Skip to main content
Log in

Hypercalcemia of Malignancy

Pathophysiology Diagnosis and Treatment

  • Therapy in Practice
  • Published:
American Journal of Cancer

Abstract

Hypercalcemia of malignancy (HCM) is the most common cause of elevated serum calcium in hospitalized patients and is found with varying frequency in patients with various types of cancer. Calcium homeostasis is finely regulated with day-to-day variations of less than 2%, and the development of HCM stems from various anomalies in homeostatic mechanisms. Hypercalcemia often produces a number of clinical symptoms, including alterations in central nervous system function, symptoms of dehydration and renal dysfunction. Whenever possible and appropriate, the goals of treatment of HCM should therefore be to return the patient to a euvolemic state, to normalize serum calcium and to treat the underlying cause. Almost invariably, however, HCM is a particularly adverse complication for patients with cancer and is almost always associated with a dismal prognosis. Older treatments like mithramycin and calcitonin have recently been replaced with newer management strategies, mostly involving bisphosphonates. These agents are potent inhibitors of osteoclasts which have been found to normalize serum calcium levels in a high proportion of patients with HCM. Emerging therapeutic approaches include monoclonal antibodies to parathyroid hormone related peptide (PTHrP), inhibition of RANK ligand through the use of a soluble form of its receptor osteoprotegerin, analogues of Vitamin D and selective inhibiton of the Ras-Raf-MAPK-ERK signalling pathway. In this article, we review the pathophysiology of tumour osteolysis leading to hypercalcemia of malignancy, and we discuss the physiological basis for the clinical symptoms of hypercalcemia. Past, current and future therapeutic approaches are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mosekilde L, Eriksen EF, Charles P. Hypercalcemia of malignancy: pathophysiology, diagnosis and treatment. Crit Rev Oncol Hematol 1991; 11: 1–27

    Article  PubMed  CAS  Google Scholar 

  2. Fisken RA, Heath DA, Bold AM. Hypercalcemia: ahospital survey. Q J Med 1980; 49: 405–18

    PubMed  CAS  Google Scholar 

  3. Fisken RA, Heath DA, Sommers S, et al. Hypercalcemia in hospital patients: clinical and diagnostic aspects. Lancet 1981; I: 202–7

    Article  Google Scholar 

  4. Mundy GR, Martin TJ. The hypercalcemia of malignancy: pathogenesis and management. Metabolism 1982; 31: 1247–77

    Article  PubMed  CAS  Google Scholar 

  5. Blomqvist CP. Malignant hypercalcemia: a hospital survey. Acta Med Scand 1986; 220: 455–63

    Article  PubMed  CAS  Google Scholar 

  6. Lundgren E. Population-based health screening for primary hyperparathyroidism with serum calcium and parathyroid hormone values in menopausal women. Surgery 1997; 121: 287–94

    Article  PubMed  CAS  Google Scholar 

  7. CancerNetTM. Hypercalcemia (PDQ®) supportive care: health professionals (online). Available from URL: http://www.cancer.gov/cancer_information/doc. [Accessed 2001 Nov 23]

  8. Varley H, Gavenlock AH, Bell M. Practical clinical biochemistry: Vol. 1. General topics and commoner tests. 5th ed. London: William Heinemann Medical Books, 1980: 870

    Google Scholar 

  9. Brown E, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca2+ sensing receptor from bovine parathyroid. Nature 1993; 366: 575–80

    Article  PubMed  CAS  Google Scholar 

  10. Garrett JE, Capuano IV, Hammerland LG, et al. Molecular cloning and functional expression of human parathyroid calcium receptor cDNA. J Biol Chem 1995; 270: 12919–25

    Article  PubMed  CAS  Google Scholar 

  11. Aida K, Koishi S, Tawata M, et al. Molecular cloning of a putative calcium serum of senses receptor cDNA from human kidney. Biochem Biophys Res Commun 1995; 214: 524–9

    Article  PubMed  CAS  Google Scholar 

  12. Ruat M, Molliver ME, Snowman A, et al. Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc Natl Acad Sci USA 1995; 92: 3161–5

    Article  PubMed  CAS  Google Scholar 

  13. Riccardi D, Park JI, Lee WS, et al. Cloning and function expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor. Proc Natl Acad Sci USA 1995; 92: 131–5

    Article  PubMed  CAS  Google Scholar 

  14. Garrett JE, Tamir H, Kifor O, et al. Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology 1995; 136(11): 5202–11

    Article  PubMed  CAS  Google Scholar 

  15. Pollak MR, Brown EM, Chou YMH, et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993; 75: 1297–303

    Article  PubMed  CAS  Google Scholar 

  16. Hendy GN, D’Sousa-Li L, Yang B, et al. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism and autosomal dominant hypocalcemia. Hum Mutat 2000; 16: 281–96

    Article  PubMed  CAS  Google Scholar 

  17. Brown EM, Macleod RJ. Extra cellular calcium sensing and extracellular calcium signaling. Physiol Rev 2001; 81: 239–97

    PubMed  CAS  Google Scholar 

  18. Carling T. Molecular pathology of parathyroid tumours. Trends Endocrinol Metab 2001; 12: 53–8

    Article  PubMed  CAS  Google Scholar 

  19. Chattopakhyay N, Yamaguchi T, Brown E. Ca2+ receptor from brain to gut: common stimulus, diverse actions. Trends Endocrinal Metab 1998; 9(9): 354–9

    Article  Google Scholar 

  20. Stewart AF, Horst R, Deftos LJ, et al. Biochemical evaluation of patients with cancer-associated hypercalcemia: evidence for humoral and nonhumoral groups. N Engl J Med 1980; 303(24): 1377–83

    Article  PubMed  CAS  Google Scholar 

  21. Albright F. Case records of the Massachusetts General Hospital (case 27401). N Engl J Med 1941; 225: 789–91

    Article  Google Scholar 

  22. Moseley JM, Kubota M, Diefenback-Jagger H, et al. Parathyroid hormone-related protein purified from a human lung cancer cell line. Proc Natl Acad Sci USA 1987; 84: 5048–52

    Article  PubMed  CAS  Google Scholar 

  23. Burtis WJ, Wu T, Bunch C, et al. Identification of a novel 17,000-dalton parathyroid hormone-like adenylate cyclase-stimulating protein from a tumour associated with humoral hypercalcemia of malignancy. J Biol Chem 1987; 262(15): 7151–6

    PubMed  CAS  Google Scholar 

  24. Strewler GJ, Stern P, Jacobs J, et al. Parathyroid hormone-like protein from human renal carcinoma cells structural and function homology with parathyroid hormone. J Clin Invest 1987; 80: 1803–7

    Article  PubMed  CAS  Google Scholar 

  25. Suva LJ, Winslow GA, Wettenhall REH, et al. A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 1987; 237: 893–6

    Article  PubMed  CAS  Google Scholar 

  26. Abou-Samra A, Juppner H, Force T, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulated intracellular accumulation of both cAMP and inositol triphosphate and increases intracellular free calcium. Proc Natl Acad Sci USA 1992; 89: 2732–6

    Article  PubMed  CAS  Google Scholar 

  27. Horluchi N, Caulfield M, Fisher JE, et al. Similarity of synthetic peptide from human tumour to parathyroid hormone in vivo and in vitro. Science 1987; 238: 1566–8

    Article  Google Scholar 

  28. Kemp BE, Moseley JM, Rodda CP, et al. Parathyroid hormone-related protein of malignancy: active synthetic fragments. Science 1987; 238: 1568–70

    Article  PubMed  CAS  Google Scholar 

  29. Burtis WJ, Bady TF, Orloff JJ, et al. Immunochemical characterization of circulating parathyroid hormone-related protein in patients with humoral hypercalcemia of cancer. N Engl J Med 1990; 322: 1106–12

    Article  PubMed  CAS  Google Scholar 

  30. Rodda CP, Caple IW, Martin TJ, et al. Role of PTHrP fetal and neonatal physiology. In: Halloran BP, Nissenson RA, editors. Parathyroid hormone related protein: normal physiology and its role in cancer. Boca Raton (FL): CRC Press, 1992: 169–196

    Google Scholar 

  31. Broadus A, Stewart A, Bilezikian JP, et al. Parathyroid hormone-related protein: structure, processing, and physiological actions. In: Bilezikian JP, Levine M, Marcus R, editors. The parathyroids. New York: Raven Press, 1994: 259

    Google Scholar 

  32. Stewart AF, Favus MJ. Humoral hypercalcemia of malignancy. In: Faus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 3rd ed. Philadelphia (PA): Lippincott-Raven, 1996: 198–203

    Google Scholar 

  33. Southby J, Kissin MW, Danks JA, et al. Immunohistochemical localization of parathyroid hormone-related protein in breast cancer. Cancer Res 1990; 50: 7710–6

    PubMed  CAS  Google Scholar 

  34. Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in breast cancer-mediated osteolysis. J Clin Invest 1996; 98(7): 1544–8

    Article  PubMed  CAS  Google Scholar 

  35. Thomas RJ, Guise TA, Yin JJ, et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 1999; 140: 4451–8

    Article  PubMed  CAS  Google Scholar 

  36. Kiriyama T, Gillespie MT, Glatz JA, et al. Transforming growth factor β stimulation of parathyroid hormone-related protein (PTHrP): a paracrine regulator? Mol Cell Endocrinol 1992; 92: 55–62

    Article  Google Scholar 

  37. Merryman JI, DeWille JW, Werkmeister JR, et al. Effects of transforming growth factor-β on parathyroid hormone-related protein production and ribonucleic acid expression by a squamous carcinoma cell line in vitro. Endocrinology 1994; 134: 2424–30

    Article  PubMed  CAS  Google Scholar 

  38. Galasko CSB. Mechanisms of bone destruction in the development of skeletal metastasis. Nature 1976; 263: 507–8

    Article  PubMed  CAS  Google Scholar 

  39. Eilon G, Mundy GR. Direct resorption of bone by human breast cancer cells in vitro. Nature 1978; 276: 726–8

    Article  PubMed  CAS  Google Scholar 

  40. Sanchez-Sweatman OH, Lee J, Orr FW, et al. Direct osteolysis induced by metastatic murine melanoma cells: role of matrix metalloproteinases. Eur J Cancer 1997; 33: 918–25

    Article  PubMed  CAS  Google Scholar 

  41. Lichtenstein A, Berenson J, Norman D, et al. Production of cytokines by bone marrow cells obtained from patients with multiple myeloma. Blood 1989; 74: 1266–73

    PubMed  CAS  Google Scholar 

  42. Ishikawa H, Tanaka H, Iwato K, et al. Effect of glucocorticoids on the biologic activities of myeloma cells: inhibition of interleukin-1 beta osteoclasts factor-induced bone resorption. Blood 1990; 75: 715–20

    PubMed  CAS  Google Scholar 

  43. Linkhart TA, Linkhart SG, MacCharles DC, et al. Interleukin-6 messenger RNA expression and interleukin-6 protein secretion in cells isolated from normal human bone: regulation by interleukin-1. J Bone Miner Res 1991; 6: 1285–94

    Article  PubMed  CAS  Google Scholar 

  44. Antunovic P, Marisavljevic D, Kraguljac N, et al. Severe hypercalcemia and extensive osteolytic lesions in an adult patient with T cell acute lymphoblastic leukemia. Med Oncol 1998; 15: 58–60

    Article  PubMed  CAS  Google Scholar 

  45. Todo S, Imashuku S, Inoda H, et al. Hypercalcaemia in a case of childhood acute lymphoblastic leukemia. Jpn J Clin Oncol 1987; 17: 357–62

    PubMed  CAS  Google Scholar 

  46. Laffan MA, Talavera JG, Catovsky D. Hypercalcemia in T cell acute lymphoblastic leukemia: report of two cases. J Clin Pathol 1986; 39: 1143–6

    Article  PubMed  CAS  Google Scholar 

  47. Fedarko NS, Fohr B, Robey PG, et al. Factor H binding to bone sialoprotein and osteopontin enables tumor cell invasion of complement-mediated attack. J Biol Chem 2000; 275: 16666–72

    Article  PubMed  CAS  Google Scholar 

  48. Mills BG, Frausto A. Cytokines expressed in multinucleated cells: Paget’s disease and giant cell tumors versus normal bone. Calcif Tissue Int 1997; 61: 16–21

    Article  PubMed  CAS  Google Scholar 

  49. Major P, Lotholary A, Hon J, et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001; 19: 558–67

    PubMed  CAS  Google Scholar 

  50. Frauenhoffer EE, Lipton A, Costa L, et al. Immunohistochemical localization of matrix metalloproteinases in cancer metastatic to bone. In: The Second North American Symposium on Skeletal Complications of Malignancy; 1999 Oct 15–16; Montreal (PQ). Cancer 2000; 88(12 Suppl. 512): 3090

    Google Scholar 

  51. Lhotak S, Elevathil LJ, Duivenvoorden WCM, et al. Osteoclasts and tumour cells exhibit a different morphology of bone resorption pits and distinct MMP profiles in bone metastasis of human breast carcinoma. In: The Second North American Symposium on Skeletal Complications of Malignancy; 1999 Oct 15–16; Montreal (PQ). Cancer 2000; 88(12 Suppl. 512): 3091

    Google Scholar 

  52. Manishen WJ, Sivananthan K, Orr FW. Resorbing bone stimulates tumour cell growth: a role for the host microenvironment in bone metastasis. Am J Pathol 1986; 123: 39–45

    PubMed  CAS  Google Scholar 

  53. Hauschka PV, Mavrakos AE, Iafrati MD, et al. Growth factors in bone matrix. J Biol Chem 1986; 261: 12665–74

    PubMed  CAS  Google Scholar 

  54. Pfeilschifter J, Mundy GR. Modulation of transforming growth factor β activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci USA 1987; 84: 2024–8

    Article  PubMed  CAS  Google Scholar 

  55. Guise TA. Molecular mechanisms of osteolytic bone metastases in skeletal complications of malignancy. Cancer 2000; 88(12 Suppl.): 2892–8

    Article  PubMed  CAS  Google Scholar 

  56. Ralston S, Gallacher S, Patel U, et al. Cancer-associated hypercalcemia: morbidity and mortality, clinical experience in 126 treated patients. Ann Intern Med 1990; 112: 499–504

    PubMed  CAS  Google Scholar 

  57. Juchet H, Ollier S, Micouleau X, et al. Hypercalcémies néoplastiques: facteurs prognostiques pour la survie des patients; à partir de 51 cas observés en médecine interne. Rev Med Interne 1993; 14: 149–54

    Article  PubMed  CAS  Google Scholar 

  58. Ogata E. Parathyroid hormone-related protein as a potential target of therapy for cancer-associated morbidity. Cancer 2000; 88: 2909–11

    Article  PubMed  CAS  Google Scholar 

  59. Lamy O, Jenzer P, Burckhardt P. Hypercalcemia of malignancy: an undiagnosed and undertreated disease. J Intern Med 2001; 250: 73–9

    Article  PubMed  CAS  Google Scholar 

  60. Nussbaum SR. Pathophysiology and management of severe hypercalcemia. Endocrinal Metab Clin North Am 1993; 22: 343–62

    CAS  Google Scholar 

  61. Yoshimoto K, Yamasaki R, Sakai H, et al. Ectopic production of parathyroid hormone by small lung cancer in a patient with hypercalcemia. J Clin Endocrinol Metab 1989; 68: 976–81

    Article  PubMed  CAS  Google Scholar 

  62. Michelangeli VP, Heyma P, Colman PG, et al. Evaluation of a new, rapid and automated immunochemiluminometric assay for the measurement of serum intact parathyroid hormone [abstract no. 9022895]. Ann Clin Biochem 1997; 34 (Pt 1): 97–103

    PubMed  CAS  Google Scholar 

  63. Ling PJ, Hern RPA, Hardy JR. Analysis of survival following treatment of tumour-induced hypercalcemia with intravenous pamidronate (APD). Br J Cancer 1998; 72: 206–9

    Article  Google Scholar 

  64. Kristensen B, Ejlertsen B, Mouridsen HT, et al. Survival in breast cancer patients after the first episode of hypercalcemia. J Intern Med 1998; 244: 189–98

    Article  PubMed  CAS  Google Scholar 

  65. Attie MF. Treatment of hypercalcemia. Endocrinol Metab Clin North Am 1989; 18: 807–28

    PubMed  CAS  Google Scholar 

  66. Bilezikian JP. Etiologies and therapy of hypercalcemia. Endocrinol Metab Clin North Am 1989; 18: 389–413

    PubMed  CAS  Google Scholar 

  67. Bilezikian JP. Management of acute hypercalcemia. N Engl J Med 1992; 326: 1196–203

    Article  PubMed  CAS  Google Scholar 

  68. Deftos LJ, First BP. Calcitonin as a drug. Ann Intern Med 1981; 95: 192–7

    PubMed  CAS  Google Scholar 

  69. Canfield RE. Rationale for diphosphonate therapy in hypercalcemia of malignancy. Am J Med 1987; 82Suppl. 2A: 1–5

    Article  PubMed  CAS  Google Scholar 

  70. Fleisch H, Russell RGG, Francis MD. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorbtion in tissue culture and in vivo. Science 1969; 165: 1262–4

    Article  PubMed  CAS  Google Scholar 

  71. Russell RGG, Muhlbauer RC, Bisaz S, et al. The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatite in vitro and on bone resorbtion induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calcif Tissue Res 1970; 6: 183–96

    Article  PubMed  CAS  Google Scholar 

  72. Hirte HW, Major PP, Singh G. Bone metastases: a review of their pathogenesis. Curr Oncol Rep 1998; 5: 114–8

    Google Scholar 

  73. Rogers MJ, Gordon S, Benford HL, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000; 88: 2961–78

    Article  PubMed  CAS  Google Scholar 

  74. Bounameaux HM, Schifferli J, Montani JP, et al. Renal failure associated with intravenous diphophonates [letter]. Lancet 1983; I(8322): 471

    Article  Google Scholar 

  75. Zojer N, Keck AV, Pecherstorfer M. Comparative tolerability of drug therapies for hypercalcaemia of malignancy. Drug Saf 1999; 21: 389–406

    Article  PubMed  CAS  Google Scholar 

  76. O’Rourke NP, McCloskey EV, Vasikaran S, et al. Effective treatment of malignant hypercalcemia with a single intravenous infusion of clodronate. Br J Cancer 1993; 67: 560–3

    Article  PubMed  Google Scholar 

  77. Vinholes J, Guo CY, Purohit OP, et al. Evaluation of new bone resorbtion markers in a randomized comparison of pamidronate and clodronate for hypercalcemia of malignancy. J Clin Oncol 1997; 15(1): 131–8

    PubMed  CAS  Google Scholar 

  78. Gucalp R, Ritch P, Wiernik PH, et al. Comparative study of pamidronate disodium and etidronate disodium in the treatment of cancer-related hypercalcemia. J Clin Oncol 1992; 10: 134–42

    PubMed  CAS  Google Scholar 

  79. Sawyer N, Newstead C, Drummond A, et al. Fast (4-h) or slow (24-h) infusions of pamidronate disodium (aminohydroxypropylidene diphosphonate [APD]) as single short treatment of hypercalcemia. Bone Miner 1990; 9: 121–8

    Article  PubMed  CAS  Google Scholar 

  80. Gucalp R, Theriault R, Gill I, et al. Treatment of cancer-associated hypercalcemia: double-blind comparison of rapid and slow intravenous infusion regimens of pamidronate disodium and saline alone. Arch Intern Med 1994; 154: 1935–44

    Article  PubMed  CAS  Google Scholar 

  81. Nussbaum SR, Younger J, Vandepol CJ, et al. Single-dose intravenous therapy with pamidronate for the treatment of hypercalcemia of malignancy: comparison of 30-, 60-, and 90-mg dosages. Am J Med 1993; 95: 297–304

    Article  PubMed  CAS  Google Scholar 

  82. Nussbaum SR, Warrell Jr RP, Rude R, et al. Dose-response study of alendronate sodium for the treatment of cancer-associated hypercalcemia. J Clin Oncol 1993; 11: 1618–23

    PubMed  CAS  Google Scholar 

  83. Ralston SH, Thieband D, Herrmann Z, et al. Dose-response study of ibandronate in the treatment of cancer-associated hypercalcemia. Br J Cancer 1997; 75: 295–300

    Article  PubMed  CAS  Google Scholar 

  84. Senaratne SG, Colston KW. Mechanisms involved in aminobisphosphonate-induced apoptosis in breast cancer cells [abstract no. 2377]. 92nd Annual Meeting of the American Association for Cancer Research; 2001 Mar 24–28; New Orleans (LA). 42

  85. Wood JM, Bonjean K, Ruetz S, et al. Novel anti-angiogenic effects of the bisphosphonate compound zoledronic acid, a potent inhibitor of bone resorbtion [abstract no. 3166]. 92nd Annual Meeting of the American Association for Cancer Research; 2001 Mar 24–28; New Orleans (LA). 42

  86. Kukreja SC, Shevrin DH, Wimbiscus SA, et al. Antibodies to parathyroid hormone-related protein lower serum calcium in athymic mouse models of malignancy-associated hypercalcemia due to human tumours [abstract no. 60612]. J Clin Invest 1988; 82(5): 1798–802

    Article  PubMed  CAS  Google Scholar 

  87. Capparaelli C, Kostenuik PJ, Morony S, et al. Comparison of osteoprotegerin and pamidronate in a murine model of humoral hypercalcemia of malignancy. J Bone Miner Res 1999; 14Suppl. 1: S163

    Google Scholar 

  88. Kostenuik PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorbtion. Curr Pharm Des 2001; 7: 613–35

    Article  PubMed  CAS  Google Scholar 

  89. El Abdaimi K, Dion N, Papavasiliou V, et al. The vitamin D analog EB1089 prevents skeletal metastasis and prolongs survival time in nude mice transplanted with human breast cancer cells. Cancer Res 2000; 60(16): 4412–8

    PubMed  Google Scholar 

  90. Haq M, Kremer R, Goltzman D, et al. A vitamin D analogue (EB1089) inhibits parathyroid hormone related peptide production and prevents the development of malignancy-associated hypercalcemia in vivo. J Clin Invest 1993; 91: 2416–22

    Article  PubMed  CAS  Google Scholar 

  91. El Abdaimi K, Papavasiliou V, Rabbni SA, et al. Reversal of hypercalcemia with the vitamin D analogue EB 1089 in a human model of squamous cancer. Cancer Res 1999; 59: 3325–8

    PubMed  Google Scholar 

  92. Aklilu F, Park M, Goltzman D, et al. Induction of parathyroid hormone-related peptide by the ras oncogene: role of ras farnesylation inhibitors as potential therapeutic agents for hypercalcemia malignancy. Cancer Res 1997; 57: 4517–22

    PubMed  CAS  Google Scholar 

  93. Hortobagyi GN, Theriault RL, Porter L, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. N Engl J Med 1996; 335: 1785–91

    Article  PubMed  CAS  Google Scholar 

  94. Hortobagyi GN, Theriault RL, Lipton A, et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. J Clin Oncol 1998; 16: 2038–44

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Hotte is a clinical scholar supported by a fellowship grant from the Canadian Institute of Health Research (CIHR), the Canadian Association of Medical Oncology (CAMO) and Eli Lilly Pharmaceuticals. Dr Major is an investigator for several clinical trials with bisphosphonates supported by Novartis and has served as an advisor to Novartis for a FDA meeting. P. Major and his collaborator, R. Cook have received a grant to pursue statistical studies on the methods of analysis of recurrent skeletal events.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien J. Hotte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotte, S.J., Hirte, H.W., Rabbani, S.A. et al. Hypercalcemia of Malignancy. Am J Cancer 1, 179–187 (2002). https://doi.org/10.2165/00024669-200201030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200201030-00003

Keywords

Navigation