampin therapy on thyroid function tests in a hypothyroid patient on replacement L-thyroxine. Ann Intern Med 1987; 107(4): 517–8

    PubMed  CAS  Google Scholar 

  32. Bongu D, Sachdev J, Kabadi UM. Effects of carbamazepine on the hypothalamic-pituitary-thyroid axis. Endocr Pract 1999; 5(5): 239–44

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This preparation of this manuscript was funded by a grant from the Suvarnam Foundation Inc., Urbandale, Iowa, USA. The authors have no conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udaya M. Kabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, N., Kabadi, U.M. Optimizing Treatment of Hypothyroidism. Mol Diag Ther 3, 217–221 (2004). https://doi.org/10.2165/00024677-200403040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200403040-00003

Keywords

Navigation