Skip to main content
Log in

Modulation of Monoaminergic Neural Circuits

Potential for the Treatment of Type 2 Diabetes Mellitus

  • Leading Article
  • Published:
Treatments in Endocrinology

Abstract

A plethora of data from experimental animals provide strong support for the concept that reduced dopaminergic neuronal activity and enhanced noradrenergic tone in specific hypothalamic nuclei are involved in the pathogenesis of the metabolic syndrome. The available information on these neurotransmitter systems in insulin-resistant humans with obesity is in keeping with the postulate that analogous mechanisms may underlie their adverse metabolic profile.

Treatment with bromocriptine, which has dopaminergic (D2 receptor agonist) and sympatholytic (α2-adrenoceptor agonistic and an α1-adrenoceptor antagonistic) actions, can reverse the metabolic anomalies in a variety of obese mammalian species. Combined D1/D2 receptor activation appears to exert even more powerful effects on fuel metabolism in various animal models of the metabolic syndrome. The currently available data on the metabolic effects of bromocriptine in humans with obesity and type 2 diabetes mellitus point in the same direction. Bromocriptine favorably affects glucose metabolism and various other components of the metabolic syndrome simultaneously to ameliorate the risk of damage to eyes, neural tissue, kidneys and the cardiovascular system in patients with type 2 diabetes mellitus. Moreover, a substantial number of studies indicate that bromocriptine lowers blood pressure in animals and humans with hypertension via its sympatholytic capacities. However, the effects of bromocriptine alone are relatively modest, the metabolic mechanism of action in humans remains uncertain, and the long-term efficacy and safety profiles of this compound are unknown.

It seems important to seek for ways to boost the action of bromocriptine, by combining dopaminergic D2 and D1 receptor activation, for example. Notably, there is no antidiabetic drug that acts through central (dopaminergic) mechanisms. This novel approach may, therefore, result in synergistic actions with other available agents to favorably impact the risk of tissue damage in patients with type 2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification only and does not imply endorsement.

References

  1. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988; 37: 667–87

    PubMed  CAS  Google Scholar 

  2. Neel JV, Weder AB, Julius S. Type II diabetes, essential hypertension, and obesity as “syndromes of impaired genetic homeostasis”: the “thrifty genotype” hypothesis enters the 21st century. Perspect Biol Med 1998; 42: 44–74

    PubMed  CAS  Google Scholar 

  3. Meier AH, Cincotta AH. Orcadian rhythms regulate the expression of the thrifty genotype/phenotype. Diabetes Rev 1997; 4: 464–87

    Google Scholar 

  4. Leibowitz SF. Neurochemical-neuroendocrine systems in the brain controlling macronutrient intake and metabolism. Trends Neurosci 1992; 15: 491–7

    Article  PubMed  CAS  Google Scholar 

  5. Wellman PJ. Norepinephrine and the control of food intake. Nutrition 2000; 16: 837–42

    Article  PubMed  CAS  Google Scholar 

  6. Bray GA, York DA. The MONALISA hypothesis in the time of leptin. Recent Prog Horm Res 1998; 53: 95–117

    PubMed  CAS  Google Scholar 

  7. Cincotta AH, Wilson JM, deSouza CJ, et al. Properly timed injections of cortisol and prolactin produce long-term reductions in obesity, hyperinsulinaemia and insulin resistance in the Syrian hamster (Mesocricetus auratus). J Endocrinol 1989; 120: 385–91

    Article  PubMed  CAS  Google Scholar 

  8. Spieler RE, Meier AH, Noeske TA. Temperature-induced phase shift of daily rhythm of serum prolactin in gulf killifish. Nature 1978; 271: 469–70

    Article  PubMed  CAS  Google Scholar 

  9. Meier AH, Fivizzani AJ. Changes in the daily rhythm of plasma corticosterone concentration related to seasonal conditions in the white-throated sparrow, Zonotrichia albicollis. Proc Soc Exp Biol Med 1975; 150: 356–62

    PubMed  CAS  Google Scholar 

  10. Joseph MM, Meier AH. Circadian component in the fattening and reproductive responses to prolactin in the hamster. Proc Soc Exp Biol Med 1974; 146: 1150–5

    PubMed  CAS  Google Scholar 

  11. Telegdy G, Vermes I. Effect of adrenocortical hormones on activity of the serotoninergic system in limbic structures in rats. Neuroendocrinology 1975; 18: 16–26

    Article  PubMed  CAS  Google Scholar 

  12. Moore KE, Demarest KT, Johnston CA. Influence of prolactin on dopaminergic neuronal systems in the hypothalamus. Fed Proc 1980; 39: 2912–6

    PubMed  CAS  Google Scholar 

  13. Wilson JM, Meier AH. Resetting the annual cycle with timed daily injections of 5-hydroxytryptophan and L-dihydroxyphenylalanine in Syrian hamsters. Chronobiol Int 1989; 6: 113–21

    Article  PubMed  CAS  Google Scholar 

  14. Miller LJ, Meier AH. Circadian neurotransmitter activity resets the endogenous annual cycles in a migratory sparrow. J Interdiscipl Cycle Res 1983; 14: 85–94

    Article  CAS  Google Scholar 

  15. Luo S, Meier AH, Cincotta AH. Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology 1998; 68: 1–10

    Article  PubMed  CAS  Google Scholar 

  16. Luo S, Luo J, Cincotta AH. Suprachiasmatic nuclei monoamine metabolism of glucose tolerant versus intolerant hamsters. Neuroreport 1999; 10: 2073–7

    Article  PubMed  CAS  Google Scholar 

  17. Luo S, Luo J, Meier AH, et al. Dopaminergic neurotoxin administration to the area of the suprachiasmatic nuclei induces insulin resistance. Neuroreport 1997; 8: 3495–9

    Article  PubMed  CAS  Google Scholar 

  18. Buijs RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2001; 2: 521–6

    Article  PubMed  CAS  Google Scholar 

  19. Luiten PG, ter Horst GJ, Steffens AB. The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol 1987; 28: 1–54

    Article  PubMed  CAS  Google Scholar 

  20. The role of the SCN in the regulation of energy metabolism. In: Nagai K, Nakagawa H, Nagai K, et al., editors. Central regulation of energy metabolism with special reference to circadian rhtythm. Boca Raton (FL): CRC Press, 1992, 44

  21. Shimazu T, Noma M, Saito M. Chronic infusion of norepinephrine into the ventromedial hypothalamus induces obesity in rats. Brain Res 1986; 369: 215–23

    Article  PubMed  CAS  Google Scholar 

  22. Liang Y, Luo S, Cincotta AH. Long-term infusion of norepinephrine plus serotonin into the ventromedial hypothalamus impairs pancreatic islet function. Metabolism 1999; 48: 1287–9

    Article  PubMed  CAS  Google Scholar 

  23. Luo S, Luo J, Cincotta AH. Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology 1999; 70: 460–5

    Article  PubMed  CAS  Google Scholar 

  24. Cincotta AH, Luo S, Zhang Y, et al. Chronic infusion of norepinephrine into the VMH of normal rats induces the obese glucose-intolerant state. Am J Physiol Regul Integr Comp Physiol 2000; 278: R435–44

    PubMed  CAS  Google Scholar 

  25. Nonogaki K, Iguchi A. Role of central neural mechanisms in the regulation of hepatic glucose metabolism. Life Sci 1997; 60: 797–807

    Article  PubMed  CAS  Google Scholar 

  26. Meguid MM, Fetissov SO, Blaha V, et al. Dopamine and serotonin VMN release is related to feeding status in obese and lean Zucker rats. Neuroreport 2000; 11: 2069–72

    Article  PubMed  CAS  Google Scholar 

  27. Oltmans GA. Norepinephrine and dopamine levels in hypothalamic nuclei of the genetically obese mouse (ob/ob). Brain Res 1983; 273: 369–73

    Article  PubMed  CAS  Google Scholar 

  28. Wright BE, Svec F, Porter JR. Central effects of dehydroepiandrosterone in Zucker rats. Int J Obes Relat Metab Disord 1995; 19: 887–92

    PubMed  CAS  Google Scholar 

  29. Levin BE, Dunn-Meynell AA. Dysregulation of arcuate nucleus preproneuropeptide Y mRNA in diet-induced obese rats. Am J Physiol 1997; 272: R1365–70

    PubMed  CAS  Google Scholar 

  30. Jones AP, Pothos EN, Rada P, et al. Maternal hormonal manipulations in rats cause obesity and increase medial hypothalamic norepinephrine release in male offspring. Brain Res Dev Brain Res 1995; 88: 127–31

    Article  PubMed  CAS  Google Scholar 

  31. Garris DR. Age- and diabetes-associated alterations in regional brain norepinephrine concentrations and adrenergic receptor populations in C57BL/KsJ mice. Brain Res Dev Brain Res 1990; 51: 161–6

    Article  PubMed  CAS  Google Scholar 

  32. Feldman JM, Blalock JA, Zern RT. Elevated hypothalamic norepinephrine content in mice with the hereditary obese-hyperglycemic syndrome. Horm Res 1979; 11: 170–8

    Article  PubMed  CAS  Google Scholar 

  33. Lorden JF, Oltmans GA, Margules DL. Central catecholamine levels in genetically obese mice (obob and dbdb). Brain Res 1975; 96: 390–4

    Article  PubMed  CAS  Google Scholar 

  34. Oltmans GA, Lorden JF, Margules DL. Effects of food restriction and mutation on central catecholamine levels in genetically obese mice. Pharmacol Biochem Behav 1976; 5: 617–20

    Article  PubMed  CAS  Google Scholar 

  35. Boundy VA, Cincotta AH. Hypothalamic adrenergic receptor changes in the metabolic syndrome of genetically obese (ob/ob) mice. Am J Physiol Regul Integr Comp Physiol 2000; 279: R505–14

    PubMed  CAS  Google Scholar 

  36. Jhanwar-Uniyal M, Awad IR, Gearhart GM, et al. Higher alpha-noradrenergic receptors in paraventricular nucleus of obese Zucker rats: decline after food deprivation. Pharmacol Biochem Behav 1991; 40: 853–9

    Article  PubMed  CAS  Google Scholar 

  37. Kraszewski KZ, Cincotta AH. Increased responsiveness of ventromedial hypothalamic neurons to norepinephrine in obese versus lean mice: relation to the metabolic syndrome. Int J Mol Med 2000; 5: 349–55

    PubMed  CAS  Google Scholar 

  38. Zhou Q-Y, Palmiter RD. Dopamine deficient mice are severely hypoactive, adipsic and aphagic. Cell 1995; 83: 1197–209

    Article  PubMed  CAS  Google Scholar 

  39. Szczypka MS, Rainey MA, Palmiter RD. Dopamine is required for hyperphagia in Lep(ob/ob) mice. Nat Genet 2000; 25: 102–4

    Article  PubMed  CAS  Google Scholar 

  40. Leibowitz SF, Rossakis C. Mapping study of brain dopamine- and epinephrine-sensitive sites which cause feeding suppression in the rat. Brain Res 1979; 172: 101–13

    Article  PubMed  CAS  Google Scholar 

  41. Leibowitz SF. Catecholaminergic mechanisms of the lateral hypothalamus: their role in the mediation of amphetamine anorexia. Brain Res 1975; 98: 529–45

    Article  PubMed  CAS  Google Scholar 

  42. Cravchik A, Sibley DR, Gejman PV. Functional analysis of the human D2 dopamine receptor missense variants. J Biol Chem 1996; 271: 26013–7

    Article  PubMed  CAS  Google Scholar 

  43. Tataranni PA, Baier L, Jenkinson C, et al. A Ser311Cys mutation in the human dopamine receptor D2 gene is associated with reduced energy expenditure. Diabetes 2001; 50: 901–4

    Article  PubMed  CAS  Google Scholar 

  44. Comings DE, Flanagan SD, Dietz G, et al. The dopamine D2 receptor (DRD2) as a major gene in obesity and height. Biochem Med Metab Biol 1993; 50: 176–85

    Article  PubMed  CAS  Google Scholar 

  45. Jenkinson CP, Hanson R, Cray K, et al. Association of dopamine D2 receptor polymorphisms Ser311Cys and TaqIA with obesity or type 2 diabetes mellitus in Pima Indians. Int J Obes Relat Metab Disord 2000; 24: 1233–8

    Article  PubMed  CAS  Google Scholar 

  46. Blum K, Braverman ER, Wood RC, et al. Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: a preliminary report. Pharmacogenetics 1996; 6: 297–305

    Article  PubMed  CAS  Google Scholar 

  47. Comings DE, Comings BG, Muhleman D, et al. The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 1991; 266: 1793–800

    Article  PubMed  CAS  Google Scholar 

  48. Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet 2001; 357: 354–7

    Article  PubMed  CAS  Google Scholar 

  49. Baptista T. Body weight gain induced by antipsychotic drugs: mechanisms and management. Acta Psychiatr Scand 1999; 100: 3–16

    Article  PubMed  CAS  Google Scholar 

  50. Bray GA. Drag treatment of obesity. Baillieres Best Pract Res Clin Endocrinol Metab 1999; 13: 131–48

    Article  PubMed  CAS  Google Scholar 

  51. Di Chiara G, Porceddu ML, Vargiu L, et al. Stimulation of “regulatory” dopamine receptors by bromocriptine (CB-154). Pharmacology 1978; 16Suppl. 1: 135–42

    Article  PubMed  Google Scholar 

  52. Lew JY, Hata F, Ohashi T, et al. The interactions of bromocriptine and lergotrile with dopamine and alpha-adrenergic receptors. J Neural Transm 1977; 41: 109–21

    Article  PubMed  CAS  Google Scholar 

  53. Maj J, Gancarczyk L, Rawlow A. The influence of bromocriptine on serotonin neurons. J Neural Transm 1977; 41: 253–64

    Article  PubMed  CAS  Google Scholar 

  54. Carey RM, Van Loon GR, Baines AD, et al. Suppression of basal and stimulated noradrenergic activities by the dopamine agonist bromocriptine in man. J Clin Endocrinol Metab 1983; 56: 595–602

    Article  PubMed  CAS  Google Scholar 

  55. Ziegler MG, Lake CR, Williams AC, et al. Bromocriptine inhibits norepinephrine release. Clin Pharmacol Ther 1979; 25: 137–42

    PubMed  CAS  Google Scholar 

  56. Jackson DM, Mohell N, Georgiev J, et al. Time course of bromocriptine induced excitation in the rat: behavioural and biochemical studies. Naunyn Schmiedebergs Arch Pharmacol 1995; 351: 146–55

    Article  PubMed  CAS  Google Scholar 

  57. Ferre S, Cortes R, Artigas F. Dopaminergic regulation of the serotonergic raphe-striatal pathway: microdialysis studies in freely moving rats. J Neurosci 1994; 14: 4839–46

    PubMed  CAS  Google Scholar 

  58. Cincotta AH, Meier AH. Reductions of body fat stores and total plasma cholesterol and triglyceride concentrations in several species by bromocriptine treatment. Life Sci 1989; 45: 2247–54

    Article  PubMed  CAS  Google Scholar 

  59. Cincotta AH, Schiller BC, Meier AH. Bromocriptine inhibits the seasonally occurring obesity, hyperinsulinemia, insulin resistance, and impaired glucose tolerance in the Syrian hamster, Mesocricetus auratus. Metabolism 1991; 40: 639–44

    Article  PubMed  CAS  Google Scholar 

  60. Cincotta AH, MacEachern TA, Meier AH. Bromocriptine redirects metabolism and prevents seasonal onset of obese hyperinsulinemic state in Syrian hamsters. Am J Physiol 1993; 264: E285–93

    PubMed  CAS  Google Scholar 

  61. Cincotta AH, Meier AH. Bromocriptine inhibits in vivo free fatty acid oxidation and hepatic glucose output in seasonally obese hamsters (Mesocricetus auratus @#@). Metabolism 1995; 44: 1349–55

    Article  PubMed  CAS  Google Scholar 

  62. Luo S, Liang Y, Cincotta AH. Intracerebroventricular administration of bromocriptine ameliorates the insulin-resistant/glucose-intolerant state in hamsters. Neuroendocrinology 1999; 69: 160–6

    Article  PubMed  CAS  Google Scholar 

  63. Jackson DM, Ross SB, Hashizume M. Further studies on the interaction between bromocriptine and SKF38393 in reserpine and alpha methyl-para-tyrosine-treated mice. Psychopharmacology (Berl) 1988; 94: 321–7

    CAS  Google Scholar 

  64. Jackson DM, Hashizume M. Bromocriptine induces marked locomotor stimulation in dopamine-depleted mice when D-1 dopamine receptors are stimulated with SKF38393. Psychopharmacology (Berl) 1986; 90: 147–9

    CAS  Google Scholar 

  65. Zhang Y, Scislowski PW, Prevelige R, et al. Bromocriptine/SKF38393 treatment ameliorates dyslipidemia in ob/ob mice. Metabolism 1999; 48: 1033–40

    Article  PubMed  CAS  Google Scholar 

  66. Cincotta AH, Tozzo E, Scislowski PW. Bromocriptine/SKF38393 treatment ameliorates obesity and associated metabolic dysfunctions in obese (ob/ob) mice. Life Sci 1997; 61: 951–6

    Article  PubMed  CAS  Google Scholar 

  67. Liang Y, Lubkin M, Sheng H, et al. Dopamine agonist treatment ameliorates hyperglycemia, hyperlipidemia, and the elevated basal insulin release from islets of ob/ob mice. Biochim Biophys Acta 1998; 1405: 1–13

    Article  PubMed  CAS  Google Scholar 

  68. Liang Y, Jetton TL, Lubkin M, et al. Bromocriptine/SKF38393 ameliorates islet dysfunction in the diabetic (db/db) mouse. Cell Mol Life Sci 1998; 54: 703–11

    Article  PubMed  CAS  Google Scholar 

  69. Arneric SP, Chow SA, Long JP, et al. Inhibition of insulin release from rat pancreatic islets by drugs that are analogues of dopamine. Diabetes 1984; 33: 888–93

    Article  PubMed  CAS  Google Scholar 

  70. El Denshary EE, Ismail NA, Gagerman E, et al. Bromocriptine and insulin secretion. Biosci Rep 1982; 2: 115–6

    Article  PubMed  Google Scholar 

  71. Scislowski PW, Tozzo E, Zhang Y, et al. Biochemical mechanisms responsible for the attenuation of diabetic and obese conditions in ob/ob mice treated with dopaminergic agonists. Int J Obes Relat Metab Disord 1999; 23: 425–31

    Article  PubMed  CAS  Google Scholar 

  72. Bina KG, Cincotta AH. Dopaminergic agonists normalize elevated hypothalamic neuropeptide Y and corticotropin-releasing hormone, body weight gain, and hyperglycemia in ob/ob mice. Neuroendocrinology 2000; 71: 68–78

    Article  PubMed  CAS  Google Scholar 

  73. Erickson JC, Hollopeter G, Palmiter RD. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 1996; 274: 1704–7

    Article  PubMed  CAS  Google Scholar 

  74. Schwartz MW, Woods SC, Porte Jr D, et al. Central nervous system control of food intake. Nature 2000; 404: 661–71

    PubMed  CAS  Google Scholar 

  75. Sainsbury A, Rohnerjeanrenaud F, Cusin I, et al. Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia. Diabetologia 1997; 40: 1269–77

    Article  PubMed  CAS  Google Scholar 

  76. Zarjevski N, Cusin I, Vettor R, et al. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 1993; 133: 1753–8

    Article  PubMed  CAS  Google Scholar 

  77. Wasada T, Kawahara R, Iwamoto Y. Lack of evidence for bromocriptine effect on glucose tolerance, insulin resistance, and body fat stores in obese type 2 diabetic patients. Diabetes Care 2000; 23: 1039–40

    Article  PubMed  CAS  Google Scholar 

  78. Kamath V, Jones CN, Yip JC, et al. Effects of a quick-release form of bromocriptine (Ergoset) on fasting and postprandial plasma glucose, insulin, lipid, and lipoprotein concentrations in obese nondiabetic hyperinsulinemic women. Diabetes Care 1997; 20: 1697–701

    Article  PubMed  CAS  Google Scholar 

  79. Pijl H, Ohashi S, Matsuda M, et al. Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care 2000; 23: 1154–61

    Article  PubMed  CAS  Google Scholar 

  80. Meier AH, Cincotta AH, Lovell WC. Timed bromocriptine administration reduces body fat stores in obese subjects and hyperglycemia in type II diabetics. Experientia 1992; 48: 248–53

    Article  PubMed  CAS  Google Scholar 

  81. Cincotta AH, Meier AH. Bromocriptine (Ergoset) reduces body weight and improves glucose tolerance in obese subjects. Diabetes Care 1996; 19: 667–70

    Article  PubMed  CAS  Google Scholar 

  82. Cincotta AH, Meier AH, Cincotta JM. Bromocriptine improves glycaemic control and serum lipid profile in obese Type 2 diabetic subjects: a new approach in the treatment of diabetes. Expert Opin Investig Drugs 1999; 8: 1683–707

    Article  PubMed  CAS  Google Scholar 

  83. Matthaei S, Stumvoll M, Kellerer M, et al. Pathophysiology and pharmacological treatment of insulin resistance. Endocr Rev 2000; 21: 585–618

    Article  PubMed  CAS  Google Scholar 

  84. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 854–65

    Article  Google Scholar 

  85. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 837–53

    Article  PubMed  Google Scholar 

  86. Sowers JR. Dopaminergic control of circadian norepinephrine levels in patients with essential hypertension. J Clin Endocrinol Metab 1981; 53: 1133–7

    Article  PubMed  CAS  Google Scholar 

  87. Luchsinger A, Velasco M, Urbina A, et al. Comparative effects of dopaminergic agonists on cardiovascular, renal, and renin-angiotensin systems in hypertensive patients. J Clin Pharmacol 1992; 32: 55–60

    PubMed  CAS  Google Scholar 

  88. Kanayama Y, Kohno M, Takaori K, et al. Involvement of sympathetic nervous system inhibition in the hypotensive effect of bromocriptine in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 1987; 14: 141–4

    Article  PubMed  CAS  Google Scholar 

  89. Lahlou S, Duarte GP. Hypotensive action of bromocriptine in the DOCA-salt hypertensive rat: contribution of spinal dopamine receptors. Fundam Clin Pharmacol 1998; 12: 599–606

    Article  PubMed  CAS  Google Scholar 

  90. Luchsinger A, Grilli M, Velasco M. Metoclopramide and domperidone block the antihypertensive effect of bromocriptine in hypertensive patients. Am J Ther 1998; 5: 81–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Department of Internal Medicine, Leiden University Medical Center. The authors do not have any conflicts of interest that are relevant to the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Pijl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pijl, H., Meinders, E.A. Modulation of Monoaminergic Neural Circuits. Mol Diag Ther 1, 71–78 (2002). https://doi.org/10.2165/00024677-200201020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200201020-00001

Keywords

Navigation