Skip to main content
Log in

Gabapentin

In Postherpetic Neuralgia

  • Adis Drug Profile
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

▴ Gabapentin is a structural analogue of the neurotransmitter γ-aminobutyric acid (GABA) approved for use in adults with postherpetic neuralgia.

▴ Gabapentin does not bind to GABAa or GABAb receptors. Its mechanism of action in humans is unclear, but may involve binding to α2δ calcium channel subunits in animal models.

▴ Reductions in the mean daily pain score from baseline to week 7 or 8 of treatment (primary endpoint) were significantly greater with gabapentin 1800–3600 mg/day than placebo therapy in two well designed trials in patients with postherpetic neuralgia. The proportion of responders (patients showing a ≥50% reduction in mean daily pain score at endpoint versus baseline) was significantly greater with gabapentin than placebo.

▴ Daily sleep rating scores, the Short Form McGill Pain Questionnaire (total pain scores), Patient and Clinician Global Impression of Change and measures on the Short Form-36 Health Survey (including physical functioning, role-physical, bodily pain, vitality or mental health) improved to a significantly greater extent with gabapentin than placebo.

▴ Adverse events associated with gabapentin in patients with postherpetic neuralgia were usually mild to moderate in intensity, with dizziness, somnolence and peripheral oedema being commonly reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Bowsher D. The management of postherpetic neuralgia. Postgrad Med J 1997; 73: 623–9

    Article  PubMed  CAS  Google Scholar 

  2. Dworkin RH, Portenoy RK. Proposed classification of herpes zoster pain [letter]. Lancet 1994; 343: 1648

    Article  PubMed  CAS  Google Scholar 

  3. Gnann Jr JW, Whitley RJ. Herpes zoster. N Engl J Med 2002; 347: 340–6

    Article  PubMed  Google Scholar 

  4. Goa KL, Sorkin EM. Gabapentin: a review of its pharmacological roperties and clinical potential in epilepsy. Drugs 1993; 46(3): 409–27

    Article  PubMed  CAS  Google Scholar 

  5. Suman-Chauhan N, Webdale L, Hill DR, et al. Characterisation of [3H]gabapentin binding to a novel site in rat brain: homogenate binding studies. Eur J Pharmacol Mol Pharmacol 1993; 244(3): 293–301

    Article  CAS  Google Scholar 

  6. Taylor CP. Mechanisms of action of gabapentin. Drugs Today 1998; 34Suppl. D: 3–11

    CAS  Google Scholar 

  7. Su T-Z, Lunney E, Campbell G, et al. Transport of gabapentin, a γ-amino acid drug, by system L α-amino acid transporters: a comparative study in astrocytes, synaptosomes, and CHO cells. J Neurochem 1995; 64(5): 2125–31

    Article  PubMed  CAS  Google Scholar 

  8. Goldlust A, Su T-Z, Welty DF, et al. Effects of anticonvulsant drug gabapentin on the enzymes in metabolic pathways of glutamate and GABA. Epilepsy Res 1995; 22(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  9. Singh D, Kennedy DH. The use of gabapentin for the treatment of postherpetic neuralgia. Clin Ther 2003; 25(3): 852–89

    Article  PubMed  CAS  Google Scholar 

  10. Gee NS, Brown JP, Dissanayake VUK, et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel. J Biol Chem 1996; 271(10): 5768–76

    Article  PubMed  CAS  Google Scholar 

  11. Stefani A, Spadoni F, Bernardi G. Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology 1998; 37(1): 83–91

    Article  PubMed  CAS  Google Scholar 

  12. Alden KJ, Garcia J. Differential effect of gabapentin on neuronal nd muscle calcium currents. J Pharmacol Exp Ther 2001 May; 297(2): 727–35

    PubMed  CAS  Google Scholar 

  13. Field MJ, Hughes J, Singh L. Further evidence for the role of thecα2δ subunit of voltage dependent calcium channels in mod-els of neuropathic pain. Br J Pharmacol 2000; 131(2): 282–6

    Article  PubMed  CAS  Google Scholar 

  14. Sutton KG, Martin DJ, Pinnock RD, et al. Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones. Br J Pharmacol 2002; 135(1): 257–65

    Article  PubMed  CAS  Google Scholar 

  15. Laird MA, Gidal BE. Use of gabapentin in the treatment of neuropathic pain. Ann Pharmacother 2000 Jun; 34(6): 802–7

    Article  PubMed  CAS  Google Scholar 

  16. Shimoyama M, Shimoyama N, Hori Y, et al. Gabapentin affects glutamatergic transmission in the rat dorsal horn. Pain 2000; 85: 405–14

    Article  PubMed  CAS  Google Scholar 

  17. Dooley DJ, Mieske CA, Borosky SA. Inhibition of K+-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin. Neurosci Lett 2000; 280(2): 107–10

    Article  PubMed  CAS  Google Scholar 

  18. Carlton SM, Zhou S. Attenuation of formalin-induced nociceptive behaviors following local peripheral injection of gabapen-tin. Pain 1998; 76(1-2): 201–7

    Article  PubMed  CAS  Google Scholar 

  19. Pan H-L, Eisenach JC, Chen S-R. Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. J Pharmacol Exp Ther 1999; 288(3): 1026–30

    PubMed  CAS  Google Scholar 

  20. Martin DJ, McClelland D, Herd MB. Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured ensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology 2002; 42(3): 353–66

    Article  PubMed  CAS  Google Scholar 

  21. Sarantopoulos C, McCallum B, Kwok W-M, et al. Gabapentin decreases membrane calcium currents in injured as well as in control mammalian primary afferent neurons. Reg Anesth Pain ed 2002; 27(1): 47–57

    CAS  Google Scholar 

  22. Luo ZD, Calcutt NA, Higuera ES, et al. Injury type-specific calcium channel α2 δ-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 2002 Dec; 303(3): 1199–205

    Article  PubMed  CAS  Google Scholar 

  23. Takasaki I, Sasaki A, Andoh T, et al. Effects of analgesics on delayed postherpetic pain in mice. Anesthesiology 2002; 96(5): 1168–74

    Article  PubMed  CAS  Google Scholar 

  24. Takasaki I, Andoh T, Nojima H, et al. Gabapentin antinociception in mice with acute herpetic pain induced by herpes simplex virus infection. J Pharmacol Exp Ther 2001 Feb; 296(2): 270–5

    PubMed  CAS  Google Scholar 

  25. Abdi S, Lee DH, Chung JM. The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesth Analg 1998 Dec; 87(6): 1360–6

    PubMed  CAS  Google Scholar 

  26. Matthews EA, Dickenson AH. A combination of gabapentin and orphine mediates enhanced inhibitory effects on dorsal horn neuronal responses in a rat model of neuropathy. Anesthesiology 2002 Mar; 96(3): 633–40

    Article  PubMed  CAS  Google Scholar 

  27. Field MJ, Holloman EF, McCleary S, et al. Evaluation of gabapentin and S-(+)-3-isobutylgaba in a rat model of postoperative pain. J Pharmacol Exp Ther 1997; 282(3): 1242–6

    PubMed  CAS  Google Scholar 

  28. Cheng J-K, Pan H-L, Eisenach JC. Antiallodynic effect of intrathecal gabapentin and its interaction with clonidine in a rat odel of postoperative pain. Anesthesiology 2000 Apr; 92(4): 1126–31

    Article  PubMed  CAS  Google Scholar 

  29. Jun JH, Yaksh TL. The effect of intrathecal gabapentin and 3-isobutyl γ-aminobutyric acid on the hyperalgesia observed after thermal injury in the rat. Anesth Analg 1998 Feb; 86(2): 348–54

    PubMed  CAS  Google Scholar 

  30. Field MJ, McCleary S, Hughes J, et al. Gabapentin and pregabalin, but not morphine and amitriptyline, block both static and dynamic components of mechanical allodynia induced by streptozocin in the rat. Pain 1999; 80(1-2): 391–8

    Article  PubMed  CAS  Google Scholar 

  31. Hurley RW, Chatterjea D, Rose Feng M, et al. Gabapentin and pregabalin can interact synergistically with naproxen to produce antihyperalgesia. Anesthesiology 2002 Nov; 97(5): 1263–73

    Article  PubMed  CAS  Google Scholar 

  32. Stanfa LC, Singh L, Williams RG, et al. Gabapentin, ineffective in normal rats, markedly reduces C-fibre evoked responses after inflammation. Neuroreport 1997; 8(3): 587–90

    Article  PubMed  CAS  Google Scholar 

  33. Patel S, Naeem S, Kesingland A, et al. The effects of GABAb agonists and gabapentin on mechanical hyperalgesia in models f neuropathic and inflammatory pain in the rat. Pain 2001; 90(3): 217–26

    Article  PubMed  CAS  Google Scholar 

  34. Yoon MH, Yaksh TL. The effect of intrathecal gabapentin on pain behavior and hemodynamics on the formalin test in the rat. Anesth Analg 1999 Aug; 89(2): 434–9

    PubMed  CAS  Google Scholar 

  35. Heughan CE, Sawynok J. The interaction between gabapentin and amitriptyline in the rat formalin test after systemic administration. Anesth Analg 2002 Apr; 94(4): 975–80

    Article  PubMed  CAS  Google Scholar 

  36. Kaneko M, Mestre C, Sánchez EH, et al. Intrathecally administered gabapentin inhibits formalin-evoked nociception and the expression of Fos-like immunoreactivity in the spinal cord of the rat. J Pharmacol Exp Ther 2000; 292(2): 743–51

    PubMed  CAS  Google Scholar 

  37. Hunter JC, Gogas KR, Hedley LR, et al. The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 1997; 324(2-3): 153–60

    Article  PubMed  CAS  Google Scholar 

  38. Partridge BJ, Chaplan SR, Sakamoto E, et al. Characterization of the effects of gabapentin and 3-isobutyl-γ-aminobutyric acid on substance P-induced thermal hyperalgesia. Anesthesiology 1998; 88: 196–205

    Article  PubMed  CAS  Google Scholar 

  39. Yoon MH, Yaksh TL. Evaluation of interaction between gabapentin and ibuprofen on the formalin test in rats. Anesthesiology 1999; 91(4): 1006–13

    Article  PubMed  CAS  Google Scholar 

  40. Shimoyama M, Shimoyama N, Inturrisi CE, et al. Gabapentin enhances the antinociceptive effects of spinal morphine in the rat tail-flick test. Pain 1997; 72(3): 375–82

    Article  PubMed  CAS  Google Scholar 

  41. Field MJ, Gonzalez MI, Tallarida RJ, et al. Gabapentin and the neurokinim receptor antagonist CI-1021 act synergistically in two rat models of neuropathic pain. J Pharmacol Exp Ther 2002 Nov; 303(2): 730–5

    Article  PubMed  CAS  Google Scholar 

  42. Chen S-R, Eisenach JC, McCaslin PP, et al. Synergistic effect etween intrathecal non-NMDA antagonist and gabapentin on allodynia induced by spinal nerve ligation in rats. Anesthesiology 2000; 92(2): 500–6

    Article  PubMed  CAS  Google Scholar 

  43. Werner MU, Perkins FM, Holte K, et al. Effects of gabapentin n acute inflammatory pain in humans. Reg Anesth Pain Med 2001; 26(4): 322–8

    PubMed  CAS  Google Scholar 

  44. Dirks J, Petersen KL, Rowbotham MC, et al. Gabapentin suppresses cutaneous hyperalgesia following heat-capsaicin ensitization. Anesthesiology 2002 Jul; 97(1): 102–7

    Article  PubMed  CAS  Google Scholar 

  45. Brunbech L, Sabers A. Effect of antiepileptic drugs on cognitive function in individuals with epilepsy: a comparative review of newer versus older agents. Drugs 2002; 62(4): 593–604

    Article  PubMed  CAS  Google Scholar 

  46. Meador KJ, Loring DW, Ray PG, et al. Differential cognitive effects of carbamazepine and gabapentin. Epilepsia 1999 Sep; 40: 1279–85

    Article  PubMed  CAS  Google Scholar 

  47. Stewart BH, Kugler AR, Thompson PR, et al. A saturable ransport mechanism in the intestinal absorption of gabapentin is the underlying cause of the lack of proportionality between increasing dose and drug levels in plasma. Pharm Res 1993; 10(2): 276–81

    Article  PubMed  CAS  Google Scholar 

  48. Neurontin® (gabapentin) capsules, tablets, oral solutions: US rescribing information. Vega Baja, Puerto Rico: Parke Davis Pharmaceuticals Ltd, 2002

  49. Bockbrader HN. Clinical pharmacokinetics of gabapentin. Drugs Today 1995 Dec; 31: 613–9

    CAS  Google Scholar 

  50. Gidal BE, Maly MM, Kowalski JW, et al. Gabapentin absorption: ffect of mixing with foods of varying macronutrient composition. Ann Pharmacother 1998 Apr; 32: 405–9

    Article  PubMed  CAS  Google Scholar 

  51. Gidal BE, Maly MM, Budde J, et al. Effect of a high-protein meal on gabapentin pharmacokinetics. Epilepsy Res 1996 Feb; 23: 71–6

    Article  PubMed  CAS  Google Scholar 

  52. Ben-Menachen E, Persson LI, Hedner T. Selected CSF biochemistry and gabapentin concentrations in the CSF and plasma n patients with partial seizures after a single oral dose of gabapentin. Epilepsy Res 1992; 11: 45–9

    Article  Google Scholar 

  53. McLean MJ. Clinical pharmacokinetics of gabapentin. Neurology 1994 Jun; 44Suppl. 5: S17–22

    PubMed  CAS  Google Scholar 

  54. Blum RA, Comstock TJ, Sica DA, et al. Pharmacokinetics of abapentin in subjects with various degrees of renal function. Clin Pharmacol Ther 1994 Aug; 56: 154–9

    Article  PubMed  CAS  Google Scholar 

  55. Wong MO, Eldon MA, Keane WF, et al. Disposition of gabapentin in anuric subjects on hemodialysis. J Clin Pharmacol 1995; 35(6): 622–6

    PubMed  CAS  Google Scholar 

  56. Boyd RA, Türck D, Abel RB, et al. Effects of age and gender on single-dose pharmacokinetics of gabapentin. Epilepsia 1999 pr; 40: 474–9

    Article  PubMed  CAS  Google Scholar 

  57. Radulovic LL, Wilder BJ, Leppik IE, et al. Lack of interaction of gabapentin with carbamazepine or valproate. Epilepsia 1994; 35: 155–61

    Article  PubMed  CAS  Google Scholar 

  58. Rambeck B, Specht U, Wolf P. Pharmacokinetic interactions of the new antiepileptic drugs. Clin Pharmacokinet 1996 Oct; 31: 309–24

    Article  PubMed  CAS  Google Scholar 

  59. Allen E, Tsanaclis LM, Wroe SJ, et al. Gabapentin does not affect antipyrine clearance. J Clin Pharmacol 1999; 39(9): 934–5

    Article  PubMed  CAS  Google Scholar 

  60. Hooper WD, Kavanagh MC, Herkes GK, et al. Lack of a pharmacokinetic interaction between phenobarbitone and gabapentin. Br J Clin Pharmacol 1991; 31(2): 171–4

    Article  PubMed  CAS  Google Scholar 

  61. Eldon MA, Underwood BA, Randinitis EJ, et al. Gabapentin does not interact with a contraceptive regimen of norethin-drone acetate and ethinyl estradiol. Neurology 1998 Apr; 50: 1146–8

    Article  PubMed  CAS  Google Scholar 

  62. Eckhardt K, Ammon S, Hofmann U, et al. Gabapentin enhances he analgesic effect of morphine in healthy volunteers. Anesth Analg 2000 Jul; 91(1): 185–91

    PubMed  CAS  Google Scholar 

  63. Rowbotham M, Harden N, Stacey B, et al. Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA 1998 Dec 2; 280(21): 1837–42

    Article  PubMed  CAS  Google Scholar 

  64. Rice ASC, Maton S. Gabapentin in postherpetic neuralgia: a randomised, double blind, placebo controlled study. Postherpetic Neuralgia Study Group. Pain 2001 Nov; 94(2): 215–24

    CAS  Google Scholar 

  65. Melzack R. The short-form McGill Pain Questionnaire. Pain 1987; 30: 191–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique P. Curran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curran, M.P., Wagstaff, A.J. Gabapentin. CNS Drugs 17, 975–982 (2003). https://doi.org/10.2165/00023210-200317130-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200317130-00004

Keywords

Navigation