Skip to main content
Log in

New Approaches for the Prevention of Bone Metastases in Patients with Prostate Cancer

A Review of Preclinical and Clinical Studies

  • Review Article
  • Published:
American Journal of Cancer

Abstract

Bone metastases are the most frequent complication of advanced prostate cancer and are responsible for the vast majority of disease-related morbidity and mortality. With the extensive number of predictive models for patients with prostate cancer, we can now determine to some degree which patients are at highest risk for progression to metastatic bone disease and therefore might benefit from earlier or more aggressive therapy. Combining this with our better understanding of the molecular biology underlying the progression to bone metastasis, we are able to identify more specific targets or pathways to approach therapeutically to prevent or delay the development of metastatic bone disease.

General strategies for the prevention of bone metastases include bone-targeting approaches, antimetastatic therapies, and purely antineoplastic agents. Bisphosphonates comprise the most studied and effective of the bone-targeted agents and now have relatively sound clinical data supporting their role not only in the treatment of bone metastases, but also in the secondary prevention and, in some cases, primary prevention, of new skeletal complications. Their ease of administration and relatively low short- and long-term toxicities make them ideal for potential treatment earlier in the disease process as well. Radioisotopes have been studied and used for decades for the treatment of painful bone metastases but only recently have data accumulated demonstrating their efficacy in the prevention of new metastases. The endothelin receptor antagonist, atrasentan, has recently been shown to delay the progression of systemic disease and potentially improve survival in patients with prostate cancer. It appears to do so, at least in part, by bone-targeting mechanisms.

Antimetastatic strategies are also promising for the prevention of bone metastases and include matrix metalloproteinase inhibitors, gene therapy, and other novel approaches, such as inhibiting tyrosine kinases or NFκB and immunomodulation of prostate stem cell antigens. Utilizing standard hormonal or cytotoxic therapies in the adjuvant setting has also been studied extensively and in certain groups of patients may provide meaningful clinical benefit in preventing or delaying systemic progression, including bone metastases.

Finally, as we learn more about molecular synergies with various agents, combinations of these approaches with each other or with more traditional hormonal or chemotherapy agents may be even more effective in the prevention of bone metastases in patients with prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Jemal A, Murray T, Samuals A. Cancer Statistics, 2003. CA Cancer J Clin 2003; 53(1): 5–26

    Article  PubMed  Google Scholar 

  2. Tofe AJ, Francis MD, Harvey WJ. Correlation of neoplasms with incidence and localization of skeletal metastases: an analysis of 1,355 diphosphonate bone scans. J Nucl Med 1975; 16(11): 986–9

    PubMed  CAS  Google Scholar 

  3. Landis SH, Murray T, Bolden S, et al. Cancer statistics, 1999. CA Cancer J Clin 1999; 49(1): 8–31, 1

    Article  PubMed  CAS  Google Scholar 

  4. Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer: a multi-institutional update. JAMA 1997; 277(18): 1445–51

    Article  PubMed  CAS  Google Scholar 

  5. Partin AW, Yoo J, Carter HB, et al. The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J Urol 1993; 150(1): 110–4

    PubMed  CAS  Google Scholar 

  6. Pound CR, Partin AW, Eisenberger MA, et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999; 281(17): 1591–7

    Article  PubMed  CAS  Google Scholar 

  7. Roberts SG, Blute ML, Bergstralh EJ, et al. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. Mayo Clin Proc 2001; 76(6): 576–81

    PubMed  CAS  Google Scholar 

  8. Schellhammer PF, El Mahdi AM, Kuban DA, et al. Prostate-specific antigen after radiation therapy: prognosis by pretreatment level and post-treatment nadir. Urol Clin North Am 1997; 24(2): 407–14

    Article  PubMed  CAS  Google Scholar 

  9. Geara FB, Zagars GK, Pollack A. Influence of initial presentation on treatment outcome of clinically localized prostate cancer treated by definitive radiation therapy. Int J Radiat Oncol Biol Phys 1994; 30(2): 331–7

    Article  PubMed  CAS  Google Scholar 

  10. Zagars GK, Pollack A, von Eschenbach AC. Addition of radiation therapy to androgen ablation improves outcome for subclinically node-positive prostate cancer. Urology 2001; 58(2): 233–9

    Article  PubMed  CAS  Google Scholar 

  11. Carlin BI, Andriole GL. The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer 2000; 88(12 Suppl.): 2989–94

    Article  PubMed  CAS  Google Scholar 

  12. Papapoulos SE, Hamdy NA, van der Pluijm G. Bisphosphonates in the management of prostate carcinoma metastatic to the skeleton. Cancer 2000; 88(12 Suppl.): 3047–53

    Article  PubMed  CAS  Google Scholar 

  13. Melchior SW, Corey E, Ellis WJ, et al. Early tumor cell dissemination in patients with clinically localized carcinoma of the prostate. Clin Cancer Res 1997; 3(2): 249–56

    PubMed  CAS  Google Scholar 

  14. Koeneman KS, Yeung F, Chung LW. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 1999; 39(4): 246–61

    Article  PubMed  CAS  Google Scholar 

  15. Guise TA, Mundy GR. Cancer and bone. Endocr Rev 1998; 19(1): 18–54

    Article  PubMed  CAS  Google Scholar 

  16. Jacobs SC, Lawson RK. Mitogenic factor in human prostate extracts. Urology 1980; 16(5): 488–91

    Article  PubMed  CAS  Google Scholar 

  17. Goltzman D. Mechanisms of the development of osteoblastic metastases. Cancer 1997; 80(8 Suppl.): 1581–7

    Article  PubMed  CAS  Google Scholar 

  18. Valentin OA, Edouard C, Charhon S, et al. Histomorphometic analysis of iliac bone metastases of prostatic origin. In: Donath A, Huber H, editors. Bone and tumours: Third Symposium CEMO; 1979 Nov 4–7; G neva: Médicine et Hygiène, 1980: 27–28

    Google Scholar 

  19. Taube T, Kylmala T, Lamberg-Allardt C, et al. The effect of clodronate on bone in metastatic prostate cancer: histomorphometric report of a double-blind randomised placebo-controlled study. Eur J Cancer 1994; 30A(6): 751–8

    Article  PubMed  CAS  Google Scholar 

  20. Percival RC, Urwin GH, Harris S, et al. Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur J Surg Oncol 1987; 13(1): 41–9

    PubMed  CAS  Google Scholar 

  21. Urwin GH, Percival RC, Harris S, et al. Generalised increase in bone resorption in carcinoma of the prostate. Br J Urol 1985; 57(6): 721–3

    Article  PubMed  CAS  Google Scholar 

  22. Clarke NW, McClure J, George NJ. Morphometric evidence for bone resorption and replacement in prostate cancer. Br J Urol 1991; 68(1): 74–80

    Article  PubMed  CAS  Google Scholar 

  23. Ikeda I, Miura T, Kondo I. Pyridinium cross-links as urinary markers of bone metastases in patients with prostate cancer. Br J Urol 1996; 77(1): 102–6

    Article  PubMed  CAS  Google Scholar 

  24. Shevrin DH, Kukreja SC, Ghosh L, et al. Development of skeletal metastasis by human prostate cancer in athymic nude mice. Clin Exp Metastasis 1988; 6(5): 401–9

    Article  PubMed  CAS  Google Scholar 

  25. Gleave M, Hsieh JT, Gao CA, et al. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 1991; 51(14): 3753–61

    PubMed  CAS  Google Scholar 

  26. Thalmann GN, Anezinis PE, Chang SM, et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 1994; 54(10): 2577–81

    PubMed  CAS  Google Scholar 

  27. Wu TT, Sikes RA, Cui Q, et al. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer 1998; 77(6): 887–94

    Article  PubMed  CAS  Google Scholar 

  28. Nemeth JA, Harb JF, Barroso Jr U, et al. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res 1999; 59(8): 1987–93

    PubMed  CAS  Google Scholar 

  29. Pinthus JH, Waks T, Schindler DG, et al. WISH-PC2: a unique xenograft model of human prostatic small cell carcinoma. Cancer Res 2000; 60(23): 6563–7

    PubMed  CAS  Google Scholar 

  30. Fisher JL, Schmitt JE, Howard ML, et al. An in vivo model of prostate carcinoma growth and invasion in bone. Cell Tissue Res 2002; 307(3): 337–45

    Article  PubMed  CAS  Google Scholar 

  31. Corey E, Quinn JE, Bladou F, et al. Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 2002; 52(1): 20–33

    Article  PubMed  Google Scholar 

  32. Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A 1995; 92(8): 3439–43

    Article  PubMed  CAS  Google Scholar 

  33. Thompson TC, Southgate J, Kitchener G, et al. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 1989; 56(6): 917–30

    Article  PubMed  CAS  Google Scholar 

  34. Rogers MJ, Gordon S, Benford HL, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000; 88(12 Suppl.): 2961–78

    Article  PubMed  CAS  Google Scholar 

  35. Russell RG, Bisaz S, Fleisch H, et al. Inorganic pyrophosphate in plasma, urine, and synovial fluid of patients with pyrophosphate arthropathy (chondrocalcinosis or pseudogout). Lancet 1970; II(7679): 899–902

    Article  Google Scholar 

  36. Jung A, Bisaz S, Fleisch H. The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res 1973; 11(4): 269–80

    Article  PubMed  CAS  Google Scholar 

  37. Luckman SP, Hughes DE, Coxon FP, et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 1998; 13(4): 581–9

    Article  PubMed  CAS  Google Scholar 

  38. Benford HL, Frith JC, Auriola S, et al. Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs. Mol Pharmacol 1999; 56(1): 131–40

    PubMed  CAS  Google Scholar 

  39. Diel IJ, Solomayer EF, Basiert G. Bisphosphonates and the prevention of metastasis: first evidences from preclinical and clinical studies. Cancer 2000; 88(12 Suppl.): 3080–8

    Article  PubMed  CAS  Google Scholar 

  40. Elomaa I, Blomqvist C, Grohn P, et al. Long-term controlled trial with diphosphonate in patients with osteolytic bone metastases. Lancet 1983; I(8317): 146–9

    Article  Google Scholar 

  41. Paterson AH, Powles TJ, Kanis JA, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 1993; 11(1): 59–65

    PubMed  CAS  Google Scholar 

  42. Hortobagyi GN, Theriault RL, Porter L, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med 1996; 335(24): 1785–91

    Article  PubMed  CAS  Google Scholar 

  43. Hortobagyi GN, Theriault RL, Lipton A, et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 1998; 16(6): 2038–44

    PubMed  CAS  Google Scholar 

  44. Holten-Verzantvoort AT, Kroon HM, Bijvoet OL, et al. Palliative pamidronate treatment in patients with bone metastases from breast cancer. J Clin Oncol 1993; 11(3): 491–8

    PubMed  Google Scholar 

  45. Theriault RL, Lipton A, Hortobagyi GN, et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 1999; 17(3): 846–54

    PubMed  CAS  Google Scholar 

  46. Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 1996; 334(8): 488–93

    Article  PubMed  CAS  Google Scholar 

  47. Berenson JR, Lichtenstein A, Porter L, et al. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events. Myeloma Aredia Study Group. J Clin Oncol 1998; 16(2): 593–602

    PubMed  CAS  Google Scholar 

  48. McCloskey EV, MacLennan IC, Drayson MT, et al. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. MRC Working Party on Leukaemia in Adults. Br J Haematol 1998; 100(2): 317–25

    Article  PubMed  CAS  Google Scholar 

  49. Elomaa I, Blomqvist C, Porkka L, et al. Clodronate for osteolytic metastases due to breast cancer. Biomed Pharmacother 1988; 42(2): 111–6

    PubMed  CAS  Google Scholar 

  50. Reitsma PH, Teitelbaum SL, Bijvoet OL, et al. Differential action of the bisphosphonates (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD) and disodium dichloromethylidene bisphosphonate (C12MDP) on rat macrophagemediated bone resorption in vitro. J Clin Invest 1982; 70(5): 927–33

    Article  PubMed  CAS  Google Scholar 

  51. Hughes DE, Wright KR, Uy HL, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 1995; 10(10): 1478–87

    Article  PubMed  CAS  Google Scholar 

  52. Selander KS, Monkkonen J, Karhukorpi EK, et al. Characteristics of clodronate-induced apoptosis in osteoclasts and macrophages. Mol Pharmacol 1996; 50(5): 1127–38

    PubMed  CAS  Google Scholar 

  53. Rogers MJ, Chilton KM, Coxon FP, et al. Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Miner Res 1996; 11(10): 1482–91

    Article  PubMed  CAS  Google Scholar 

  54. Shipman CM, Rogers MJ, Apperley JF, et al. Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br J Haematol 1997; 98(3): 665–72

    Article  PubMed  CAS  Google Scholar 

  55. Shipman CM, Croucher PI, Russell RG, et al. The bisphosphonate incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. Cancer Res 1998; 58(23): 5294–7

    PubMed  CAS  Google Scholar 

  56. Aparicio A, Gardner A, Tu Y, et al. In vitro cytoreductive effects on multiple myeloma cells induced by bisphosphonates. Leukemia 1998; 12(2): 220–9

    Article  PubMed  CAS  Google Scholar 

  57. Busch M, Rave-Frank M, Hille A, et al. Influence of clodronate on breast cancer cells in vitro. Eur J Med Res 1998; 3(9): 427–31

    PubMed  CAS  Google Scholar 

  58. van der Pluijm G, Vloedgraven H, van Beek E, et al. Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 1996; 98(3): 698–705

    Article  PubMed  Google Scholar 

  59. Boissier S, Ferreras M, Peyruchaud O, et al. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 2000; 60(11): 2949–54

    PubMed  CAS  Google Scholar 

  60. Boissier S, Magnetto S, Frappart L, et al. Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res 1997; 57(18): 3890–4

    PubMed  CAS  Google Scholar 

  61. Magnetto S, Boissier S, Delmas PD, et al. Additive antitumor activities of taxoids in combination with the bisphosphonate ibandronate against invasion and adhesion of human breast carcinoma cells to bone. Int J Cancer 1999; 83(2): 263–9

    Article  PubMed  CAS  Google Scholar 

  62. Krempien B, Manegold C. Prophylactic treatment of skeletal metastases, tumor-induced osteolysis, and hypercalcemia in rats with the bisphosphonate C12MBP. Cancer 1993; 72(1): 91–8

    Article  PubMed  CAS  Google Scholar 

  63. Krempien B. Morphological findings in bone metastasis, tumor osteopathy and antiosteolytic therapy. In: Diel IJ, Kaufmann M, Bastert G, editors. Metastatic bone disease: fundamental and clinical aspects. B rlin: Springer, 1994: 59–85

    Chapter  Google Scholar 

  64. Krempien B. Experimental findings on the osteoprotective potential of bisphosphonates against bone metastases and tumor-induced osteopathy: a pleading for and early and preventative administration. In: Orr FW, Singh G, editors. Bone metastasis: mechanisms and pathophysiology. N w York: Chapman & Hall, 1996: 221–44

    Google Scholar 

  65. Krempien B, Diel IJ, Jockle-Kretz B. The Walker Carcinosarcoma 256 as an experimental model of bone metastasis: influence of skeletal metabolism on the development of bone metastases. Verh Dtsch Ges Pathol 1984; 68: 211–6

    Google Scholar 

  66. Muller M, Green JR, Fabbro D. The bisphosphonate pamidronate inhibits the growth of a murine myeloma cell line in syngeneic mice [abstract]. Blood 1996; 88: 2333

    Google Scholar 

  67. Sasaki A, Boyce BF, Story B, et al. Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 1995; 55(16): 3551–7

    PubMed  CAS  Google Scholar 

  68. Hall DG, Stoica G. Effect of the bisphosphonate risedronate on bone metastases in a rat mammary adenocarcinoma model system. J Bone Miner Res 1994; 9(2): 221–30

    Article  PubMed  CAS  Google Scholar 

  69. Fernandez-Conde M, Alcover J, Aaron JE, et al. Skeletal response to clodronate in prostate cancer with bone metastases. Am J Clin Oncol 1997; 20(5): 471–6

    Article  PubMed  CAS  Google Scholar 

  70. Holten-Verzantvoort AT, Bijvoet OL, Cleton FJ, et al. Reduced morbidity from skeletal metastases in breast cancer patients during long-term bisphosphonate (APD) treatment. Lancet 1987; II(8566): 983–5

    Article  Google Scholar 

  71. Elomaa I, Blomqvist C, Porkka L, et al. Treatment of skeletal disease in breast cancer: a controlled clodronate trial. Bone 1987; 8Suppl. 1: S53–6

    PubMed  Google Scholar 

  72. Conte PF, Latreille J, Mauriac L, et al. Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. The Aredia Multinational Cooperative Group. J Clin Oncol 1996; 14(9): 2552–9

    PubMed  CAS  Google Scholar 

  73. Lipton A, Theriault RL, Hortobagyi GN, et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 2000; 88(5): 1082–90

    Article  PubMed  CAS  Google Scholar 

  74. Kanis JA, Powles T, Paterson AH, et al. Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone 1996; 19(6): 663–7

    Article  PubMed  CAS  Google Scholar 

  75. Diel IJ, Solomayer EF, Costa SD, et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 1998; 339(6): 357–63

    Article  PubMed  CAS  Google Scholar 

  76. Powles TJ, Paterson AH, Nevantaus A. Adjuvant clodronate reduces the incidence of bone metastases in patients with primary operable breast cancer [abstract 468]. Proc Am Soc Clin Oncol 1998; 17: 123

    Google Scholar 

  77. Saarto T, Blomqvist C, Virkkunen P, et al. Adjuvant Clodronate Treatment does not reduce the frequency of skeletal metastases in node-positive breast cancer patients: 5-year results of a randomized controlled trial. J Clin Oncol 2001; 19(1): 10–7

    PubMed  CAS  Google Scholar 

  78. Adami S, Mian M. Clodronate therapy of metastatic bone disease in patients with prostatic carcinoma. Recent Results Cancer Res 1989; 116: 67–72

    Article  PubMed  CAS  Google Scholar 

  79. Elert A, Heidenreich A, Hofmann R. The use of bisphosphonates in the palliative treatment of painful bone metastases due to prostate cancer [abstract 691]. J Urol 2001; 165: 168

    Google Scholar 

  80. Dearnaley DP, Sydes MR. Preliminary evidence that oral clodronate delays symptomatic progression of bone metastases from prostate cancer: first results of the MRC Pr05 trial [abstract 693]. Proc Am Soc Clin Oncol 2001; 20: 174

    Google Scholar 

  81. Saad F, Gleason D, Murray R, et al. A randomized, placebo-controlled trial of zolendronic acid in patients with hormone-refractory metastic Prostate Carcinoma. J Natl Cancer Inst 2002; 94(19): 1458–68

    Article  PubMed  CAS  Google Scholar 

  82. Yoneda T, Sasaki A, Dunstan C, et al. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest 1997; 99(10): 2509–17

    Article  PubMed  CAS  Google Scholar 

  83. Ernst DS, Tannock IF, Venner PM. Randomized placebo controlled trial of mitoxantrone/prednisone and clodronate versus mitoxantrone/prednisone alone in patients with hormone refractory prostate cancer (HRPC) and pain: National Cancer Insititute of Canada Clinical Trials Group study [abstract 705]. Proc Am Soc Clin Oncol 2002; 99: 177a

    Google Scholar 

  84. Pecher C. Biological investigations with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of metastatic bone cancer. Univer Calif Publ Pharmacol 1942; 11: 117–49

    Google Scholar 

  85. Kaplan ID, Valdagni R, Cox RS, et al. Reduction of spinal metastases after preemptive irradiation in prostatic cancer. Int J Radiat Oncol Biol Phys 1990; 18(5): 1019–25

    Article  PubMed  CAS  Google Scholar 

  86. Jacobsson H, Naslund I. Reduced incidence of bone metastases in irradiated areas after external radiation therapy of prostatic carcinoma. Int J Radiat Oncol Biol Phys 1991; 20(6): 1297–303

    Article  PubMed  CAS  Google Scholar 

  87. Salazar OM, Rubin P, Hendrickson FR, et al. Single-dose half-body irradiation for palliation of multiple bone metastases from solid tumors: Final Radiation Therapy Oncology Group report. Cancer 1986; 58(1): 29–36

    Article  PubMed  CAS  Google Scholar 

  88. Silberstein EB, Eugene L, Saenger SR. Painful osteoblastic metastases: the role of nuclear medicine. Oncology (Hunting!) 2001; 15(2): 157–63

    CAS  Google Scholar 

  89. Ben Josef E, Porter AT. Radioisotopes in the treatment of bone metastases. Ann Med 1997; 29(1): 31–5

    Article  Google Scholar 

  90. Ben Josef E, Shamsa F, Williams AO, et al. Radiotherapeutic management of osseous metastases: a survey of current patterns of care. Int J Radiat Oncol Biol Phys 1998; 40(4): 915–21

    Article  Google Scholar 

  91. Porter AT, McEwan AJ, Powe JE, et al. Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys 1993; 25(5): 805–13

    Article  PubMed  CAS  Google Scholar 

  92. Bolger JJ, Dearnaley DP, Kirk D, et al. Strontium-89 (Metastron) versus external beam radiotherapy in patients with painful bone metastases secondary to prostatic cancer: preliminary report of a multicenter trial. UK Metastron Investigators Group. Semin Oncol 1993; 20(3 Suppl. 2): 32–3

    PubMed  CAS  Google Scholar 

  93. Sciuto R, Festa A, Tofani A, et al. Platinum compounds as radiosensitizers in strontium-89 metabolic radiotherapy. Clin Ter 1998; 149(921): 43–7

    PubMed  CAS  Google Scholar 

  94. Tu SM, Millikan RE, Mengistu B, et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 2001; 357(9253): 336–41

    Article  PubMed  CAS  Google Scholar 

  95. Kraeber-Bodere F, Campion L, Rousseau C, et al. Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur J Nucl Med 2000; 27(10): 1487–93

    Article  PubMed  CAS  Google Scholar 

  96. Piffanelli A, Dafermou A, Giganti M, et al. Radionuclide therapy for painful bone metastases: an Italian multicentre observational study. Writing Committee of an Ad Hoc Study Group. Q J Nucl Med 2001; 45(1): 100–7

    PubMed  CAS  Google Scholar 

  97. Dafermou A, Colamussi P, Giganti M, et al. A multicentre observational study of radionuclide therapy in patients with painful bone metastases of prostate cancer. Eur J Nucl Med 2001; 28(7): 788–98

    Article  PubMed  CAS  Google Scholar 

  98. Kossman SE, Weiss MA. Acute myelogenous leukemia after exposure to strontium-89 for the treatment of adenocarcinoma of the prostate. Cancer 2000; 88(3): 620–4

    Article  PubMed  CAS  Google Scholar 

  99. Paszkowski AL, Hewitt DJ, Taylor Jr A. Disseminated intravascular coagulation in a patient treated with strontium-89 for metastatic carcinoma of the prostate. Clin Nucl Med 1999; 24(11): 852–4

    Article  PubMed  CAS  Google Scholar 

  100. Serafini AN. Samarium Sm-153 lexidronam for the palliation of bone pain associated with metastases. Cancer 2000; 88(12 Suppl.): 2934–9

    Article  PubMed  CAS  Google Scholar 

  101. Resche I, Chatal JF, Pecking A, et al. A dose-controlled study of 153Sm-ethylenediaminetetramethylenephosphonate (EDTMP) in the treatment of patients with painful bone metastases. Eur J Cancer 1997; 33(10): 1583–91

    Article  PubMed  CAS  Google Scholar 

  102. Serafini AN, Houston SJ, Resche I, et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol 1998; 16(4): 1574–81

    PubMed  CAS  Google Scholar 

  103. Sartor O, Quick DP, Reid R. A double blind placebo controlled study of 153-samarium EDTMP for palliation of bone pain in patients with hormone refractory prostate cancer [abstract]. J Urol 1997; 157(4): 321

    Google Scholar 

  104. Nair N. Relative efficacy of 32P and 89Sr in palliation in skeletal metastases. J Nucl Med 1999; 40(2): 256–61

    PubMed  CAS  Google Scholar 

  105. Silberstein EB. The treatment of painful osseous metastases with phosphorus—32-labeled phosphates. Semin Oncol 1993; 20(3 Suppl. 2): 10–21

    PubMed  CAS  Google Scholar 

  106. Maxon III HR, Thomas SR, Hertzberg VS, et al. Rhenium-186 hydroxyethylidene diphosphonate for the treatment of painful osseous metastases. Semin Nucl Med 1992; 22(1): 33–40

    Article  PubMed  Google Scholar 

  107. Englaro EE, Schroder LE, Thomas SR, et al. Safety and efficacy of repeated sequential administrations of Re-186 (Sn) HEDP as palliative therapy for painful skeletal metastases: initial case reports of two patients. Clin Nucl Med 1992; 17(1): 41–4

    Article  PubMed  CAS  Google Scholar 

  108. Maxon III HR, Schroder LE, Thomas SR, et al. Re-186 (Sn) HEDP for treatment of painful osseous metastases: initial clinical experience in 20 patients with hormone-resistant prostate cancer. Radiology 1990; 176(1): 155–9

    PubMed  Google Scholar 

  109. Quirijnen JM, Han SH, Zonnenberg BA, et al. Efficacy of rhenium-186-etidronate in prostate cancer patients with metastatic bone pain. J Nucl Med 1996; 37(9): 1511–5

    PubMed  CAS  Google Scholar 

  110. Rubanyi GM, Polokoff MA. Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 1994; 46(3): 325–415

    PubMed  CAS  Google Scholar 

  111. Battistini B, Chailler P, D’Orleans-Juste P, et al. Growth regulatory properties of endothelins. Peptides 1993; 14(2): 385–99

    Article  PubMed  CAS  Google Scholar 

  112. Hsu JY, Pfahl M. ET-1 expression and growth inhibition of prostate cancer cells: a retinoid target with novel specificity. Cancer Res 1998; 58(21): 4817–22

    PubMed  CAS  Google Scholar 

  113. Nelson JB, Hedican SP, Georgev DJ, et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1995; 1(9): 944–9

    Article  PubMed  CAS  Google Scholar 

  114. Nelson JB, Chan-Tack K, Hedican SP, et al. Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res 1996; 56(4): 663–8

    PubMed  CAS  Google Scholar 

  115. Nelson JB, Nguyen SH, Wu-Wong JR, et al. New bone formation in an osteoblastic tumor model is increased by endothelin-1 overexpression and decreased by endothelin A receptor blockade. Urology 1999; 53(5): 1063–9

    Article  PubMed  CAS  Google Scholar 

  116. Takuwa Y, Ohue Y, Takuwa N, et al. Endothelin-1 activates phospholipase C and mobilizes Ca2+ from extra- and intracellular pools in osteoblastic cells. Am J Physiol 1989; 257 (6 Pt 1): E797–803

    PubMed  CAS  Google Scholar 

  117. Takuwa Y, Masaki T, Yamashita K. The effects of the endothelin family peptides on cultured osteoblastic cells from rat calvariae. Biochem Biophys Res Commun 1990; 170(3): 998–1005

    Article  PubMed  CAS  Google Scholar 

  118. Shioide M, Noda M. Endothelin modulates osteopontin and osteocalcin messenger ribonucleic acid expression in rat osteoblastic osteosarcoma cells. J Cell Biochem 1993; 53(2): 176–80

    Article  PubMed  CAS  Google Scholar 

  119. Guise T, Grubbs BG, Cui Y. Endothelin a receptor blockade inhibits osteoblastic metastases [abstract 331]. Proc Am Assoc Clin Oncol 2001; 20: 84

    Google Scholar 

  120. Janus JT, Samara E, Lanni C. ABT-627, endothelin receptor antagonist, for advanced prostate cancer: phase I pharmacokinetic results [abstract]. Proc Am Assoc Cancer Res 1999; 40: 91

    Google Scholar 

  121. Carducci MA, Nelson JB, Bowling MK, et al. Atrasentan, an endothelin-receptor antagonist for refractory adenocarcinomas: safety and pharmacokinetics. J Clin Oncol 2002; 20(8): 2171–80

    Article  PubMed  CAS  Google Scholar 

  122. Carducci MA, Bowling MK, Rogers T. Phase I clinical results of ABT-627, an endothelin receptor antagonist, for refractory adenocarcinoma [abstract]. Proc Am Assoc Cancer Res 1999; 40: 91

    Google Scholar 

  123. Carducci MA, Padley RJ, Bruel J, et al. Effect of endothelin: a receptor blokade with atrasentan on tumor progression in men with hormone-refractory prostate cancer: a randomized, phase II, placebo-controlled trial. J Clin Oncol 2003; 21: 679–89

    Article  PubMed  CAS  Google Scholar 

  124. Nelson JB, Nabulsi AA, Vogelzang NJ, et al. Suppression of prostate cancer induced bone remodeling by the endothelin receptor A antagonist atrasentan. J Urol 2003; 169: 1143–49

    Article  PubMed  CAS  Google Scholar 

  125. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst 2001; 93(3): 178–93

    Article  PubMed  CAS  Google Scholar 

  126. Eisenberger M, Sinibaldi V, Laufer M. Phase-I/+ Pharmacokinetic evaluation of marimastat in patients (Pts) with advanced prostate cancer (PC): identification of the biologically active dose [abstract 1320]. Proc Am Soc Clin Oncol 2000; 19: 336

    Google Scholar 

  127. Fielding J, Scholefield J, Stuart R. A randomized double-blind placebo-controlled study of marimastat in patients with inoperable gastric adenocarcinoma [abstract 929]. Proc Am Soc Clin Oncol 2000; 19: 233

    Google Scholar 

  128. Wilding G, Small E, Ripple G. Phase I study of AG3340, a matrix metalloproteinase inhibitor in combination with Mitoxantrone/prednisone in patients having advanced prostate cancer [abstract 280]. Proceedings of the 11th NCI-EORTC AACR Symposium; 2000 Nov 7–10; Amsterdam.

  129. Ahmann FR, Saad F, Mercier R. Interim results of a phase III study of the matrix metalloprotease inhibitor prinomastat in patients having metastatic, hormone refractory prostate cancer (HRPC) [abstract 692]. Proc Am Soc Clin Oncol 2001; 20: 174

    Google Scholar 

  130. Ferrante K, Winograd B, Canetta R. Promising new developments in cancer chemotherapy. Cancer Chemother Pharmacol 1999; 43Suppl. 1: S61–8

    Article  PubMed  CAS  Google Scholar 

  131. Lokeshwar BL. MMP inhibition in prostate cancer. Ann N Y Acad Sci 1999; 878: 271–89

    Article  PubMed  CAS  Google Scholar 

  132. Rudek MA, Figg WD, Dyer V, et al. Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J Clin Oncol 2001; 19(2): 584–92

    PubMed  CAS  Google Scholar 

  133. Vile RG, Russell SJ, Lemoine NR. Cancer gene therapy: hard lessons and new courses. Gene Ther 2000; 7(1): 2–8

    Article  PubMed  CAS  Google Scholar 

  134. McCormick F. Cancer gene therapy: fringe or cutting edge? Nature Rev Cancer 2001; 1(2): 130–41

    Article  CAS  Google Scholar 

  135. Gingrich JR, Chauhan RD, Steiner MS. Gene therapy for prostate cancer. Curr Oncol Rep 2001; 3(5): 438–47

    Article  PubMed  CAS  Google Scholar 

  136. Steiner MS, Gingrich JR. Gene therapy for prostate cancer: where are we now? J Urol 2000; 164(4): 1121–36

    Article  PubMed  CAS  Google Scholar 

  137. Harrington KJ, Spitzweg C, Bateman AR, et al. Gene therapy for prostate cancer: current status and future prospects. J Urol 2001; 166(4): 1220–33

    Article  PubMed  CAS  Google Scholar 

  138. Ferrer FA, Rodriguez R. Prostate cancer gene therapy. Hematol Oncol Clin North Am 2001; 15(3): 497–508

    Article  PubMed  CAS  Google Scholar 

  139. Koeneman KS, Hsieh JT. The prospect of gene therapy for prostate cancer: update on theory and status. Curr Opin Urol 2001; 11(5): 489–94

    Article  PubMed  CAS  Google Scholar 

  140. Shalev M, Thompson TC, Kadmon D, et al. Gene therapy for prostate cancer. Urology 2001; 57(1): 8–16

    Article  PubMed  CAS  Google Scholar 

  141. Herman JR, Adler HL, Aguilar-Cordova E, et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 1999; 10(7): 1239–49

    Article  PubMed  CAS  Google Scholar 

  142. Hall SJ, Mutchnik SE, Chen SH, et al. Adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy leads to systemic activity against spontaneous and induced metastasis in an orthotopic mouse model of prostate cancer. Int J Cancer 1997; 70(2): 183–7

    Article  PubMed  CAS  Google Scholar 

  143. Hall SJ, Sanford MA, Atkinson G, et al. Induction of potent antitumor natural killer cell activity by herpes simplex virus-thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer. Cancer Res 1998; 58(15): 3221–5

    PubMed  CAS  Google Scholar 

  144. Koeneman KS, Kao C, Ko SC, et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J Urol 2000; 18(2): 102–10

    Article  PubMed  CAS  Google Scholar 

  145. Eastham JA, Grafton W, Martin CM, et al. Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer. J Urol 2000; 164 (3 Pt 1): 814–9

    Article  PubMed  CAS  Google Scholar 

  146. Slovin SF. Vaccines as treatment strategies for relapsed prostate cancer: approaches for induction of immunity. Hematol Oncol Clin North Am 2001; 15(3): 477–96

    Article  PubMed  CAS  Google Scholar 

  147. Tjoa BA, Elgamal AA, Murphy GP. Vaccine therapy for prostate cancer. Urol Clin North Am 1999; 26(2): 365–74, ix

    Article  PubMed  CAS  Google Scholar 

  148. Sanda MG, Smith DC, Charles LG, et al. Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgenmodulated human prostate cancer. Urology 1999; 53(2): 260–6

    Article  PubMed  CAS  Google Scholar 

  149. Slovin SF. Vaccines as treatment strategies for relapsed prostate cancer: approaches for induction of immunity. Hematol Oncol Clin North Am 2001; 15(3): 477–96

    Article  PubMed  CAS  Google Scholar 

  150. Fong L, Brockstedt D, Benike C, et al. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 2001; 167(12): 7150–6

    PubMed  CAS  Google Scholar 

  151. Small EJ, Fratesi P, Reese DM, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 2000; 18(23): 3894–903

    PubMed  CAS  Google Scholar 

  152. Simons JW, Mikhak B, Chang JF, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colonystimulating factor using ex vivo gene transfer. Cancer Res 1999; 59(20): 5160–8

    PubMed  CAS  Google Scholar 

  153. Cao G, Su J, Lu W, et al. Adenovirus-mediated interferon-beta gene therapy suppresses growth and metastasis of human prostate cancer in nude mice. Cancer Gene Ther 2001; 8(7): 497–505

    Article  PubMed  CAS  Google Scholar 

  154. Dong Z, Greene G, Pettaway C, et al. Suppression of angiogenesis, tumorigenicity, and metastasis by human prostate cancer cells engineered to produce interferon-beta. Cancer Res 1999; 59(4): 872–9

    PubMed  CAS  Google Scholar 

  155. Belldegrun A, Tso CL, Zisman A, et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology. Hum Gene Ther 2001; 12(8): 883–92

    Article  PubMed  CAS  Google Scholar 

  156. Nasu Y, Bangma CH, Hull GW, et al. Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and preestablished lung metastases in an orthotopic model. Gene Ther 1999; 6(3): 338–49

    Article  PubMed  CAS  Google Scholar 

  157. Stearns ME, Garcia FU, Fudge K, et al. Role of interleukin 10 and transforming growth factor beta 1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. Clin Cancer Res 1999; 5(3): 711–20

    PubMed  CAS  Google Scholar 

  158. Weeraratna AT, Dalrymple SL, Lamb JC, et al. Pan-trk inhibition decreases metastasis and enhances host survival in experimental models as a result of its selective induction of apoptosis of prostate cancer cells. Clin Cancer Res 2001; 7(8): 2237–45

    PubMed  CAS  Google Scholar 

  159. Dionne CA, Camoratto AM, Jani JP, et al. Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin Cancer Res 1998; 4(8): 1887–98

    PubMed  CAS  Google Scholar 

  160. Sigala S, Faraoni I, Botticini D, et al. Suppression of telomerase, reexpression of KAI1, and abrogation of tumorigenicity by nerve growth factor in prostate cancer cell lines. Clin Cancer Res 1999; 5(5): 1211–8

    PubMed  CAS  Google Scholar 

  161. Gu Z, Thomas G, Yamashiro J, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 2000; 19(10): 1288–96

    Article  PubMed  CAS  Google Scholar 

  162. Dannull J, Diener PA, Prikler L, et al. Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer. Cancer Res 2000; 60(19): 5522–8

    PubMed  CAS  Google Scholar 

  163. Saffran DC, Raitano AB, Hubert RS, et al. Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts. Proc Natl Acad Sci U S A 2001; 98(5): 2658–63

    Article  PubMed  CAS  Google Scholar 

  164. Wakabayashi H, Hibasami H, Iida K, et al. Prevention of metastasis by a polyamine synthesis inhibitor in an animal bone metastasis model. Oncology 2000; 59(1): 75–80

    Article  PubMed  CAS  Google Scholar 

  165. Huang S, Pettaway CA, Uehara H, et al. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001; 20(31): 4188–97

    Article  PubMed  CAS  Google Scholar 

  166. Pilepich MV, Caplan R, Byhardt RW, et al. Phase III trial of androgen suppression using goserelin in unfavorable-prognosis carcinoma of the prostate treated with definitive radiotherapy: report of Radiation Therapy Oncology Group Protocol 85-31. J Clin Oncol 1997; 15(3): 1013–21

    PubMed  CAS  Google Scholar 

  167. Pilepich MV, Winter K, John MJ, et al. Phase III radiation therapy oncology group (RTOG) trial 86-10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int J Radiat Oncol Biol Phys 2001; 50(5): 1243–52

    Article  PubMed  CAS  Google Scholar 

  168. Lawton CA, Winter K, Murray K, et al. Updated results of the phase III Radiation Therapy Oncology Group (RTOG) trial 85-31 evaluating the potential benefit of androgen suppression following standard radiation therapy for unfavorable prognosis carcinoma of the prostate. Int J Radiat Oncol Biol Phys 2001; 49(4): 937–46

    Article  PubMed  CAS  Google Scholar 

  169. Granfors T, Modig H, Damber JE, et al. Combined orchiectomy and external radiotherapy versus radiotherapy alone for nonmetastatic prostate cancer with or without pelvic lymph node involvement: a prospective randomized study. J Urol 1998; 159(6): 2030–4

    Article  PubMed  CAS  Google Scholar 

  170. Bolla M, Gonzalez D, Warde P, et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med 1997; 337(5): 295–300

    Article  PubMed  CAS  Google Scholar 

  171. Pilepich MV, Krall JM, al Sarraf M, et al. Androgen deprivation with radiation therapy compared with radiation therapy alone for locally advanced prostatic carcinoma: a randomized comparative trial of the Radiation Therapy Oncology Group. Urology 1995; 45(4): 616–23

    Article  PubMed  CAS  Google Scholar 

  172. Laverdiere J, Gomez JL, Cusan L, et al. Beneficial effect of combination hormonal therapy administered prior and following external beam radiation therapy in localized prostate cancer. Int J Radiat Oncol Biol Phys 1997; 37(2): 247–52

    Article  PubMed  CAS  Google Scholar 

  173. Wirth M. Delaying/reducing the risk of clinical tumour progression after primary curative procedures. Eur Urol 2001; 40 Suppl. 2: 17–23

    Article  Google Scholar 

  174. Wirth M, See W, McLeod D. Bicalutamide (‘Casodex’) 150mg as immediate or adjuvant therapy in 8113 men with localized or locally advanced prostate cancer [abstract 705]. Proc Am Soc Clin Oncol 2001; 20: 177

    Google Scholar 

  175. Gleave ME, Goldenberg SL, Chin JL, et al. Randomized comparative study of 3 versus 8-month neoadjuvant hormonal therapy before radical prostatectomy: biochemical and pathological effects. J Urol 2001; 166(2): 500–6

    Article  PubMed  CAS  Google Scholar 

  176. Bono AV, Pagano F, Montironi R, et al. Effect of complete androgen blockade on pathologic stage and resection margin status of prostate cancer: progress pathology report of the Italian PROSIT study. Urology 2001; 57(1): 117–21

    Article  PubMed  CAS  Google Scholar 

  177. Schulman CC, Debruyne FM, Forster G, et al. 4-year follow-up results of a European prospective randomized study on neoadjuvant hormonal therapy prior to radical prostatectomy in T2-3N0M0 prostate cancer. European Study Group on Neoadjuvant Treatment of Prostate Cancer. Eur Urol 2000; 38(6): 706–13

    Article  PubMed  CAS  Google Scholar 

  178. Klotz LH, Goldenberg SL, Jewett M, et al. CUOG randomized trial of neoadjuvant androgen ablation before radical prostatectomy: 36-month post-treatment PSA results. Canadian Urologic Oncology Group. Urology 1999; 53(4): 757–63

    Article  PubMed  CAS  Google Scholar 

  179. Labrie F, Cusan L, Gomez JL, et al. Neoadjuvant hormonal therapy: the Canadian experience. Urology 1997; 49(3A Suppl.): 56–64

    Article  PubMed  CAS  Google Scholar 

  180. Goldenberg SL, Klotz LH, Srigley J, et al. Randomized, prospective, controlled study comparing radical prostatectomy alone and neoadjuvant androgen with-drawal in the treatment of localized prostate cancer. Canadian Urologic Oncology Group. J Urol 1996; 156(3): 873–7

    Article  PubMed  CAS  Google Scholar 

  181. Dalkin BL, Ahmann FR, Nagle R, et al. Randomized study of neoadjuvant testicular androgen ablation therapy before radical prostatectomy in men with clinically localized prostate cancer. J Urol 1996; 155(4): 1357–60

    Article  CAS  Google Scholar 

  182. Vailancourt L, Ttu B, Fradet Y, et al. Effect of neoadjuvant endocrine therapy (combined androgen blockade) on normal prostate and prostatic carcinoma: a randomized study. Am J Surg Pathol 1996; 20(1): 86–93

    Article  PubMed  CAS  Google Scholar 

  183. Van Poppel H, De Ridder D, Elgamal AA, et al. Neoadjuvant hormonal therapy before radical prostatectomy decreases the number of positive surgical margins in stage T2 prostate cancer: interim results of a prospective randomized trial. The Belgian Uro-Oncological Study Group. J Urol 1995; 154 (2 Pt 1): 429–34

    Article  Google Scholar 

  184. Soloway MS, Sharifi R, Wajsman Z, et al. Randomized prospective study comparing radical prostatectomy alone versus radical prostatectomy preceded by androgen blockade in clinical stage B2 (T2bNxM0) prostate cancer: The Lupron Depot Neoadjuvant Prostate Cancer Study Group. J Urol 1995; 154 (2 Pt 1): 424–8

    Article  PubMed  CAS  Google Scholar 

  185. Labrie F, Cusan L, Gomez JL, et al. Downstaging by combination therapy with flutamide and an LURH agonist before radical prostatectomy. Cancer Surv 1995; 23: 149–56

    PubMed  CAS  Google Scholar 

  186. Fair WR, Betancourt JE. Update on Memorial Sloan-Kettering Cancer Center studies of neoadjuvant hormonal therapy for prostate cancer. Mol Urol 2000; 4(3): 241–8

    PubMed  CAS  Google Scholar 

  187. Hugosson J, Abrahamsson PA, Ahlgrenv G, et al. The risk of malignancy in the surgical margin at radical prostatectomy reduced almost three-fold in patients given neo-adjuvant hormone treatment. Eur Urol 1996; 29(4): 413–9

    PubMed  CAS  Google Scholar 

  188. Seay TM, Blute ML, Zincke H. Long-term outcome in patients with pTxN+adenocarcinoma of prostate treated with radical prostatectomy and early androgen ablation. J Urol 1998; 159(2): 357–64

    Article  PubMed  CAS  Google Scholar 

  189. Zincke H, Bergstralh EJ, Larson-Keller JJ, et al. Stage D1 prostate cancer treated by radical prostatectomy and adjuvant hormonal treatment: evidence for favorable survival in patients with DNA diploid tumors. Cancer 1992; 70(1 Suppl.): 311–23

    Article  PubMed  CAS  Google Scholar 

  190. Zincke H, Lau W, Bergstralh E, et al. Role of early adjuvant hormonal therapy after radical prostatectomy for prostate cancer. J Urol 2001; 166(6): 2208–15

    Article  PubMed  CAS  Google Scholar 

  191. Messing EM, Manola J, Sarosdy M, et al. Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. N Engl J Med 1999; 341(24): 1781–8

    Article  PubMed  CAS  Google Scholar 

  192. Schmidt JD, Gibbons RP, Murphy GP, et al. Adjuvant therapy for clinical localized prostate cancer treated with surgery or irradiation. Eur Urol 1996; 29(4): 425–33

    PubMed  CAS  Google Scholar 

  193. Wang J, Halford S, Rigg A, et al. Adjuvant mitozantrone chemotherapy in advanced prostate cancer. BJU Int 2000; 86(6): 675–80

    Article  PubMed  CAS  Google Scholar 

  194. Clark PE, Peereboom DM, Dreicer R, et al. Phase II trial of neoadjuvant estramustine and etoposide plus radical prostatectomy for locally advanced prostate cancer. Urology 2001; 57(2): 281–5

    Article  PubMed  CAS  Google Scholar 

  195. Dreicer R, Klein EA. Preliminary observations of single-agent docetaxel as neoadjuvant therapy for locally advanced prostate cancer. Semin Oncol 2001; 28(4 Suppl. 15): 45–8

    Article  PubMed  CAS  Google Scholar 

  196. Oh WK, George DJ, Kaufman DS, et al. Neoadjuvant docetaxel followed by radical prostatectomy in patients with high-risk localized prostate cancer: a preliminary report. Semin Oncol 2001; 28(4 Suppl. 15): 40–4

    Article  PubMed  CAS  Google Scholar 

  197. Pettaway CA, Pisters LL, Troncoso P, et al. Neoadjuvant chemotherapy and hormonal therapy followed by radical prostatectomy: feasibility and preliminary results. J Clin Oncol 2000; 18(5): 1050–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for studies discussed in this article was provided by Abbott Laboratories. Dr Carducci is a paid consultant for Abbott Laboratories. The terms of this arrangement are being managed by the John Hopkins University in accordance with its conflict of interest policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Carducci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassiter, L.K., Carducci, M.A. New Approaches for the Prevention of Bone Metastases in Patients with Prostate Cancer. Am J Cancer 2, 181–199 (2003). https://doi.org/10.2165/00024669-200302030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200302030-00003

Keywords

Navigation