Skip to main content
Log in

Intensity-Modulated Radiation Therapy for Breast Cancer

Improving Treatment Efficacy

  • Current Opinion
  • Published:
American Journal of Cancer

Abstract

Over the past 2 decades, numerous advances and innovations have occurred in all technical aspects of radiation therapy (RT), including three-dimensional (3D) treatment planning, conformal radiation delivery, intensity-modulated radiation therapy (IMRT), patient immobilization, and precise treatment verification. Despite incredible progress on all fronts, standard RT for breast cancer has changed very little and has not fully exploited many of the advances commonly used to treat most other malignancies. Increasing data have also accumulated, indicating that dose non-uniformities within the breast with traditional RT techniques can be greater than in many other anatomic sites. These significant dose inhomogeneities can produce unnecessary acute and chronic toxicities as well as unacceptable long-term cosmetic results. In addition, the lack of accurate verification of target volume coverage (e.g. lumpectomy cavity or chest wall) may result in diminished tumor control.

In this review, we demonstrate how 3D treatment planning combined with IMRT using our in-house step and shoot, multi-leaf collimator (sMLC) technique for tangential whole-breast RT can be an efficient and reliable method for achieving a more uniform dose throughout the whole breast. Strict dose-volume constraints can be readily met in the majority of patients, resulting in both improved coverage of breast tissue as well as a potential reduction in acute and chronic toxicities. Since the median number of sMLC segments required per patient is only eight, treatment time is not significantly increased. As a result, widespread implementation of this technology can be achieved for most patients with breast cancer with minimal imposition on clinic resources and time constraints. In addition, since lung and heart volumes are also identified, doses to these structures can be maintained at predefined ‘safe’ levels by the treating physician.

With the increased use of potentially cardiotoxic drugs in a substantial number of patients with breast cancer, the use of RT in these patients will take on greater significance. It remains to be seen whether the previously noted improvements in survival of patients with postmastectomy RT can be maintained using ‘standard’ techniques combined with these cardiotoxic drugs or whether more technologically sophisticated RT approaches (e.g. IMRT) will be required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I

Similar content being viewed by others

References

  1. Ragaz J, Jackson SM, Le N, et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med 1997; 337: 956–62

    Article  PubMed  CAS  Google Scholar 

  2. Overgaard M, Hansen PS, Overgaard J, et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy: Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med 1997; 337: 949–55

    Article  PubMed  CAS  Google Scholar 

  3. Overgaard M, Jensen MB, Overgaard J, et al. Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c Randomised Trial. Lancet 1999; 353: 1641–8

    Article  PubMed  CAS  Google Scholar 

  4. Canney PA, Deehan C, Glegg M, et al. Reducing cardiac dose in post-operative irradiation of breast cancer patients: the relative importance of patient positioning and CT scan planning. Br J Radiol 1999; 72: 986–93

    PubMed  CAS  Google Scholar 

  5. Hurkmans CW, Borger JH, Bos LJ, et al. Cardiac and lung complication probabilities after breast cancer irradiation. Radiother Oncol 2000; 55: 145–51

    Article  PubMed  CAS  Google Scholar 

  6. Marks LB, Bentel G, Light K, et al. Routine 3D treatment planning: opportunities, challenges, and hazards. Oncology (Huntingt) 2000; 14: 1191–201

    CAS  Google Scholar 

  7. van Asselen B, Raaijmakers CP, Hofman P, et al. An improved breast irradiation technique using three-dimensional geometrical information and intensity modulation. Radiother Oncol 2001; 58: 341–7

    Article  PubMed  Google Scholar 

  8. Teh BS, Lu HH, Sobremonte S, et al. The potential use of intensity modulated radiotherapy (IMRT) in women with pectus excavatum desiring breast-conserving therapy. Breast J 2001; 7: 233–9

    Article  PubMed  CAS  Google Scholar 

  9. Hurkmans CW, Borger JH, Pieters BR, et al. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys 2001; 50: 1366–72

    Article  PubMed  CAS  Google Scholar 

  10. Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 2001; 51: 880–914

    Article  Google Scholar 

  11. Lo YC, Yasuda G, Fitzgerald TJ, et al. Intensity modulation for breast treatment using static multi-leaf collimators. Int J Radiat Oncol Biol Phys 2000; 46: 187–94

    Article  PubMed  CAS  Google Scholar 

  12. Evans PM, Donovan EM, Partridge M, et al. The delivery of intensity modulated radiotherapy to the breast using multiple static fields. Radiother Oncol 2000; 57: 79–89

    Article  PubMed  CAS  Google Scholar 

  13. Donovan EM, Johnson U, Shentall G, et al. Evaluation of compensation in breast radiotherapy: a planning study using multiple static fields. Int J Radiat Oncol Biol Phys 2000; 46: 671–9

    Article  PubMed  CAS  Google Scholar 

  14. Zackrisson B, Arevarn M, Karlsson M. Optimized MLC-beam arrangements for tangential breast irradiation. Radiother Oncol 2000; 54: 209–12

    Article  PubMed  CAS  Google Scholar 

  15. Li JG, Williams SS, Goffinet R, et al. Breast-conserving radiation therapy using combined electron and intensity-modulated radiotherapy technique. Radiother Oncol 2000; 56: 65–71

    Article  PubMed  CAS  Google Scholar 

  16. Chang SX, Deschesne KM, Cullip TJ, et al. A comparison of different intensity modulation treatment techniques for tangential breast irradiation. Int J Radiat Oncol Biol Phys 1999; 45: 1305–14

    Article  PubMed  CAS  Google Scholar 

  17. Smitt MC, Li SD, Shostak CA, et al. Breast-conserving radiation therapy: potential of inverse planning with intensity modulation. Radiology 1997; 203: 871–6

    PubMed  CAS  Google Scholar 

  18. Hong L, Hunt M, Chui C, et al. Intensity-modulated tangential beam irradiation of the intact breast. Int J Radiat Oncol Biol Phys 1999; 44: 1155–64

    Article  PubMed  CAS  Google Scholar 

  19. Hansen VN, Evans PM, Shentall GS, et al.Dosimetric evaluation of compensation in radiotherapy of the breast: MLC intensity modulation and physical compensators. Radiother Oncol 1997; 42: 249–56

    Article  PubMed  CAS  Google Scholar 

  20. Carruthers LJ, Redpath AT, Kunkler IH. The use of compensators to optimize the three dimensional dose distribution in radiotherapy of the intact breast. Radiother Oncol 1999; 50: 291–300

    Article  PubMed  CAS  Google Scholar 

  21. Kiricuta IC, Gotz U, Schwab F, et al. Target volume definition and target conformal irradiation technique for breast cancer patients. Acta Oncol 2000; 39: 429–360

    Article  PubMed  CAS  Google Scholar 

  22. Pitkanen MA, Holli KA, Ojala AT, et al. Quality assurance in radiotherapy of breast cancer: variability in planning target volume delineation. Acta Oncol 2001; 40: 50–5

    Article  PubMed  CAS  Google Scholar 

  23. Delaney G, Beckham W, Veness M, et al. Three-dimensional dose distribution of tangential breast irradiation: results of a multicentre phantom dosimetry study. Radiother Oncol 2000; 57: 61–8

    Article  PubMed  CAS  Google Scholar 

  24. Krasin M, McCall A, King S, et al. Evaluation of a standard breast tangent technique: a dose-volume analysis of tangential irradiation using three-dimensional tools. Int J Radiat Oncol Biol Phys 2000; 47: 327–33

    Article  PubMed  CAS  Google Scholar 

  25. Aref A, Thornton D, Youssef E, et al. Dosimetric improvements following 3D planning of tangential breast irradiation. Int J Radiat Oncol Biol Phys 2000; 48: 1569–74

    Article  PubMed  CAS  Google Scholar 

  26. Vincent D, Beckham W, Delaney G. An assessment of the number of CT slices necessary to plan breast radiotherapy. Radiother Oncol 1999; 52: 179–83

    Article  PubMed  CAS  Google Scholar 

  27. Das IJ, Cheng CW, Fein DA, et al. Patterns of dose variability in radiation prescription of breast cancer.Radiother Oncol 1997; 44: 83–9

    Article  PubMed  CAS  Google Scholar 

  28. Kestin LL, Sharpe MB, Frazier RC, et al. Intensity modulation to improve dose uniformity with tangential breast radiotherapy: initial clinical experience. Int J Radiat Oncol Biol Phys 2000; 48: 1559–68

    Article  PubMed  CAS  Google Scholar 

  29. Beadle GF, Silver B, Botnick L, et al. Cosmetic results following primary radiation therapy for early breast cancer. Cancer 1984; 54(12): 2911–8

    Article  PubMed  CAS  Google Scholar 

  30. Neal AJ, Mayles WP, Yarnold JR. Invited review: tangential breast irradiation, rationale and methods for improving dosimetry. Br J Radiol 1994; 67: 1149–54

    Article  PubMed  CAS  Google Scholar 

  31. Cheng CW, Das IJ, Tang W, et al. Dosimetric comparison of treatment planning systems in irradiation of breast with tangential fields. Int J Radiat Oncol Biol Phys 1997; 38: 835–42

    Article  PubMed  CAS  Google Scholar 

  32. Van Limbergen E, Rijnders A, van der Schueren E, et al. Cosmetic evaluation of breast conserving treatment for mammary cancer 2: a quantitative analysis of the influence of radiation dose, fractionation schedules and surgical treatment techniques on cosmetic results. Radiother Oncol 1989; 16: 253–67

    Article  Google Scholar 

  33. Harris J, Levine M, Svensson G, et al. Analysis of cosmetic results following primary radiation therapy for stages I and II carcinoma of the breast. Int J Radiat Oncol Biol Phys 1979; 5: 257–61

    Article  PubMed  CAS  Google Scholar 

  34. Moody AM, Mayles WP, Bliss JM, et al. The influence of breast size on late radiation effects and association with radiotherapy dose inhomogeneity. Radiother Oncol 1994; 33: 106–12

    Article  PubMed  CAS  Google Scholar 

  35. Pierce SM, Recht A, Lingos T, et al. Long-term radiation complications following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys 1992; 23: 915–23

    Article  PubMed  CAS  Google Scholar 

  36. Taylor M, Perez CA, Halverson K, et al. Factors influencing cosmetic results after conservation therapy for breast cancer. Int J Radiat Oncol Biol Phys 1995; 31: 753–64

    Article  PubMed  CAS  Google Scholar 

  37. Chin L, Cheng CW, Siddon RL, et al. Three dimensional photon dose distributions with and without lung corrections for tangential breast intact treatments. Int J Radiat Oncol Biol Phys 1989; 17: 1327–35

    Article  PubMed  CAS  Google Scholar 

  38. Chu JCH, Sontag MR, Danoff BF, et al. Assessment of dose uniformity in the irradiation of the intact breast using three dimensional dose calculations [abstract]. Int J Radiat Oncol Biol Phys 1985; 11: 163

    Google Scholar 

  39. Solin LJ, Chu JCH, Sontag MR, et al. Three-dimensional photon treatment planning of the intact breast. Int J Radiat Oncol Biol Phys 1991; 21: 193–203

    Article  PubMed  CAS  Google Scholar 

  40. Shapiro CL, Hardenbergh PH, Gelman R, et al. Cardiac effects of adjuvant doxorubicin and radiation therapy in breast cancer patients. J Clin Oncol 1998; 16: 3493–501

    PubMed  CAS  Google Scholar 

  41. Hardenbergh PH, Munley MT, Bentel GC, et al. Cardiac perfusion changes in patients treated for breast cancer with radiation therapy and doxorubicin: preliminary results. Int J Radiat Oncol Biol Phys 2001; 49: 1023–8

    Article  PubMed  CAS  Google Scholar 

  42. Landau D, Adams EJ, Webb S, et al. Cardiac avoidance in breast radiotherapy: a comparison of simple shielding techniques with intensity-modulated radiotherapy. Radiother Oncol 2001; 60: 247–55

    Article  PubMed  CAS  Google Scholar 

  43. Gagliardi G, Lax I, Rutqvist LE. Partial irradiation of the heart. Semin Radiat Oncol 2001; 11: 224–33

    Article  PubMed  CAS  Google Scholar 

  44. Hurkmans CW, Cho BC, Damen E, et al. Reduction of cardiac and lung complication probabilities after breast irradiation using conformai radiotherapy with or without intensity modulation. Radiother Oncol 2002; 62: 163–71

    Article  PubMed  Google Scholar 

  45. Muren LP, Maurstad G, Hafslund R, et al. Cadiac and pulmonary doses and complication probabilities in standard and conformai tangential irradiation in conservative management of breast cancer. Radiother Oncol 2002; 62: 173–83

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by a grant from the NCI R01 CA 76182 and an educational grant from Elekta Oncology Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. Vicini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicini, F.A., Sharpe, M., Kestin, L. et al. Intensity-Modulated Radiation Therapy for Breast Cancer. Am J Cancer 1, 237–245 (2002). https://doi.org/10.2165/00024669-200201040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200201040-00001

Keywords

Navigation