Skip to main content
Log in

Role of the Glutamatergic System in Nicotine Dependence

Implications for the Discovery and Development of New Pharmacological Smoking Cessation Therapies

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Preclinical research findings in laboratory animals indicate that the glutamatergic system is critically involved in nicotine dependence. In animals, compounds that decrease glutamatergic neurotransmission, such as antagonists at postsynaptic NMDA receptors, antagonists at excitatory postsynaptic metabotropic glutamate (mGlu) 5 receptors, or agonists at inhibitory presynaptic mGlu2 and mGlu3 receptors, decreased nicotine self-administration or reinstatement of nicotine-seeking behaviour. These findings suggest that medications that decrease glutamatergic transmission overall may reduce the reinforcing effects of tobacco smoking and prevent relapse to tobacco smoking in humans. Furthermore, compounds that increase glutamate release, such as antagonists at mGlu2 and mGlu3 receptors, ameliorated reward deficits associated with nicotine withdrawal in animals, and thus may alleviate the depression-like symptoms associated with nicotine withdrawal in humans. Animal studies also showed that α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptors did not appear to be involved in mediating the primary reinforcing effects of nicotine but that they may be involved in the development of nicotine dependence and withdrawal.

Taken together, the preclinical data indicate that different glutamatergic receptors are involved in the mediation of different aspects of nicotine dependence. These findings have implications for the discovery and development of new pharmacotherapies that target the glutamatergic system to aid in smoking cessation. At present, very few clinical studies have addressed the effects of glutamatergic compounds on cigarette smoking. Clinical studies involving compounds that have actions at ionotropic glutamate receptors are briefly discussed in this review and suggest the potential of glutamatergic compounds as pharmacotherapies to aid in smoking cessation. Medications that target mGlu receptors have recently been tested in human phase II trials for various indications; however, the potential of these mGlu compounds as medications for nicotine dependence remains to be evaluated in humans. The preclinical data evaluated in this review indicate that such clinical trials for smoking cessation with mGlu compounds are clearly warranted and may reveal novel treatments for nicotine dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stolerman IP, Jarvis MJ. The scientific case that nicotine is addictive. Psychopharmacology (Berl) 1995; 117: 2–10; discussion 4-20

    CAS  Google Scholar 

  2. Perry DC, Xiao Y, Nguyen HN, et al. Measuring nicotinic receptors with characteristics of α4β2, α3β2 and α3β4 subtypes in rat tissues by autoradiography. J Neurochem 2002; 82: 468–81

    PubMed  CAS  Google Scholar 

  3. Alkondon M, Albuquerque EX. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 2004; 145: 109–20

    PubMed  CAS  Google Scholar 

  4. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007; 47: 699–729

    PubMed  CAS  Google Scholar 

  5. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 2006; 27: 482–91

    PubMed  CAS  Google Scholar 

  6. Pontieri FE, Tanda G, Orzi F, et al. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 1996; 382: 255–7

    PubMed  CAS  Google Scholar 

  7. Maskos U, Molles BE, Pons S, et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 2005; 436: 103–7

    PubMed  CAS  Google Scholar 

  8. Laviolette SR, van der Kooy D. The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 2004; 5: 55–65

    PubMed  CAS  Google Scholar 

  9. Watkins SS, Koob GF, Markou A. Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine Tob Res 2000; 2: 19–37

    PubMed  CAS  Google Scholar 

  10. Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 2002; 22: 3338–41

    PubMed  CAS  Google Scholar 

  11. Corrigall WA, Coen KM. Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology (Berl) 1991; 104: 171–6

    CAS  Google Scholar 

  12. Markou A. Metabotropic glutamate receptor antagonists: novel therapeutics for nicotine dependence and depression? Biol Psychiatry 2007; 61: 17–22

    PubMed  CAS  Google Scholar 

  13. Kenny PJ, Markou A. The ups and downs of addiction: role of metabotropic glutamate receptors. Trends Pharmacol Sci 2004; 25: 265–72

    PubMed  CAS  Google Scholar 

  14. Mansvelder HD, Keath JR, McGehee DS. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 2002; 33: 905–19

    PubMed  CAS  Google Scholar 

  15. Wonnacott S, Barik J, Dickinson J, et al. Nicotinic receptors modulate transmitter cross talk in the CNS: nicotinic modulation of transmitters. J Mol Neurosci 2006; 30: 137–40

    PubMed  CAS  Google Scholar 

  16. Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci 1997; 20: 92–8

    PubMed  CAS  Google Scholar 

  17. McGehee DS, Heath MJ, Gelber S, et al. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 1995; 269: 1692–6

    PubMed  CAS  Google Scholar 

  18. Schilstrom B, Nomikos GG, Nisell M, et al. N-methyl-D-aspartate receptor antagonism in the ventral tegmental area diminishes the systemic nicotine-induced dopamine release in the nucleus accumbens. Neuroscience 1998; 82: 781–9

    PubMed  CAS  Google Scholar 

  19. Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 2000; 27: 349–57

    PubMed  CAS  Google Scholar 

  20. Schilstrom B, Fagerquist MV, Zhang X, et al. Putative role of presynaptic α7* nicotinic receptors in nicotine stimulated increases of extracellular levels of glutamate and aspartate in the ventral tegmental area. Synapse 2000; 38: 375–83

    PubMed  CAS  Google Scholar 

  21. Grillner P, Svensson TH. Nicotine-induced excitation of mid-brain dopamine neurons in vitro involves ionotropic glutamate receptor activation. Synapse 2000; 38: 1–9

    PubMed  CAS  Google Scholar 

  22. Pidoplichko VI, DeBiasi M, Williams JT, et al. Nicotine activates and desensitizes midbrain dopamine neurons. Nature 1997; 390: 401–4

    PubMed  CAS  Google Scholar 

  23. Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res 1994; 653: 278–84

    PubMed  CAS  Google Scholar 

  24. Picciotto MR, Zoli M, Rimondini R, et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 1998; 391: 173–7

    PubMed  CAS  Google Scholar 

  25. Kalivas PW. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Brain Res Rev 1993; 18: 75–113

    PubMed  CAS  Google Scholar 

  26. Sesack SR, Pickel VM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 1992; 320: 145–60

    PubMed  CAS  Google Scholar 

  27. Geisler S, Derst C, Veh RW, et al. Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 2007; 27: 5730–43

    PubMed  CAS  Google Scholar 

  28. Omelchenko N, Sesack SR. Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources. Neuroscience 2007; 146: 1259–74

    PubMed  CAS  Google Scholar 

  29. Christoph GR, Leonzio RJ, Wilcox KS. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 1986; 6: 613–9

    PubMed  CAS  Google Scholar 

  30. Floresco SB, Yang CR, Phillips AG, et al. Basolateral amygdala stimulation evokes glutamate receptor-dependent dopamine efflux in the nucleus accumbens of the anaesthetized rat. Eur J Neurosci 1998; 10: 1241–51

    PubMed  CAS  Google Scholar 

  31. Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 2001; 21: 4915–22

    PubMed  CAS  Google Scholar 

  32. Sesack SR, Carr DB, Omelchenko N, et al. Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci 2003; 1003: 36–52

    PubMed  CAS  Google Scholar 

  33. Kalivas PW. Neurobiology of cocaine addiction: implications for new pharmacotherapy. Am J Addict 2007; 16: 71–8

    PubMed  Google Scholar 

  34. Kalivas PW, Volkow N, Seamans J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 2005; 45: 647–50

    PubMed  CAS  Google Scholar 

  35. Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2007; 75: 218–65

    PubMed  Google Scholar 

  36. You ZB, Wang B, Zitzman D, et al. A role for conditioned ventral tegmental glutamate release in cocaine seeking. J Neurosci 2007; 27: 10546–55

    PubMed  CAS  Google Scholar 

  37. Rose JE. Multiple brain pathways and receptors underlying tobacco addiction. Biochem Pharmacol 2007; 74: 1263–70

    PubMed  CAS  Google Scholar 

  38. Naqvi NH, Rudrauf D, Damasio H, et al. Damage to the insula disrupts addiction to cigarette smoking. Science 2007; 315: 531–4

    PubMed  CAS  Google Scholar 

  39. Rollema H, Chambers LK, Coe JW, et al. Pharmacological profile of the α4β2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuro-pharmacology 2007; 52: 985–94

    CAS  Google Scholar 

  40. Dwoskin LP, Rauhut AS, King-Pospisil KA, et al. Review of the pharmacology and clinical profile of bupropion, an antidepressant and tobacco use cessation agent. CNS Drug Rev 2006; 12: 178–207

    PubMed  Google Scholar 

  41. Wu P, Wilson K, Dimoulas P, et al. Effectiveness of smoking cessation therapies: a systematic review and meta-analysis. BMC Public Health 2006; 6: 300 [online]. Available from URL: http://www.biomedcentral.com/1471-2458/6/300 [Accessed 2008 Jul 21]

    PubMed  Google Scholar 

  42. Hurt RD, Sachs DP, Glover ED, et al. A comparison of sustained-release bupropion and placebo for smoking cessation. N Engl J Med 1997; 337: 1195–202

    PubMed  CAS  Google Scholar 

  43. Gonzales D, Rennard SI, Nides M, et al. Varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA 2006; 296: 47–55

    PubMed  CAS  Google Scholar 

  44. Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 2005; 179: 4–29

    CAS  Google Scholar 

  45. Schoepp DD. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 2001; 299: 12–20

    PubMed  CAS  Google Scholar 

  46. Pin JP, Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 1995; 34: 1–26

    PubMed  CAS  Google Scholar 

  47. Awad H, Hubert GW, Smith Y, et al. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J Neurosci 2000; 20: 7871–9

    PubMed  CAS  Google Scholar 

  48. Pisani A, Gubellini P, Bonsi P, et al. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 2001; 106: 579–87

    PubMed  CAS  Google Scholar 

  49. Attucci S, Carla V, Mannaioni G, et al. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br J Pharmacol 2001; 132: 799–806

    PubMed  CAS  Google Scholar 

  50. Swanson CJ, Baker DA, Carson D, et al. Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer. J Neurosci 2001; 21: 9043–52

    PubMed  CAS  Google Scholar 

  51. Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 2000; 75: 889–907

    PubMed  CAS  Google Scholar 

  52. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association, 1994

    Google Scholar 

  53. Corrigall WA. Nicotine self-administration in animals as a dependence model. Nicotine Tob Res 1999; 1: 11–20

    PubMed  CAS  Google Scholar 

  54. Rose JE, Corrigall WA. Nicotine self-administration in animals and humans: similarities and differences. Psychopharmacology (Berl) 1997; 130: 28–40

    CAS  Google Scholar 

  55. Malin DH, Lake JR, Newlin-Maultsby P, et al. Rodent model of nicotine abstinence syndrome. Pharmacol Biochem Behav 1992; 43: 779–84

    PubMed  CAS  Google Scholar 

  56. Markou A, Koob GF. Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiol Behav 1992; 51: 111–9

    PubMed  CAS  Google Scholar 

  57. Kenny PJ, Markou A. Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 2006; 31: 1203–11

    PubMed  CAS  Google Scholar 

  58. Harrison AA, Gasparini F, Markou A. Nicotine potentiation of brain stimulation reward reversed by DHβE and SCH 23390, but not by eticlopride, LY 314582 or MPEP in rats. Psychopharmacology (Berl) 2002; 160: 56–66

    CAS  Google Scholar 

  59. Epping-Jordan MP, Watkins SS, Koob GF, et al. Dramatic decreases in brain reward function during nicotine withdrawal. Nature 1998; 393: 76–9

    PubMed  CAS  Google Scholar 

  60. Fagerstrom K, Balfour DJ. Neuropharmacology and potential efficacy of new treatments for tobacco dependence. Expert Opin Investig Drugs 2006; 15: 107–16

    PubMed  Google Scholar 

  61. Liu X, Caggiula AR, Yee SK, et al. Reinstatement of nicotine-seeking behavior by drug-associated stimuli after extinction in rats. Psychopharmacology (Berl) 2006; 184: 417–25

    CAS  Google Scholar 

  62. Palmatier MI, Evans-Martin FF, Hoffman A, et al. Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology (Berl) 2006; 184: 391–400

    CAS  Google Scholar 

  63. Chaudhri N, Caggiula AR, Donny EC, et al. Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology (Berl) 2006; 184: 353–66

    CAS  Google Scholar 

  64. Jonkman S, Risbrough VB, Geyer MA, et al. Spontaneous nicotine withdrawal potentiates the effects of stress in rats. Neuropsychopharmacology. In press

  65. Epstein DH, Preston KL, Stewart J, et al. Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology (Berl) 2006; 189: 1–16

    CAS  Google Scholar 

  66. Shaham Y, Shalev U, Lu L, et al. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 2003; 168: 3–20

    CAS  Google Scholar 

  67. Liechti ME, Lhuillier L, Kaupmann K, et al. Metabotropic glutamate 2/3 receptors in the ventral tegmental area and the nucleus accumbens shell are involved in behaviors relating to nicotine dependence. J Neurosci 2007; 27: 9077–85

    PubMed  CAS  Google Scholar 

  68. Liu X, Caggiula AR, Yee SK, et al. Mecamylamine attenuates cue-induced reinstatement of nicotine-seeking behavior in rats. Neuropsychopharmacology 2007; 32: 710–8

    PubMed  CAS  Google Scholar 

  69. Dravolina OA, Zakharova ES, Shekunova EV, et al. mG1u1 receptor blockade attenuates cue- and nicotine-induced reinstatement of extinguished nicotine self-administration behavior in rats. Neuropharmacology 2007; 52: 263–9

    PubMed  CAS  Google Scholar 

  70. Bespalov AY, Dravolina OA, Sukhanov I, et al. Metabotropic glutamate receptor (mGluR5) antagonist MPEP attenuated cue- and schedule-induced reinstatement of nicotine self-administration behavior in rats. Neuropharmacology 2005; 49Suppl. 1: 167–78

    PubMed  CAS  Google Scholar 

  71. Paterson NE, Froestl W, Markou A. Repeated administration of the GABAB receptor agonist CGP44532 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine-seeking in rats. Neuropsychopharmacology 2005; 30: 119–28

    PubMed  CAS  Google Scholar 

  72. LeSage MG, Burroughs D, Dufek M, et al. Reinstatement of nicotine self-administration in rats by presentation of nicotine-paired stimuli, but not nicotine priming. Pharmacol Biochem Behav 2004; 79: 507–13

    PubMed  CAS  Google Scholar 

  73. Caggiula AR, Donny EC, White AR, et al. Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav 2001; 70: 515–30

    PubMed  CAS  Google Scholar 

  74. Rose JE, Behm FM, Westman EC, et al. Dissociating nicotine and nonnicotine components of cigarette smoking. Pharmacol Biochem Behav 2000; 67: 71–81

    PubMed  CAS  Google Scholar 

  75. Fu Y, Matta SG, Gao W, et al. Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. J Pharmacol Exp Ther 2000; 294: 458–65

    PubMed  CAS  Google Scholar 

  76. Kosowski AR, Liljequist S. The NR2B-selective N-methyl-D-aspartate receptor antagonist Ro 25-6981 [(±)-(R*,S*)-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-l-piperidine propanol] potentiates the effect of nicotine on locomotor activity and dopamine release in the nucleus accumbens. J Pharmacol Exp Ther 2004; 311: 560–7

    PubMed  CAS  Google Scholar 

  77. Shoaib M, Schindler CW, Goldberg SR, et al. Behavioural and biochemical adaptations to nicotine in rats: influence of MK801, an NMD A receptor antagonist. Psychopharmacology (Berl) 1997; 134: 121–30

    CAS  Google Scholar 

  78. Shoaib M, Benwell ME, Akbar MT, et al. Behavioural and neurochemical adaptations to nicotine in rats: influence of NMDA antagonists. Br J Pharmacol 1994; 111: 1073–80

    PubMed  CAS  Google Scholar 

  79. Shoaib M, Stolerman IP. MK801 attenuates behavioural adaptation to chronic nicotine administration in rats. Br J Pharmacol 1992; 105: 514–5

    PubMed  CAS  Google Scholar 

  80. Kenny PJ, Chartoff E, Roberto M, et al. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology 2008. In press

  81. Wang F, Chen H, Steketee JD, et al. Upregulation of ionotropic glutamate receptor subunits within specific mesocorticolimbic regions during chronic nicotine self-administration. Neuropsychopharmacology 2007; 32: 103–9

    PubMed  CAS  Google Scholar 

  82. Papp M, Gruca P, Willner P. Selective blockade of drug-induced place preference conditioning by ACPC, a functional NDMA-receptor antagonist. Neuropsychopharmacology 2002; 27: 727–43

    PubMed  CAS  Google Scholar 

  83. Botreau F, Paolone G, Stewart J. d-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res 2006; 172: 173–8

    PubMed  CAS  Google Scholar 

  84. McMillen B A, Joyner PW, Parmar CA, et al. Effects of NMDA glutamate receptor antagonist drugs on the volitional consumption of ethanol by a genetic drinking rat. Brain Res Bull 2004; 64: 279–84

    PubMed  CAS  Google Scholar 

  85. Backstrom P, Hyytia P. Ionotropic and metabotropic glutamate receptor antagonism attenuates cue-induced cocaine seeking. Neuropsychopharmacology 2006; 31: 778–86

    PubMed  Google Scholar 

  86. Kornhuber J, Weiler M. Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 1997; 41: 135–44

    PubMed  CAS  Google Scholar 

  87. Bisaga A, Popik P, Bespalov AY, et al. Therapeutic potential of NMDA receptor antagonists in the treatment of alcohol and substance use disorders. Expert Opin Investig Drugs 2000; 9: 2233–48

    PubMed  CAS  Google Scholar 

  88. Aracava Y, Pereira EF, Maelicke A, et al. Memantine blocks α7* nicotinic acetylcholine receptors more potently than N-methyl-D-aspartate receptors in rat hippocampal neurons. J Pharmacol Exp Ther 2005; 312: 1195–205

    PubMed  CAS  Google Scholar 

  89. Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 2003; 348: 1333–41

    PubMed  CAS  Google Scholar 

  90. Blokhina EA, Kashkin VA, Zvartau EE, et al. Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice. Eur Neuropsychopharmacol 2005; 15: 219–25

    PubMed  CAS  Google Scholar 

  91. Thuerauf N, Lunkenheimer J, Lunkenheimer B, et al. Memantine fails to facilitate partial cigarette deprivation in smokers: no role of memantine in the treatment of nicotine dependency? J Neural Transm 2007; 114: 351–7

    PubMed  CAS  Google Scholar 

  92. Collins ED, Ward AS, McDowell DM, et al. The effects of memantine on the subjective, reinforcing and cardiovascular effects of cocaine in humans. Behav Pharmacol 1998; 9: 587–98

    PubMed  CAS  Google Scholar 

  93. Collins ED, Vosberg SK, Ward AS, et al. The effects of acute pretreatment with high-dose memantine on the cardiovascular and behavioral effects of cocaine in humans. Exp Clin Psycho-pharmacol 2007; 15: 228–37

    CAS  Google Scholar 

  94. Collins ED, Vosburg SK, Ward AS, et al. Memantine increases cardiovascular but not behavioral effects of cocaine in metha-done-maintained humans. Pharmacol Biochem Behav 2006; 83: 47–55

    PubMed  CAS  Google Scholar 

  95. Comer SD, Sullivan MA. Memantine produces modest reductions in heroin-induced subjective responses in human research volunteers. Psychopharmacology (Berl) 2007; 193: 235–45

    CAS  Google Scholar 

  96. Krupitsky EM, Rudenko AA, Burakov AM, et al. Antigluta-matergic strategies for ethanol detoxification: comparison with placebo and diazepam. Alcohol Clin Exp Res 2007; 31: 604–11

    PubMed  CAS  Google Scholar 

  97. Krupitsky EM, Neznanova O, Masalov D, et al. Effect of memantine on cue-induced alcohol craving in recovering alcohol-dependent patients. Am J Psychiatry 2007; 164: 519–23

    PubMed  Google Scholar 

  98. Evans SM, Levin FR, Brooks DJ, et al. A pilot double-blind treatment trial of memantine for alcohol dependence. Alcohol Clin Exp Res 2007; 31: 775–82

    PubMed  CAS  Google Scholar 

  99. Pierrefiche O, Daoust M, Naassila M. Biphasic effect of acamprosate on NMDA but not on GABAA receptors in spontaneous rhythmic activity from the isolated neonatal rat respiratory network. Neuropharmacology 2004; 47: 35–45

    PubMed  CAS  Google Scholar 

  100. Berton F, Francesconi WG, Madamba SG, et al. Acamprosate enhances N-methyl-D-apartate receptor-mediated neurotransmission but inhibits presynaptic GABA(B) receptors in nucleus accumbens neurons. Alcohol Clin Exp Res 1998; 22: 183–91

    PubMed  CAS  Google Scholar 

  101. Sass H, Soyka M, Mann K, et al. Relapse prevention by acamprosate: results from a placebo-controlled study on alcohol dependence. Arch Gen Psychiatry 1996; 53: 673–80

    PubMed  CAS  Google Scholar 

  102. De Witte P, Littleton J, Parot P, et al. Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action. CNS Drugs 2005; 19: 517–37

    PubMed  Google Scholar 

  103. ClinicalTrials.gov, a service of the US National Institutes of Health. Pilot trial of acamprosate for the treatment of cocaine dependence [online]. Available from URL: http://www.clinicaltrials.gov/ct2/results?.term=NCT00385268 [Accessed 2008 Jul 2]

  104. Ohishi H, Shigemoto R, Nakanishi S, et al. Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 1993; 53: 1009–18

    PubMed  CAS  Google Scholar 

  105. Ohishi H, Shigemoto R, Nakanishi S, et al. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J Comp Neurol 1993; 335: 252–66

    PubMed  CAS  Google Scholar 

  106. Rorick-Kehn LM, Perkins EJ, Knitowski KM, et al. Improved bioavailability of the mGlu2/3 receptor agonist LY354740 using a prodrug strategy: in vivo pharmacology of LY 544344. J Pharmacol Exp Ther 2006; 316: 905–13

    PubMed  CAS  Google Scholar 

  107. Higgins GA, Miczek KA. Glutamate receptor subtypes: promising new pharmacotherapeutic targets. Psychopharmacology (Berl) 2005; 179: 1–3

    CAS  Google Scholar 

  108. Kosowski AR, Cebers G, Cebere A, et al. Nicotine-induced dopamine release in the nucleus accumbens is inhibited by the novel AMPA antagonist ZK200775 and the NMDA antagonist CGP 39551. Psychopharmacology (Berl) 2004; 175: 114–23

    CAS  Google Scholar 

  109. Kenny PJ, Gasparini F, Markou A. Group II metabotropic and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors regulate the deficit in brain reward function associated with nicotine withdrawal in rats. J Pharmacol Exp Ther 2003; 306: 1068–76

    PubMed  CAS  Google Scholar 

  110. Gryder DS, Rogawski MA. Selective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J Neurosci 2003; 23: 7069–74

    PubMed  CAS  Google Scholar 

  111. Johnson BA, Ait-Daoud N, Bowden CL, et al. Oral topiramate for treatment of alcohol dependence: a randomised controlled trial. Lancet 2003; 361: 1677–85

    PubMed  CAS  Google Scholar 

  112. Zullino DF, Krenz S, Zimmerman G, et al. Topiramate in opiate withdrawal: comparison with clonidine and with carbamazepine/mianserin. Subst Abus 2005; 25: 27–33

    Google Scholar 

  113. Kampman KM, Pettinati H, Lynch KG, et al. A pilot trial of topiramate for the treatment of cocaine dependence. Drug Alcohol Depend 2004; 75: 233–40

    PubMed  CAS  Google Scholar 

  114. Schiffer WK, Gerasimov MR, Marsteller DA, et al. Topiramate selectively attenuates nicotine-induced increases in monoamine release. Synapse 2001; 42: 196–8

    PubMed  CAS  Google Scholar 

  115. Sofuoglu M, Poling J, Mouratidis M, et al. Effects of topiramate in combination with intravenous nicotine in overnight abstinent smokers. Psychopharmacology (Berl) 2006; 184: 645–51

    CAS  Google Scholar 

  116. Reid MS, Palamar J, Raghavan S, et al. Effects of topiramate on cue-induced cigarette craving and the response to a smoked cigarette in briefly abstinent smokers. Psychopharmacology (Berl) 2007; 192: 147–58

    CAS  Google Scholar 

  117. Johnson BA, Ait-Daoud N, Akhtar FZ, et al. Use of oral topiramate to promote smoking abstinence among alcohol-dependent smokers: a randomized controlled trial. Arch Intern Med 2005; 165: 1600–5

    PubMed  CAS  Google Scholar 

  118. Khazaal Y, Cornuz J, Bilancioni R, et al. Topiramate for smoking cessation. Psychiatry Clin Neurosci 2006; 60: 384–8

    PubMed  CAS  Google Scholar 

  119. Anthenelli RM, Blom TJ, McElroy SL, et al. Preliminary evidence for gender-specific effects of topiramate as a potential aid to smoking cessation. Addiction 2008; 103: 687–94

    PubMed  Google Scholar 

  120. Moghaddam B, Bolinao ML. Glutamatergic antagonists attenuate ability of dopamine uptake blockers to increase extracellular levels of dopamine: implications for tonic influence of glutamate on dopamine release. Synapse 1994; 18: 337–42

    PubMed  CAS  Google Scholar 

  121. Bleakman D, Alt A, Witkin JM. AMPA receptors in the therapeutic management of depression. CNS Neurol Disord Drug Targets 2007; 6: 117–26

    PubMed  CAS  Google Scholar 

  122. Alt A, Nisenbaum ES, Bleakman D, et al. A role for AMPA receptors in mood disorders. Biochem Pharmacol 2006; 71: 1273–88

    PubMed  CAS  Google Scholar 

  123. Paul IA, Skolnick P. Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci 2003; 1003: 250–72

    PubMed  CAS  Google Scholar 

  124. Li X, Witkin JM, Need AB, et al. Enhancement of antidepressant potency by a potentiator of AMPA receptors. Cell Mol Neurobiol 2003; 23: 419–30

    PubMed  CAS  Google Scholar 

  125. Peters J, Kalivas PW. The group II metabotropic glutamate receptor agonist, LY379268, inhibits both cocaine- and food-seeking behavior in rats. Psychopharmacology (Berl) 2006; 186: 143–9

    CAS  Google Scholar 

  126. Bossert JM, Liu SY, Lu L, et al. A role of ventral tegmental area glutamate in contextual cue-induced relapse to heroin seeking. J Neurosci 2004; 24: 10726–30

    PubMed  CAS  Google Scholar 

  127. Bossert JM, Gray SM, Lu L, et al. Activation of group II metabotropic glutamate receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology 2006; 31: 2197–209

    PubMed  CAS  Google Scholar 

  128. Zhao Y, Dayas CV, Aujla H, et al. Activation of group II metabotropic glutamate receptors attenuates both stress and cue-induced ethanol-seeking and modulates c-fos expression in the hippocampus and amygdala. J Neurosci 2006; 26: 9967–74

    PubMed  CAS  Google Scholar 

  129. Rodd ZA, McKinzie DL, Bell RL, et al. The metabotropic glutamate 2/3 receptor agonist LY404039 reduces alcohol-seeking but not alcohol self-administration in alcohol-preferring (P) rats. Behav Brain Res 2006; 171: 207–15

    PubMed  CAS  Google Scholar 

  130. Baptista MA, Martin-Fardon R, Weiss F. Effects of LY379268, an mGlu2/3 agonist, on cocaine self-administration and cocaine prime-induced cocaine seeking behavior in cocaineescalated versus nonescalated rats [program no. 561.3]. Washington, DC: Society for Neuroscience, 2005 [online]. Available from URL: http://sfn.scholarone.com/itin2005/index.html [Accessed 2008 Jul 21]

  131. Liechti ME, Markou A. Interactive effects of the mGlu5 receptor antagonist MPEP and the mGlu2/3 receptor antagonist LY341495 on nicotine self-administration and reward deficits associated with nicotine withdrawal in rats. Eur J Pharmacol 2007; 554: 164–74

    PubMed  CAS  Google Scholar 

  132. Chiamulera C, Epping-Jordan MP, Zocchi A, et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 2001; 4: 873–4

    PubMed  CAS  Google Scholar 

  133. Kenny PJ, Boutrel B, Gasparini F, et al. Metabotropic glutamate 5 receptor blockade may attenuate cocaine self-administration by decreasing brain reward function in rats. Psychopharmacology (Berl) 2005; 179: 247–54

    CAS  Google Scholar 

  134. Kenny PJ, Paterson NE, Boutrel B, et al. Metabotropic glutamate 5 receptor antagonist MPEP decreased nicotine and cocaine self-administration but not nicotine and cocaine-induced facilitation of brain reward function in rats. Ann N Y Acad Sci 2003; 1003: 415–8

    PubMed  CAS  Google Scholar 

  135. Paterson NE, Semenova S, Gasparini F, et al. The mGluR5 antagonist MPEP decreased nicotine self-administration in rats and mice. Psychopharmacology (Berl) 2003; 167: 257–64

    CAS  Google Scholar 

  136. Paterson NE, Markou A. The metabotropic glutamate receptor 5 antagonist MPEP decreased break points for nicotine, cocaine and food in rats. Psychopharmacology (Berl) 2005; 179: 255–61

    CAS  Google Scholar 

  137. Tessari M, Pilla M, Andreoli M, et al. Antagonism at metabotropic glutamate 5 receptors inhibits nicotine- and cocaine-taking behaviours and prevents nicotine-triggered relapse to nicotine-seeking. Eur J Pharmacol 2004; 499: 121–33

    PubMed  CAS  Google Scholar 

  138. McFarland K, Lapish CC, Kalivas PW. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 2003; 23: 3531–7

    PubMed  CAS  Google Scholar 

  139. Cornish JL, Kalivas PW. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 2000; 20: RC89 [online]. Available from URL: http://www.jneurosci.org/cgi/content/abstract/20/15/RC89 [Accessed 2008 Jul 21]

  140. Moran MM, McFarland K, Melendez RI, et al. Cystine/glutamate exchange regulates metabotropic glutamate receptor pre-synaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 2005; 25: 6389–93

    PubMed  CAS  Google Scholar 

  141. Baker DA, McFarland K, Lake RW, et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 2003; 6: 743–9

    PubMed  CAS  Google Scholar 

  142. Adewale AS, Platt DM, Spealman RD. Pharmacological stimulation of group II metabotropic glutamate receptors reduces cocaine self-administration and cocaine-induced reinstatement of drug seeking in squirrel monkeys. J Pharmacol Exp Ther 2006; 318: 922–31

    PubMed  CAS  Google Scholar 

  143. Bossert JM, Poles GC, Sheffler-Collins SI, et al. The mGluR2/3 agonist LY379268 attenuates context- and discrete cue-induced reinstatement of sucrose seeking but not sucrose self-administration in rats. Behav Brain Res 2006; 173: 148–52

    PubMed  CAS  Google Scholar 

  144. Bossert JM, Busch RF, Gray SM. The novel mGluR2/3 agonist LY379268 attenuates cue-induced reinstatement of heroin seeking. Neuroreport 2005; 16: 1013–6

    PubMed  CAS  Google Scholar 

  145. Backstrom P, Hyytia P. Suppression of alcohol self-administration and cue-induced reinstatement of alcohol seeking by the mGlu2/3 receptor agonist LY379268 and the mGlu8 receptor agonist (S)-3,4-DCPG. Eur J Pharmacol 2005; 528: 110–8

    PubMed  Google Scholar 

  146. Baptista MA, Martin-Fardon R, Weiss F. Preferential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on conditioned reinstatement versus primary reinforcement: comparison between cocaine and a potent conventional reinforcer. J Neurosci 2004; 24: 4723–7

    PubMed  CAS  Google Scholar 

  147. Xi ZX, Baker DA, Shen H, et al. Group II metabotropic glutamate receptors modulate extracellular glutamate in the nucleus accumbens. J Pharmacol Exp Ther 2002; 300: 162–71

    PubMed  CAS  Google Scholar 

  148. Liechti ME, Markou A. Metabotropic glutamate 2/3 receptor activation induced reward deficits but did not aggravate brain reward deficits associated with spontaneous nicotine withdrawal in rats. Biochem Pharmacol 2007; 74: 1299–307

    PubMed  CAS  Google Scholar 

  149. Rada P, Jensen K, Hoebel BG. Effects of nicotine and mecamy-lamine-induced withdrawal on extracellular dopamine and acetylcholine in the rat nucleus accumbens. Psychopharmacology (Berl) 2001; 157: 105–10

    CAS  Google Scholar 

  150. Hildebrand BE, Nomikos GG, Hertel P, et al. Reduced dopamine output in the nucleus accumbens but not in the medial prefrontal cortex in rats displaying a mecamylamine-precipitated nicotine withdrawal syndrome. Brain Res 1998; 779: 214–25

    PubMed  CAS  Google Scholar 

  151. Karasawa J, Yoshimizu T, Chaki S. A metabotropic glutamate 2/3 receptor antagonist, MGS0039, increases extracellular dopamine levels in the nucleus accumbens shell. Neurosci Lett 2006; 393: 127–30

    PubMed  CAS  Google Scholar 

  152. Hughes JR. Effects of abstinence from tobacco: valid symptoms and time course. Nicotine Tob Res 2007; 9: 315–27

    PubMed  Google Scholar 

  153. Hughes JR. Effects of abstinence from tobacco: etiology, animal models, epidemiology, and significance: a subjective review. Nicotine Tob Res 2007; 9: 329–39

    PubMed  Google Scholar 

  154. Rasmussen K, Hsu MA, Vandergriff J. The selective mGlu2/3 receptor antagonist LY341495 exacerbates behavioral signs of morphine withdrawal and morphine-withdrawal-induced activation of locus coeruleus neurons. Neuropharmacology 2004; 46: 620–8

    PubMed  CAS  Google Scholar 

  155. Vandergriff J, Rasmussen K. The selective mGlu2/3 receptor agonist LY354740 attenuates morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropharmacology 1999; 38: 217–22

    PubMed  CAS  Google Scholar 

  156. Sepulveda J, Oliva P, Contreras E. Neurochemical changes of the extracellular concentrations of glutamate and aspartate in the nucleus accumbens of rats after chronic administration of morphine. Eur J Pharmacol 2004; 483: 249–58

    PubMed  CAS  Google Scholar 

  157. Grillon C, Cordova J, Levine LR, et al. Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology (Berl) 2003; 168: 446–54

    CAS  Google Scholar 

  158. Schoepp DD, Wright RA, Levine LR, et al. LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/ stress. Stress 2003; 6: 189–97

    PubMed  CAS  Google Scholar 

  159. Levine L, Gaydos B, Sheehan D, et al. The mGlu2/3 receptor agonist, LY354740, reduces panic anxiety induced by CO2 challenge in patients diagnosed with panic disorder. Neuropharmacology 2002; 43: 294–5

    Google Scholar 

  160. Kellner M, Muhtz C, Stark K, et al. Effects of a metabotropic glutamate(2/3) receptor agonist (LY544344/LY354740) on panic anxiety induced by cholecystokinin tetrapeptide in healthy humans: preliminary results. Psychopharmacology (Berl) 2005; 179: 310–5

    CAS  Google Scholar 

  161. Bergink V, Westenberg HG. Metabotropic glutamate II receptor agonists in panic disorder: a double blind clinical trial with LY 354740. Int Clin Psychopharmacol 2005; 20: 291–3

    PubMed  Google Scholar 

  162. Dunayevich E, Erickson J, Levine L, et al. Efficacy and tolerability of an mGlu2/3 agonist in the treatment of generalized anxiety disorder. Neuropsychopharmacology 2008; 33: 1603–10

    PubMed  CAS  Google Scholar 

  163. Michelson D, Levin LR, Dellva MA, et al. Clinical studies with mGlu2/3 receptor agonists: LY354740 compared with placebo in patients with generalized anxiety disorder. Neuropharmacology 2005; 49Suppl. 1: 257

    Google Scholar 

  164. Krystal JH, Abi-Saab W, Perry E, et al. Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pre-treatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl) 2005; 179: 303–9

    CAS  Google Scholar 

  165. Paul ST, Zhang L, Martenyi F, et al. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 2007; 13: 1102–7

    Google Scholar 

  166. Johnson MP, Baez M, Jagdman Jr GE, et al. Discovery of allosteric potentiators for the metabotropic glutamate 2 receptor: synthesis and subtype selectivity of N-(4-(2-methoxyphenoxy)phenyl)-N-(2,2,2-trifluoroethylsulfonyl)pyrid-3-yl-methylamine. J Med Chem 2003; 46: 3189–92

    PubMed  CAS  Google Scholar 

  167. Pinkerton AB, Vernier JM, Schaffhauser H, et al. Phenyltetrazolyl acetophenones: discovery of positive allosteric potentiatiors for the metabotropic glutamate 2 receptor. J Med Chem 2004; 47: 4595–9

    PubMed  CAS  Google Scholar 

  168. Benneyworth MA, Xiang Z, Smith RL, et al. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol Pharmacol 2007; 72: 477–84

    PubMed  CAS  Google Scholar 

  169. Neale JH, Bzdega T, Wroblewska B. N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 2000; 75: 443–52

    PubMed  CAS  Google Scholar 

  170. Popik P, Kozela E, Wrobel M, et al. Morphine tolerance and reward but not expression of morphine dependence are inhibited by the selective glutamate carboxypeptidase II (GCP II, NAALADase) inhibitor, 2-PMPA. Neuropsychopharmacology 2003; 28: 457–67

    PubMed  CAS  Google Scholar 

  171. Slusher BS, Thomas A, Paul M, et al. Expression and acquisition of the conditioned place preference response to cocaine in rats is blocked by selective inhibitors of the enzyme N-acetylated-alpha-linked-acidic dipeptidase (NAALADASE). Synapse 2001; 41: 22–8

    PubMed  CAS  Google Scholar 

  172. Shippenberg TS, Rea W, Slusher BS. Modulation of behavioral sensitization to cocaine by NAALADase inhibition. Synapse 2000; 38: 161–6

    PubMed  CAS  Google Scholar 

  173. Baker DA, McFarland K, Lake RW, et al. N-acetyl cysteine-induced blockade of cocaine-induced reinstatement. Ann N Y Acad Sci 2003; 1003: 349–51

    PubMed  Google Scholar 

  174. Zhou W, Kalivas PW. N-acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biol Psychiatry 2008; 63: 338–40

    PubMed  CAS  Google Scholar 

  175. Mardikian PN, LaRowe SD, Hedden S, et al. An open-label trial of N-acetylcysteine for the treatment of cocaine dependence: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 389–94

    PubMed  CAS  Google Scholar 

  176. LaRowe SD, Myrick H, Hedden S, et al. Is cocaine desire reduced by N-acetylcysteine? Am J Psychiatry 2007; 164: 1115–7

    PubMed  Google Scholar 

  177. LaRowe SD, Mardikian P, Malcolm R, et al. Safety and tolerability of N-acetylcysteine in cocaine-dependent individuals. Am J Addict 2006; 15: 105–10

    PubMed  Google Scholar 

  178. Grant JE, Kim SW, Odlaug BL. N-Acetylcysteine, a glutamate-modulating agent, in the treatment of pathological gambling: a pilot study. Biol Psychiatry 2007; 62: 652–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute on Drug Abuse grants DA11946 and DA023209, and Tobacco-Related Disease Research Program grant 15RT-0022 awarded to Athina Markou. Athina Markou’s laboratory was a recipient of a research grant from Novartis Pharma AG on metabotropic glutamate receptors. Athina Markou and colleagues have submitted a patent application regarding the use of metabotropic glutamate receptor compounds for smoking cessation. Matthias Liechti was supported by fellowship awards from the Swiss National Science Foundation (SNF-PBZHB-108501, SSMBS 1246 and F. Hofmann-La Roche Ltd, Basel, Switzerland). He has no other conflicts of interest to declare that are directly relevant to the content of this review. The authors would like to thank Mr Mike Arends for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athina Markou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liechti, M.E., Markou, A. Role of the Glutamatergic System in Nicotine Dependence. CNS Drugs 22, 705–724 (2008). https://doi.org/10.2165/00023210-200822090-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200822090-00001

Keywords

Navigation