Skip to main content
Log in

Neuraxial Drug Administration

A Review of Treatment Options for Anaesthesia and Analgesia

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Neuraxial drug administration describes techniques that deliver drugs in close proximity to the spinal cord, i.e. intrathecally into the CSF or epidurally into the fatty tissues surrounding the dura, by injection or infusion. This approach was initially developed in the form of spinal anaesthesia over 100 years ago. Since then, neuraxial drug administration has evolved and now includes a wide range of techniques to administer a large number of different drugs to provide anaesthesia, but also analgesia and treatment of spasticity in a variety of acute and chronic settings.

This review concentrates on the pharmacological agents used and the clinical basis behind currently utilised approaches to neuraxial drug administration. With regard to local anaesthetics, the main focus is on the development of the enantiomer-specific compounds ropivacaine and levobupivacaine, which provide similar efficacy to bupivacaine with a reduced risk of severe cardiotoxicity. Opioids are the other group of drugs widely used neuraxially, in particular to provide analgesia alone or more commonly in combination with other agents. The physicochemical properties of the various opioids explain the main differences in efficacy and safety between these drugs when used intrathecally, of which morphine, fentanyl and sufentanil are most commonly used. Another group of drugs including clonidine, dexmedetomidine and epinephrine (adrenaline) provide neuraxial analgesia via α-adrenergic receptors and are used mainly as adjuvants to local anaesthetics and opioids. Furthermore, intrathecal baclofen is in routine clinical use to treat spasticity in a number of neurological conditions.

Beside these established approaches, a wide range of other drugs have been assessed for neuraxial administration to provide analgesia; however, most are in various early stages of investigation and are not used routinely. These drugs include neostigmine, ketamine, midazolam and adenosine, and the conotoxin ziconotide. The latter is possibly the most unusual compound here; it has recently gained registration for intrathecal use in specific chronic pain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Brill S, Gurman GM, Fisher A. A history of neuraxial administration of local analgesics and opioids. Eur J Anaesthesiol 2003; 20(9): 682–9

    Article  PubMed  CAS  Google Scholar 

  2. Bier A. Versuche über Cocainisierung des Rückenmarkes. Dtsch Zeitschr Chirurg 1899; 51: 361–9

    Article  Google Scholar 

  3. Marx G. The first spinal anesthesia. Reg Anesth 1994; 19(6): 429–30

    PubMed  CAS  Google Scholar 

  4. Yaksh TL, Rudy TA. Analgesia mediated by a direct spinal action of narcotics. Science 1976; 192(4246): 1357–8

    Article  PubMed  CAS  Google Scholar 

  5. Wang JK, Nauss LA, Thomas JE. Pain relief by intrathecally applied morphine in man. Anesthesiology 1979; 50(2): 149–51

    Article  PubMed  CAS  Google Scholar 

  6. Cousins MJ, Mather LE. Intrathecal and epidural administration of opioids. Anesthesiology 1984; 61: 276–310

    Article  PubMed  CAS  Google Scholar 

  7. Maltby JR, Hutter CD, Clayton KC. The Woolley and Roe case. Br J Anaesth 2000; 84(1): 121–6

    Article  PubMed  CAS  Google Scholar 

  8. Hodgson PS, Neal JM, Pollock JE, et al. The neurotoxicity of drugs given intrathecally (spinal). Anesth Analg 1999; 88(4): 797–809

    PubMed  CAS  Google Scholar 

  9. Yaksh TL, Allen JW. The use of intrathecal midazolam in humans: a case study of process. Anesth Analg 2004; 98(6): 1536–45

    Article  PubMed  Google Scholar 

  10. Baxter AD. Continuous spinal anesthesia: the Canadian perspective. Reg Anesth 1993; 18(6 Suppl.): 414–8

    PubMed  CAS  Google Scholar 

  11. Rigler ML, Drasner K, Krejcie TC, et al. Cauda equina syndrome after continuous spinal anesthesia. Anesth Analg 1991; 72(3): 275–81

    Article  PubMed  CAS  Google Scholar 

  12. Schell RM, Brauer FS, Cole DJ, et al. Persistent sacral nerve root deficits after continuous spinal anaesthesia. Can J Anaesth 1991; 38(7): 908–11

    Article  PubMed  CAS  Google Scholar 

  13. Horlocker TT, McGregor DG, Matsushige DK, et al. Neurologic complications of 603 consecutive continuous spinal anesthetics using macrocatheter and microcatheter techniques. Perioperative Outcomes Group. Anesth Analg 1997; 84(5): 1063–70

    CAS  Google Scholar 

  14. Denny NM, Seiander DE. Continuous spinal anaesthesia. Br J Anaesth 1998; 81(4): 590–7

    Article  PubMed  CAS  Google Scholar 

  15. Bevacqua BK. Continuous spinal anaesthesia: what’s new and what’s not. Best Pract Res Clin Anaesthesiol 2003; 17(3): 393–406

    Article  PubMed  Google Scholar 

  16. Osenbach RK, Harvey S. Neuraxial infusion in patients with chronic intractable cancer and noncancer pain. Curr Pain Headache Rep 2001; 5(3): 241–9

    Article  PubMed  CAS  Google Scholar 

  17. Broseta J, Garcia-March G, Sanchez-Ledesma MJ, et al. Chronic intrathecal baclofen administration in severe spasticity. Stereotact Funct Neurosurg 1990; 54-55: 147–53

    Article  Google Scholar 

  18. Rathmell JP, Lair TR, Nauman B. The role of intrathecal drugs in the treatment of acute pain. Anesth Analg 2005; 101(5 Suppl.): S30–43

    Article  PubMed  Google Scholar 

  19. Cook TM. Combined spinal-epidural techniques. Anaesthesia 2000; 55(1): 42–64

    Article  PubMed  CAS  Google Scholar 

  20. Phillips OC, Ebner H, Nelson AT, et al. Neurologic complications following spinal anesthesia with lidocaine: a prospective review of 10,440 cases. Anesthesiology 1969; 30(3): 284–9

    Article  PubMed  CAS  Google Scholar 

  21. Schneider M, Ettlin T, Kaufmann M, et al. Transient neurologic toxicity after hyperbaric subarachnoid anesthesia with 5% lidocaine. Anesth Analg 1993; 76(5): 1154–7

    Article  PubMed  CAS  Google Scholar 

  22. Pollock JE. Transient neurologic symptoms: etiology, risk factors, and management. Reg Anesth Pain Med 2002; 27(6): 581–6

    PubMed  Google Scholar 

  23. Pollock JE, Burkhead D, Neal JM, et al. Spinal nerve function in five volunteers experiencing transient neurologic. Anesth Analg 2000; 90(3): 658–65

    Article  PubMed  CAS  Google Scholar 

  24. Zaric D, Christiansen C, Pace NL, et al. Transient neurologic symptoms after spinal anesthesia with lidocaine versus other local anesthetics: a systematic review of randomized, controlled trials. Anesth Analg 2005; 100(6): 1811–6

    Article  PubMed  CAS  Google Scholar 

  25. Pollock JE. Neurotoxicity of intrathecal local anaesthetics and transient neurological symptoms. Best Pract Res Clin Anaesthesiol 2003; 17(3): 471–84

    Article  PubMed  CAS  Google Scholar 

  26. Gaiser R. Should intrathecal lidocaine be used in the 21st century? J Clin Anesth 2000; 12: 476–81

    Article  PubMed  CAS  Google Scholar 

  27. Tsen LC, Schultz R, Martin R, et al. Intrathecal low-dose bupivacaine versus lidocaine for in vitro fertilization procedures. Reg Anesth Pain Med 2001; 26(1): 52–6

    PubMed  CAS  Google Scholar 

  28. Beilin Y, Zahn J, Abramovitz S, et al. Subarachnoid small-dose bupivacaine versus lidocaine for cervical cerclage. Anesth Analg 2003; 97(1): 56–61

    Article  PubMed  CAS  Google Scholar 

  29. Buckenmaier III CC, Nielsen KC, Pietrobon R, et al. Small-dose intrathecal lidocaine versus ropivacaine for anorectal surgery in an ambulatory setting. Anesth Analg 2002; 95(5): 1253–7

    Article  PubMed  CAS  Google Scholar 

  30. Albright GA. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology 1979; 51(4): 285–7

    Article  PubMed  CAS  Google Scholar 

  31. Sidebotham DA, Schug SA. Stereochemistry in anaesthesia. Clin Exp Pharmacol Physiol 1997; 24(2): 126–30

    Article  PubMed  CAS  Google Scholar 

  32. Wildsmith JA, Brown DT, Paul D, et al. Structure-activity relationships in differential nerve block at high and low frequency stimulation. Br J Anaesth 1989; 63(4): 444–52

    Article  PubMed  CAS  Google Scholar 

  33. Whiteside JB, Wildsmith JA. Developments in local anaesthetic drugs. Br J Anaesth 2001; 87(1): 27–35

    Article  PubMed  CAS  Google Scholar 

  34. Halpern SH, Walsh V. Epidural ropivacaine versus bupivacaine for labor: a meta-analysis. Anesth Analg 2003; 96(5): 1473–9

    Article  PubMed  CAS  Google Scholar 

  35. Feldman HS, Arthur GR, Covino BG. Comparative systemic toxicity of convulsant and supraconvulsant doses of intravenous ropivacaine, bupivacaine, and lidocaine in the conscious dog. Anesth Analg 1989; 69(6): 794–801

    Article  PubMed  CAS  Google Scholar 

  36. Groban L, Deal DD, Vernon JC, et al. Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, levobupivacaine, and ropivacaine in anesthetized dogs. Anesth Analg 2001; 92(1): 37–43

    Article  PubMed  CAS  Google Scholar 

  37. Scott DB, Lee A, Fagan D, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989; 69(5): 563–9

    Article  PubMed  CAS  Google Scholar 

  38. Knudsen K, Beckman-Suurkula S, Blomberg S, et al. Central nervous and cardiovascular effects of iv infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 1997; 78(5): 507–14

    Article  PubMed  CAS  Google Scholar 

  39. Korman B, Riley R. Convulsions induced by ropivacaine during interscalene brachial plexus block. Anesth Analg 1997; 85(5): 1128–9

    PubMed  CAS  Google Scholar 

  40. Plowman AN, Bolsin S, Mather LE. Central nervous system toxicity attributable to epidural ropivacaine hydrochloride. Anaesth Intensive Care 1998; 26: 204–6

    PubMed  CAS  Google Scholar 

  41. Borgeat A, Ruetsch YA, Jorg M. Convulsions induced by ropivacaine during interscalene brachial plexus block [letter]. Anesth Analg 1998; 87(2): 497

    PubMed  CAS  Google Scholar 

  42. Chazalon P, Tourtier JP, Villevielle T, et al. Ropivacaine-induced cardiac arrest after peripheral nerve block: successful resuscitation. Anesthesiology 2003; 99(6): 1449–51

    Article  PubMed  Google Scholar 

  43. Huet O, Eyrolle LJ, Mazoit JX, et al. Cardiac arrest after injection of ropivacaine for posterior lumbar plexus blockade. Anesthesiology 2003; 99(6): 1451–3

    Article  PubMed  Google Scholar 

  44. Gielen M, Slappendel R, Jack N. Successful defibrillation immediately after the intravascular injection of ropivacaine. Can J Anaesth 2005; 52(5): 490–2

    Article  PubMed  Google Scholar 

  45. Soltesz EG, van Pelt F, Byrne JG. Emergent cardiopulmonary bypass for bupivacaine cardiotoxicity. J Cardiothorac Vasc Anesth 2003; 17(3): 357–8

    Article  PubMed  Google Scholar 

  46. Dernedde M, Furlan D, Verbesselt R, et al. Grand mal convulsion after an accidental intravenous injection of ropivacaine. Anesth Analg 2004; 98(2): 521–3

    Article  PubMed  Google Scholar 

  47. Pfeiffer G, Bar K, Neubauer P, et al. [Inadvertent intravenous infusion of 380mg ropivacaine]. Anaesthesist 2004; 53(7): 633–6

    Article  PubMed  CAS  Google Scholar 

  48. Polley LS, Santos AC. Cardiac arrest following regional anesthesia with ropivacaine: here we go again! Anesthesiology 2003; 99(6): 1253–4

    Article  PubMed  Google Scholar 

  49. Kerkkamp HEM, Gielen MJM, Edstrom HH. Comparison of 0.75% ropivacaine with epinephrine and 0.75% bupivacaine with epinephrine in lumbar epidural anesthesia. Reg Anesth 1990; 15: 204–7

    PubMed  CAS  Google Scholar 

  50. Brockway MS, Bannister J, McClure JH, et al. Comparison of extradural ropivacaine and bupivacaine. Br J Anaesth 1991; 66: 31–7

    Article  PubMed  CAS  Google Scholar 

  51. Douglas MJ, Weeks SB, Writer WD, et al. A double-blind comparison between epidural ropivacaine 0.25% and bupivacaine 0.25% for the relief of childbirth pain: report of a multicentre study. Reg Anesth 1994; 19(2S): 52

    Google Scholar 

  52. Owen MD, D’Angelo R, Gerancher JC, et al. 0.125% ropivacaine is similar to 0.125% bupivacaine for labor analgesia using patient-controlled epidural infusion. Anesth Analg 1998; 86: 523–6

    Google Scholar 

  53. Whiteside JB, Burke D, Wildsmith JA. Comparison of ropivacaine 0.5% (in glucose 5%) with bupivacaine 0.5% (in glucose 8%) for spinal anaesthesia for elective surgery. Br J Anaesth 2003; 90(3): 304–8

    Article  PubMed  CAS  Google Scholar 

  54. D’Angelo R, James RL. Is ropivacaine less potent than bupivacaine? Anesthesiology 1999; 90(4): 941–3

    Article  PubMed  Google Scholar 

  55. Polley LS, Columb MO, Naughton NN, et al. Relative analgesic potencies of ropivacaine and bupivacaine for epidural analgesia in labor: implications for therapeutic indexes. Anesthesiology 1999; 90(4): 944–50

    Article  PubMed  CAS  Google Scholar 

  56. Capogna G, Cellono D, Fusco P, et al. Relative potencies of bupivacaine and ropivacaine for analgesia in labour. Br J Anaesth 1999; 82(3): 371–3

    Article  PubMed  CAS  Google Scholar 

  57. Camorcia M, Capogna G, Columb MO. Minimum local analgesic doses of ropivacaine, levobupivacaine, and bupivacaine for intrathecal labor analgesia. Anesthesiology 2005; 102(3): 646–50

    Article  PubMed  CAS  Google Scholar 

  58. Dahm P, Lundborg C, Janson M, et al. Comparison of 0.5% intrathecal bupivacaine with 0.5% intrathecal ropivacaine in the treatment of refractory cancer and noncancer pain conditions: results from a prospective, crossover, double-blind, randomized study. Reg Anesth Pain Med 2000; 25(5): 480–7

    PubMed  CAS  Google Scholar 

  59. Finucane BT. Ropivacaine: a worthy replacement for bupivacaine? Can J Anaesth 1990; 37: 722–5

    Article  PubMed  CAS  Google Scholar 

  60. Denson DD, Behbehani MM, Gregg RV. Enantiomer-specific effects of an intravenously administered arrhythmogenic dose of bupivacaine on neurons of the nucleus tractus solitarius and the cardiovascular system in the anesthetized rat. Reg Anesth 1992; 17: 311–6

    PubMed  CAS  Google Scholar 

  61. Mather LE, Huang YF, Veering B, et al. Systemic and regional pharmacokinetics of levobupivacaine and bupivacaine enantiomers in sheep. Anesth Analg 1998; 86(4): 805–11

    PubMed  CAS  Google Scholar 

  62. Huang YF, Pryor ME, Mather LE, et al. Cardiovascular and central nervous system effects of intravenous levobupivacaine and bupivacaine in sheep. Anesth Analg 1998; 86(4): 797–804

    PubMed  CAS  Google Scholar 

  63. Stewart J, Kellett N, Castro D. The central nervous system and cardiovascular effects of levobupivacaine and ropivacaine in healthy volunteers. Anesth Analg 2003; 97(2): 412–6

    Article  PubMed  CAS  Google Scholar 

  64. Bardsley H, Gristwood R, Baker H, et al. A comparison of the cardiovascular effects of levobupivacaine and rac-bupivacaine following intravenous administration to healthy volunteers. Br J Clin Pharmacol 1998; 46(3): 245–9

    Article  PubMed  CAS  Google Scholar 

  65. McLeod GA, Burke D. Levobupivacaine. Anaesthesia 2001; 56(4): 331–41

    Article  PubMed  CAS  Google Scholar 

  66. Rosenberg PH, Schug SA. Levobupivacaine base and levobupivacaine hydrochloride. Br J Anaesth 2005; 94(4): 544

    Article  PubMed  CAS  Google Scholar 

  67. Breslin DS, Martin G, Macleod DB, et al. Central nervous system toxicity following the administration of levobupivacaine for lumbar plexus block: a report of two cases. Reg Anesth Pain Med 2003; 28(2): 144–7

    PubMed  Google Scholar 

  68. Crews JC, Rothman TE. Seizure after levobupivacaine for interscalene brachial plexus block. Anesth Analg 2003; 96(4): 1188–90

    Article  PubMed  Google Scholar 

  69. Cox CR, Faccenda KA, Gilhooly C, et al. Extradural S (−)-bupivacaine: comparison with racemic RS-bupivacaine. Br J Anaesth 1998; 80: 289–93

    Article  PubMed  CAS  Google Scholar 

  70. Breschan C, Jost R, Krumpholz R, et al. A prospective study comparing the analgesic efficacy of levobupivacaine, ropivacaine and bupivacaine in pediatric patients undergoing caudal blockade. Paediatr Anaesth 2005; 15(4): 301–6

    Article  PubMed  Google Scholar 

  71. De Negri P, Ivani G, Tirri T, et al. A comparison of epidural bupivacaine, levobupivacaine, and ropivacaine on postoperative analgesia and motor blockade. Anesth Analg 2004; 99(1): 45–8

    Article  PubMed  CAS  Google Scholar 

  72. Lyons G, Columb M, Wilson RC, et al. Epidural pain relief in labour: potencies of levobupivacaine and racemic bupivacaine. Br J Anaesth 1998; 81(6): 899–901

    Article  PubMed  CAS  Google Scholar 

  73. Lacassie HJ, Columb MO. The relative motor blocking potencies of bupivacaine and levobupivacaine in labor. Anesth Analg 2003; 97(5): 1509–13

    Article  PubMed  CAS  Google Scholar 

  74. Ummenhofer WC, Arends RH, Shen DD, et al. Comparative spinal distribution and clearance kinetics of intrathecally administered morphine, fentanyl, alfentanil, and sufentanil. Anesthesiology 2000; 92(3): 739–53

    Article  PubMed  CAS  Google Scholar 

  75. Bernards CM. Understanding the physiology and pharmacology of epidural and intrathecal opioids. Best Pract Res Clin Anaesthesiol 2002; 16(4): 489–505

    Article  PubMed  CAS  Google Scholar 

  76. Bernards CM, Shen DD, Sterling ES, et al. Epidural, cerebrospinal fluid, and plasma pharmacokinetics of epidural opiods (part 1): differences among opiods. Anesthesiology 2003; 99(2): 455–65

    Article  PubMed  CAS  Google Scholar 

  77. Bernards CM, Shen DD, Sterling ES, et al. Epidural, cerebrospinal fluid, and plasma pharmacokinetics of epidural opiods (part 2): effect of epinephrine. Anesthesiology 2003; 99(2): 466–72

    Article  PubMed  CAS  Google Scholar 

  78. Wheatley RG, Schug SA, Watson D. Safety and efficacy of postoperative epidural analgesia. Br J Anaesth 2001; 87(1): 47–61

    Article  PubMed  CAS  Google Scholar 

  79. Dahl JB, Jeppesen IS, Jorgensen H, et al. Intraoperative and postoperative analgesic efficacy and adverse effects of intrathecal opioids in patients undergoing cesarean section with spinal anesthesia: a qualitative and quantitative systematic review of randomized controlled trials. Anesthesiology 1999; 91(6): 1919–27

    Article  PubMed  CAS  Google Scholar 

  80. Viscusi ER, Martin G, Hartrick CT, et al. Forty-eight hours of postoperative pain relief after total hip arthroplasty with a novel, extended-release epidural morphine formulation. Anesthesiology 2005; 102(5): 1014–22

    Article  PubMed  CAS  Google Scholar 

  81. Shapiro A, Zohar E, Zaslansky R, et al. The frequency and timing of respiratory depression in 1524 postoperative patients treated with systemic or neuraxial morphine. J Clin Anesth 2005; 17(7): 537–42

    Article  PubMed  CAS  Google Scholar 

  82. Nguyen Thi TV, Orliaguet G, Ngû TH, et al. Spinal anesthesia with meperidine as the sole agent for cesarean delivery. Reg Anesth 1994; 19(6): 386–9

    PubMed  CAS  Google Scholar 

  83. Ngan Kee WD. Epidural pethidine: pharmacology and clinical experience. Anaesth Intensive Care 1998; 26(3): 247–55

    PubMed  CAS  Google Scholar 

  84. Ngan Kee WD. Intrathecal pethidine: pharmacology and clinical applications. Anaesth Intensive Care 1998; 26(2): 137–46

    PubMed  CAS  Google Scholar 

  85. Paech MJ, Moore JS, Evans SF. Meperidine for patient-controlled analgesia after cesarean section. Intravenous versus epidural administration. Anesthesiology 1994; 80(6): 1268–76

    CAS  Google Scholar 

  86. Hamber EA, Viscomi CM. Intrathecal lipophilic opioids as adjuncts to surgical spinal anesthesia. Reg Anesth Pain Med 1999; 24(3): 255–63

    PubMed  CAS  Google Scholar 

  87. Polley L, Columb M, Naughton N, et al. Effect of intravenous versus epidural fentanyl on the minimum local analgesic concentration of epidural bupivacaine in labor. Anesthesiology 2000; 93: 122–8

    Article  PubMed  CAS  Google Scholar 

  88. Schug SA, Buerkle H, Moharib M, et al. New drugs for neuraxial blockade. Curr Opin Anaesthesiol 1999; 12(5): 551–7

    Article  PubMed  CAS  Google Scholar 

  89. Fournier R, Gamulin Z, Van Gessel E. Respiratory depression after 5 micrograms of intrathecal sufentanil. Anesth Analg 1998; 87(6): 1377–8

    PubMed  CAS  Google Scholar 

  90. Twycross RG. Choice of strong analgesic in terminal cancer: diamorphine or morphine? Pain 1977; 3(2): 93–104

    Article  PubMed  CAS  Google Scholar 

  91. Vaughan DJ, Ahmad N, Lillywhite NK, et al. Choice of opioid for initiation of combined spinal epidural analgesia in labour: fentanyl or diamorphine. Br J Anaesth 2001; 86(4): 567–9

    Article  PubMed  CAS  Google Scholar 

  92. Husaini SW, Russell IF. Intrathecal diamorphine compared with morphine for postoperative analgesia after caeserian section under spinal anaesthesia. Br J Anaesth 1998; 81: 135–9

    Article  PubMed  CAS  Google Scholar 

  93. Chaney MA. Side effects of intrathecal and epidural opioids. Can J Anaesth 1995; 42(10): 891–903

    Article  PubMed  CAS  Google Scholar 

  94. Bailey PL, Lu JK, Pace NL, et al. Effects of intrathecal morphine on the ventilatory response to hypoxia. N Engl J Med 2000; 343(17): 1228–34

    Article  PubMed  CAS  Google Scholar 

  95. Tsui BC, Wagner A, Finucane B. Regional anaesthesia in the elderly: a clinical guide. Drugs Aging 2004; 21(14): 895–910

    Article  PubMed  Google Scholar 

  96. Szarvas S, Harmon D, Murphy D. Neuraxial opioid-induced pruritus: a review. J Clin Anesth 2003; 15(3): 234–9

    Article  PubMed  CAS  Google Scholar 

  97. Jeon Y, Hwang J, Kang J, et al. Effects of epidural naloxone on pruritus induced by epidural morphine: a randomized controlled trial. Int J Obstet Anesth 2005; 14(1): 22–5

    Article  PubMed  CAS  Google Scholar 

  98. Iatrou CA, Dragoumanis CK, Vogiatzaki TD, et al. Prophylactic intravenous ondansetron and dolasetron in intrathecal morphine-induced pruritus: a randomized, double-blinded, placebo-controlled study. Anesth Analg 2005; 101(5): 1516–20

    Article  PubMed  CAS  Google Scholar 

  99. Davies PW, Vallejo MC, Shannon KT, et al. Oral herpes simplex reactivation after intrathecal morphine: a prospective randomized trial in an obstetric population. Anesth Analg 2005; 100(5): 1472–6

    Article  PubMed  CAS  Google Scholar 

  100. De Kock M, Crochet B, Morimont C, et al. Intravenous or epidural clonidine for intra- and postoperative analgesia. Anesthesiology 1993; 79(3): 525–31

    Article  PubMed  Google Scholar 

  101. Tamsen A, Gordh T. Clonidine is not neurotoxic. Lancet 1984; II(8407): 876

    Article  Google Scholar 

  102. Tamsen A, Gordh T. Epidural clonidine produces analgesia. Lancet 1984; II(8396): 231–2

    Article  Google Scholar 

  103. Eisenach JC, De Kock M, Klimscha W. alpha (2)-adrenergic agonists for regional anesthesia: a clinical review of clonidine (1984–1995). Anesthesiology 1996; 85(3): 655–74

    Article  PubMed  CAS  Google Scholar 

  104. Filos KS, Goudas LC, Patroni O, et al. Hemodynamic and analgesic profile after intrathecal clonidine in humans: a dose-response study. Anesthesiology 1994; 81(3): 591–601

    Article  PubMed  CAS  Google Scholar 

  105. Dobrydnjov I, Axelsson K, Gupta A, et al. Improved analgesia with clonidine when added to local anesthetic during combined spinal-epidural anesthesia for hip arthroplasty: a double-blind, randomized and placebo-controlled study. Acta Anaesthesiol Scand 2005; 49(4): 538–45

    Article  PubMed  CAS  Google Scholar 

  106. Paech MJ, Banks SL, Gurrin LC, et al. A randomized, double-blinded trial of subarachnoid bupivacaine and fentanyl, with or without clonidine, for combined spinal/epidural analgesia during labor. Anesth Analg 2002; 95(5): 1396–401

    Article  PubMed  CAS  Google Scholar 

  107. Paech MJ, Pavy TJ, Orlikowski CE, et al. Postcesarean analgesia with spinal morphine, clonidine, or their combination. Anesth Analg 2004; 98(5): 1460–6

    Article  PubMed  CAS  Google Scholar 

  108. Paech MJ, Pavy TJ, Orlikowski CE, et al. Postoperative epidural infusion: a randomized, double-blind, dose-finding trial of clonidine in combination with bupivacaine and fentanyl. Anesth Analg 1997; 84(6): 1323–8

    PubMed  CAS  Google Scholar 

  109. Walker SM, Goudas LC, Cousins MJ, et al. Combination spinal analgesic chemotherapy: a systematic review. Anesth Analg 2002; 95(3): 674–715

    PubMed  CAS  Google Scholar 

  110. Bailey PL, Sperry RJ, Johnson GK, et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology 1991; 74(1): 43–8

    Article  PubMed  CAS  Google Scholar 

  111. Uhle El, Becker R, Gatscher S, et al. Continuous intrathecal clonidine administration for the treatment of neuropathic pain. Stereotact Funct Neurosurg 2000; 75(4): 167–75

    Article  PubMed  CAS  Google Scholar 

  112. Ansermino M, Basu R, Vandebeek C, et al. Nonopioid additives to local anaesthetics for caudal blockade in children: a systematic review. Paediatr Anaesth 2003; 13(7): 561–73

    Article  PubMed  Google Scholar 

  113. Paech MJ, Pavy TJ, Orlikowski CE, et al. Patient-controlled epidural analgesia in labor: the addition of clonidine to bupivacaine-fentanyl. Reg Anesth Pain Med 2000; 25(1): 34–40

    PubMed  CAS  Google Scholar 

  114. Martin E, Ramsay G, Mantz J, et al. The role of the alpha2-adrenoceptor agonist dexmedetomidine in postsurgical sedation in the intensive care unit. J Intensive Care Med 2003; 18(1): 29–41

    Article  PubMed  Google Scholar 

  115. Fisher B, Zornow MH, Yaksh TL, et al. Antinociceptive properties of intrathecal dexmedetomidine in rats. Eur J Pharmacol 1991; 192(2): 221–5

    Article  PubMed  CAS  Google Scholar 

  116. Kalso EA, Poyhia R, Rosenberg PH. Spinal antinociception by dexmedetomidine, a highly selective alpha 2-adrenergic agonist. Pharmacol Toxicol 1991; 68(2): 140–3

    Article  PubMed  CAS  Google Scholar 

  117. Eisenach JC, Shafer SL, Bucklin BA, et al. Pharmacokinetics and pharmacodynamics of intraspinal dexmedetomidine in sheep. Anesthesiology 1994; 80(6): 1349–59

    Article  PubMed  CAS  Google Scholar 

  118. Calasans-Maia JA, Zapata-Sudo G, Sudo RT. Dexmedetomidine prolongs spinal anaesthesia induced by levobupivacaine 0.5% in guinea-pigs. J Pharm Pharmacol 2005; 57(11): 1415–20

    Article  PubMed  CAS  Google Scholar 

  119. Kanazi GE, Aouad MT, Jabbour-Khoury SI, et al. Effect of low-dose dexmedetomidine or clonidine on the characteristics of bupivacaine spinal block. Acta Anaesthesiol Scand 2006; 50(2): 222–7

    Article  PubMed  CAS  Google Scholar 

  120. Niemi G. Advantages and disadvantages of adrenaline in regional anaesthesia. Best Pract Res Clin Anaesthesiol 2005; 19(2): 229–45

    Article  PubMed  CAS  Google Scholar 

  121. Kito K, Kato H, Shibata M, et al. The effect of varied doses of epinephrine on duration of lidocaine spinal anesthesia in the thoracic and lumbosacral dermatomes. Anesth Analg 1998; 86: 1018–22

    PubMed  CAS  Google Scholar 

  122. Niemi G, Breivik H. Epinephrine markedly improves thoracic epidural analgesia produced by a small-dose infusion of ropivacaine, fentanyl, and epinephrine after major thoracic or abdominal surgery: a randomized, double-blinded crossover study with and without epinephrine. Anesth Analg 2002; 94(6): 1598–605

    PubMed  CAS  Google Scholar 

  123. Niemi G, Breivik H. The minimally effective concentration of adrenaline in a low-concentration thoracic epidural analgesic infusion of bupivacaine, fentanyl and adrenaline after major surgery: a randomized, double-blind, dose-finding study. Acta Anaesthesiol Scand 2003; 47(4): 439–50

    Article  PubMed  CAS  Google Scholar 

  124. Kozody R, Palahniuk RJ, Wade JG, et al. The effect of subarachnoid epinephrine and phenylephrine on spinal cord blood flow. Can Anaesth Soc J 1984; 31(5): 503–8

    Article  PubMed  CAS  Google Scholar 

  125. Kathirvel S, Sadhasivam S, Saxena A, et al. Effects of intrathecal ketamine added to bupivacaine for spinal anaesthesia. Anaesthesia 2000; 55: 899–904

    Article  PubMed  CAS  Google Scholar 

  126. Subramaniam K, Subramaniam B, Steinbrook RA. Ketamine as adjuvant analgesic to opioids: a quantitative and qualitative systematic review. Anesth Analg 2004; 99(2): 482–95

    Article  PubMed  CAS  Google Scholar 

  127. Eisenach JC. Muscarinic-mediated analgesia. Life Sci 1999; 64(6-7): 549–54

    Article  PubMed  CAS  Google Scholar 

  128. Lauretti GR, Hood DD, Eisenach JC, et al. A multi-center study of intrathecal neostigmine for analgesia following vaginal hysterectomy. Anesthesiology 1998; 89(4): 913–8

    Article  PubMed  CAS  Google Scholar 

  129. Omais M, Lauretti GR, Paccola CA. Epidural morphine and neostigmine for postoperative analgesia after orthopedic surgery. Anesth Analg 2002; 95(6): 1698–701

    Article  PubMed  CAS  Google Scholar 

  130. Lauretti GR, de Oliveira R, Reis MP, et al. Study of three different doses of epidural neostigmine coadministered with lidocaine for postoperative analgesia. Anesthesiology 1999; 90(6): 1534–8

    Article  PubMed  CAS  Google Scholar 

  131. Roelants F, Lavand’homme PM, Mercier-Fuzier V. Epidural administration of neostigmine and clonidine to induce labor analgesia: evaluation of efficacy and local anesthetic-sparing effect. Anesthesiology 2005; 102(6): 1205–10

    Article  PubMed  CAS  Google Scholar 

  132. Roelants F, Lavand’homme PM. Epidural neostigmine combined with sufentanil provides balanced and selective analgesia in early labor. Anesthesiology 2004; 101(2): 439–44

    Article  PubMed  CAS  Google Scholar 

  133. Roelants F, Rizzo M, Lavand’homme P. The effect of epidural neostigmine combined with ropivacaine and sufentanil on neuraxial analgesia during labor. Anesth Analg 2003; 96(4): 1161–6

    Article  PubMed  CAS  Google Scholar 

  134. Kohno T, Wakai A, Ataka T, et al. Actions of midazolam on excitatory transmission in dorsal horn neurons of adult rat spinal cord. Anesthesiology 2006; 104(2): 338–43

    Article  PubMed  CAS  Google Scholar 

  135. Yaksh TL, Allen JW. Preclinical insights into the implementation of intrathecal midazolam: a cautionary tale. Anesth Analg 2004; 98(6): 1509–11

    Article  PubMed  Google Scholar 

  136. Yanez A, Sabbe MB, Stevens CW, et al. Interaction of midazolam and morphine in the spinal cord of the rat. Neuropharmacology 1990; 29(4): 359–64

    Article  PubMed  CAS  Google Scholar 

  137. Tucker AP, Mezzatesta J, Nadeson R, et al. Intrathecal midazolam II: combination with intrathecal fentanyl for labor pain. Anesth Analg 2004; 98(6): 1521–7

    Article  PubMed  CAS  Google Scholar 

  138. Sawynok J, Sweeney MI. The role of purines in nociception. Neuroscience 1989; 32(3): 557–69

    Article  PubMed  CAS  Google Scholar 

  139. Poon A, Sawynok J. Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 1998; 74(2–3): 235–45

    Article  PubMed  CAS  Google Scholar 

  140. Gomes JA, Li X, Pan HL, et al. Intrathecal adenosine interacts with a spinal noradrenergic system to produce antinociception in nerve-injured rats. Anesthesiology 1999; 91(4): 1072–9

    Article  PubMed  CAS  Google Scholar 

  141. Eisenach JC, Hood DD, Curry R. Phase I safety assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology 2002; 96(1): 24–8

    Article  PubMed  CAS  Google Scholar 

  142. Rane K, Segerdahl M, Goiny M, et al. Intrathecal adenosine administration: a phase 1 clinical safety study in healthy volunteers, with additional evaluation of its influence on sensory thresholds and experimental pain. Anesthesiology 1998; 89(5): 1108–15

    Article  PubMed  CAS  Google Scholar 

  143. Eisenach JC, Curry R, Hood DD. Dose response of intrathecal adenosine in experimental pain and allodynia. Anesthesiology 2002; 97(4): 938–42

    Article  PubMed  CAS  Google Scholar 

  144. Rane K, Sollevi A, Segerdahl M. Intrathecal adenosine administration in abdominal hysterectomy lacks analgesic effect. Acta Anaesthesiol Scand 2000; 44(7): 868–72

    Article  PubMed  CAS  Google Scholar 

  145. Rane K, Sollevi A, Segerdahl M. A randomised double-blind evaluation of adenosine as adjunct to sufentanil in spinal labour analgesia. Acta Anaesthesiol Scand 2003; 47(5): 601–3

    Article  PubMed  CAS  Google Scholar 

  146. Bowersox SS, Gadbois T, Singh T, et al. Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J Pharmacol Exp Ther 1996; 279(3): 1243–9

    PubMed  CAS  Google Scholar 

  147. Brose WG, Gutlove DP, Luther RR, et al. Use of intrathecal SNX-111, a novel, N-type, voltage-sensitive, calcium channel blocker, in the management of intractable brachial plexus avulsion pain. Clin J Pain 1997; 13(3): 256–9

    Article  PubMed  CAS  Google Scholar 

  148. Penn RD, Paice JA. Adverse effects associated with the intrathecal administration of ziconotide. Pain 2000; 85(1–2): 291–6

    Article  PubMed  CAS  Google Scholar 

  149. Atanassoff PG, Hartmannsgruber MW, Thrasher J, et al. Ziconotide, a new N-type calcium channel blocker, administered intrathecally for acute postoperative pain. Reg Anesth Pain Med 2000; 25(3): 274–8

    PubMed  CAS  Google Scholar 

  150. Wermeling D, Drass M, Ellis D, et al. Pharmacokinetics and pharmacodynamics of intrathecal ziconotide in chronic pain patients. J Clin Pharmacol 2003; 43(6): 624–36

    PubMed  CAS  Google Scholar 

  151. Staats PS, Yearwood T, Charapata SG, et al. Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. JAMA 2004; 291(1): 63–70

    Article  PubMed  CAS  Google Scholar 

  152. Wermeling DP. Ziconotide, an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain. Pharmacotherapy 2005; 25(8): 1084–94

    Article  PubMed  CAS  Google Scholar 

  153. Ochs GA. Intrathecal baclofen. Baillieres Clin Neurol 1993; 2(1): 73–86

    PubMed  CAS  Google Scholar 

  154. Slonimski M, Abram SE, Zuniga RE. Intrathecal baclofen in pain management. Reg Anesth Pain Med 2004; 29(3): 269–76

    PubMed  CAS  Google Scholar 

  155. Hsieh JC, Penn RD. Intrathecal baclofen in the treatment of adult spasticity. Neurosurg Focus 2006; 21(2): E5

    Article  PubMed  Google Scholar 

  156. Herman RM, D’Luzansky SC, Ippolito R. Intrathecal baclofen suppresses central pain in patients with spinal lesions: a pilot study. Clin J Pain 1992; 8(4): 338–45

    Article  PubMed  CAS  Google Scholar 

  157. Loubser PG, Akman NM. Effects of intrathecal baclofen on chronic spinal cord injury pain. J Pain Symptom Manage 1996; 12(4): 241–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors did not receive any funding to assist in the preparation of this review. The only potential conflicts of interest that may be relevant to the contents of this review are that Stephen Schug and Michael Paech are or were acting in the past as consultants for Mayne Pharma, Xenome Pty Ltd, AstraZeneca and Abbott Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan A. Schug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schug, S.A., Saunders, D., Kurowski, I. et al. Neuraxial Drug Administration. CNS Drugs 20, 917–933 (2006). https://doi.org/10.2165/00023210-200620110-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200620110-00005

Keywords

Navigation