CNS Drugs

, Volume 17, Issue 7, pp 513–532 | Cite as

Clinically Important Drug Interactions with Zopiclone, Zolpidem and Zaleplon

  • Leah M. Hesse
  • Lisa L. von Moltke
  • David J. GreenblattEmail author
Review Article


Insomnia, an inability to initiate or maintain sleep, affects approximately one-third of the American population. Conventional benzodiazepines, such as triazolam and midazolam, were the treatment of choice for short-term insomnia for many years but are associated with adverse effects such as rebound insomnia, withdrawal and dependency. The newer hypnosedatives include zolpidem, zaleplon and zopiclone. These agents may be preferred over conventional benzodiazepines to treat short-term insomnia because they may be less likely to cause significant rebound insomnia or tolerance and are as efficacious as the conventional benzodiazepines. This review aims to summarise the published clinical drug interaction studies involving zolpidem, zaleplon and zopiclone. The pharmacokinetic and pharmacodynamic interactions that may be clinically important are highlighted.

Clinical trials have studied potential interactions of zaleplon, zolpidem and zopiclone with the following types of drugs: cytochrome P450 (CYP) inducers (rifampicin), CYP inhibitors (azoles, ritonavir and erythromycin), histamine H2 receptor antagonists (cimetidine and ranitidine), antidepressants, antipsychotics, antagonists of benzodiazepines and drugs causing sedation. Rifampicin significantly induced the metabolism of the newer hypnosedatives and decreased their sedative effects, indicating that a dose increase of these agents may be necessary when they are administered with rifampicin. Ketoconazole, erythromycin and cimetidine inhibited the metabolism of the newer hypnosedatives and enhanced their sedative effects, suggesting that a dose reduction may be required. Addition of ethanol to treatment with the newer hypnosedatives resulted in additive sedative effects without altering the pharmacokinetic parameters of the drugs.

Compared with some of the conventional benzodiazepines, fewer clinically important interactions appear to have been reported in the literature with zaleplon, zolpidem and zopiclone. The fact that these drugs are newer to the market and have not been as extensively studied as the conventional benzodiazepines may be the reason for this. Another explanation may be a difference in CYP metabolism. While triazolam and midazolam are biotransformed almost entirely via CYP3A4, the newer hypnosedatives are biotransformed by several CYP isozymes in addition to CYP3A4, resulting in CYP3A4 inhibitors and inducers having a lesser effect on their biotransformation.


Cimetidine Zolpidem Flumazenil Triazolam Sedative Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors were supported by the following grants from the National Institutes of Health, US Department of Health and Human Services: MH-58435, DA-13209, DA-13834, DK-58496, DA-05258, RR-00054. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.


  1. 1.
    Benca RM. Sleep in psychiatric disorders. Neurol Clin 1996; 14(4): 739–64PubMedCrossRefGoogle Scholar
  2. 2.
    Kupfer DJ, Reynolds CF. Management of insomnia. N Engl J Med 1997; 336(5): 341–6PubMedCrossRefGoogle Scholar
  3. 3.
    Wagner J, Wagner ML, Hening WA. Beyond benzodiazepines: alternative pharmacologic agents for the treatment of insomnia. Ann Pharmacother 1998; 32(6): 680–91PubMedCrossRefGoogle Scholar
  4. 4.
    Davies M, Newell JG, Derry JM, et al. Characterization of the interaction of zopiclone with gamma-aminobutyric acid type A receptors. Mol Pharmacol 2000; 58(4): 756–62PubMedGoogle Scholar
  5. 5.
    Dooley M, Plosker GL. Zaleplon: a review of its use in the treatment of insomnia. Drugs 2000; 60(2): 413–45PubMedCrossRefGoogle Scholar
  6. 6.
    Langer SZ, Arbilla S. Limitations of the benzodiazepine receptor nomenclature: a proposal for a pharmacological classification as omega receptor subtypes. Fundam Clin Pharmacol 1988; 2(3): 159–70PubMedCrossRefGoogle Scholar
  7. 7.
    Langer SZ, Arbilla S, Tan S, et al. Selectivity for omega-receptor subtypes as a strategy for the development of anxiolytic drugs. Pharmacopsychiatry 1990; 23Suppl. 3: 103–7PubMedCrossRefGoogle Scholar
  8. 8.
    Sanger DJ, Benavides J, Perrault G, et al. Recent developments in the behavioral pharmacology of benzodiazepine (omega) receptors: evidence for the functional significance of receptor subtypes. Neurosci Biobehav Rev 1994; 18(3): 355–72PubMedCrossRefGoogle Scholar
  9. 9.
    Langtry HD, Benfield P. Zolpidem: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 1990; 40(2): 291–313PubMedCrossRefGoogle Scholar
  10. 10.
    Concas A, Serra M, Santoro G, et al. The effect of cyclopyrrolones on GABAA receptor function is different from that of benzodiazepines. Naunyn Schmiedebergs Arch Pharmacol 1994; 350(3): 294–300PubMedCrossRefGoogle Scholar
  11. 11.
    Villikka K, Kivistö KT, Luurila H, et al. Rifampin reduces plasma concentrations and effects of zolpidem. Clin Pharmacol Ther 1997; 62(6): 629–34PubMedCrossRefGoogle Scholar
  12. 12.
    Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Kinetic and dynamic interaction study of zolpidem with ketoconazole, itraconazole, and fluconazole. Clin Pharmacol Ther 1998; 64(6): 661–71PubMedCrossRefGoogle Scholar
  13. 13.
    Luurila H, Kivistö KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics and pharmacodynamics of zolpidem. Eur J Clin Pharmacol 1998; 54(2): 163–6PubMedCrossRefGoogle Scholar
  14. 14.
    Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Differential impairment of triazolam and zolpidem clearance by ritonavir. J Acquir Immune Defic Syndr 2000; 24(2): 129–36PubMedGoogle Scholar
  15. 15.
    Hulhoven R, Desager JP, Harvengt C, et al. Lack of interaction between zolpidem and H2 antagonists, cimetidine and ranitidine. Int J Clin Pharmacol Res 1988; 8(6): 471–6PubMedGoogle Scholar
  16. 16.
    Piergies AA, Sweet J, Johnson M, et al. The effect of co-administration of zolpidem with fluoxetine: pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther 1996; 34(4): 178–83PubMedGoogle Scholar
  17. 17.
    Allard S, Sainati S, Roth-Schechter B, et al. Minimal interaction between fluoxetine and multiple-dose zolpidem in healthy women. Drug Metab Dispos 1998; 26(7): 617–22PubMedGoogle Scholar
  18. 18.
    Allard S, Sainati S, Roth-Schechter B. Coadministration of short-term zolpidem with sertraline in healthy women. J Clin Pharmacol 1999; 39: 184–91PubMedCrossRefGoogle Scholar
  19. 19.
    Harvengt C, Hulhoven R, Desager JP, et al. Drug interactions investigated with zolpidem. In: Sauvanet JP, Langer SZ, Morselli PL, editors. Imidazopyridines in sleep disorders. New York: Raven Press, 1988: 165–73Google Scholar
  20. 20.
    Desager JP, Hulhoven R, Harvengt C, et al. Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic. Psychopharmacology (Berl) 1988; 96(1): 63–6CrossRefGoogle Scholar
  21. 21.
    Patat A, Naef MM, van Gessel E, et al. Flumazenil antagonizes the central effects of zolpidem, an imidazopyridine hypnotic. Clin Pharmacol Ther 1994; 56(4): 430–6PubMedCrossRefGoogle Scholar
  22. 22.
    Wilkinson CJ. The acute effects of zolpidem, administered alone and with alcohol, on cognitive and psychomotor function. J Clin Psychiatry 1995; 56(7): 309–18PubMedGoogle Scholar
  23. 23.
    Mattila MJ, Nurminen ML, Vainio P, et al. Zolpidem 10mg given at daytime is not antagonized by 300mg caffeine in man. Eur J Clin Pharmacol 1998; 54(5): 421–5PubMedCrossRefGoogle Scholar
  24. 24.
    Hetta J, Broman JE, Darwish M, et al. Psychomotor effects of zaleplon and thioridazine coadministration. Eur J Clin Pharmacol 2000; 56(3): 211–7PubMedCrossRefGoogle Scholar
  25. 25.
    Sanchez Garcia P, Carcas A, Zapater P, et al. Absence of an interaction between ibuprofen and zaleplon. Am J Health Syst Pharm 2000; 57(12): 1137–41PubMedGoogle Scholar
  26. 26.
    Roehrs T, Rosenthal L, Koshorek G, et al. Effects of zaleplon or triazolam with or without ethanol on human performance. Sleep Med 2001; 2(4): 323–32PubMedCrossRefGoogle Scholar
  27. 27.
    Villikka K, Kivistö KT, Lamberg TS, et al. Concentrations and effects of zopiclone are greatly reduced by rifampicin. Br J Clin Pharmacol 1997; 43(5): 471–4PubMedCrossRefGoogle Scholar
  28. 28.
    Jalava KM, Olkkola KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics and pharmacodynamics of zopiclone. Eur J Clin Pharmacol 1996; 51(3–4): 331–4PubMedCrossRefGoogle Scholar
  29. 29.
    Aranko K, Luurila H, Backman JT, et al. The effect of erythromycin on the pharmacokinetics and pharmacodynamics of zopiclone. Br J Clin Pharmacol 1994; 38(4): 363–7PubMedCrossRefGoogle Scholar
  30. 30.
    Mattila MJ, Vanakoski J, Mattila-Evenden ME, et al. Suriclone enhances the actions of chlorpromazine on human psychomotor performance but not on memory or plasma prolactin in healthy subjects. Eur J Clin Pharmacol 1994; 46(3): 215–20PubMedCrossRefGoogle Scholar
  31. 31.
    Wilson CM, Robinson FP, Thompson EM, et al. Effect of pretreatment with ranitidine on the hypnotic action of single doses of midazolam, temazepam and zopiclone: a clinical study. Br J Anaesth 1986; 58(5): 483–6PubMedCrossRefGoogle Scholar
  32. 32.
    Mattila ME, Mattila MJ, Nuotto E. Caffeine moderately antagonizes the effects of triazolam and zopiclone on the psychomotor performance of healthy subjects. Pharmacol Toxicol 1992; 70(4): 286–9PubMedCrossRefGoogle Scholar
  33. 33.
    Saano V, Hansen PP, Paronen P. Interactions and comparative effects of zopiclone, diazepam and lorazepam on psychomotor performance and on elimination pharmacokinetics in healthy volunteers. Pharmacol Toxicol 1992; 70(2): 135–9PubMedCrossRefGoogle Scholar
  34. 34.
    Kuitunen T, Mattila MJ, Seppälä T. Actions and interactions of hypnotics on human performance: single doses of zopiclone, triazolam and alcohol. Int Clin Psychopharmacol 1990; 5Suppl. 2: 115–30PubMedGoogle Scholar
  35. 35.
    Caille G, du Souich P, Spenard J, et al. Pharmacokinetic and clinical parameters of zopiclone and trimipramine when administered simultaneously to volunteers. Biopharm Drug Dispos 1984; 5(2): 117–25PubMedCrossRefGoogle Scholar
  36. 36.
    Seppälä T, Nuotto E, Dreyfus JF. Drug-alcohol interactions on psychomotor skills: zopiclone and flunitrazepam. Pharmacology 1983; 27Suppl. 2: 127–35PubMedGoogle Scholar
  37. 37.
    Neylan TC. Treatment of sleep disturbances in depressed patients. J Clin Psychiatry 1995; 56Suppl. 2: 56–61PubMedGoogle Scholar
  38. 38.
    Holm KJ, Goa KL. Zolpidem: an update of its pharmacology, therapeutic efficacy and tolerability in the treatment of insomnia. Drugs 2000; 59(4): 865–89PubMedCrossRefGoogle Scholar
  39. 39.
    Greenblatt DJ, Harmatz JS, von Moltke LL, et al. Comparative kinetics and dynamics of zaleplon, zolpidem, and placebo. Clin Pharmacol Ther 1998; 64(5): 553–61PubMedCrossRefGoogle Scholar
  40. 40.
    Salva P, Costa J. Clinical pharmacokinetics and pharmacodynamics of zolpidem: therapeutic implications. Clin Pharmacokinet 1995; 29(3): 142–53PubMedCrossRefGoogle Scholar
  41. 41.
    Von Moltke LL, Greenblatt DJ, Granda BW, et al. Zolpidem metabolism in vitro: responsible cytochromes, chemical inhibitors, and in vivo correlations. Br J Clin Pharmacol 1999; 48(1): 89–97CrossRefGoogle Scholar
  42. 42.
    Pichard L, Gillet G, Bonfils C, et al. Oxidative metabolism of zolpidem by human liver cytochrome P450S. Drug Metab Dispos 1995; 23(11): 1253–62PubMedGoogle Scholar
  43. 43.
    Toner LC, Tsambiras BM, Catalano G, et al. Central nervous system side effects associated with zolpidem treatment. Clin Neuropharmacol 2000; 23(1): 54–8PubMedCrossRefGoogle Scholar
  44. 44.
    Ware JC, Walsh JK, Scharf MB, et al. Minimal rebound insomnia after treatment with 10-mg zolpidem. Clin Neuropharmacol 1997; 20(2): 116–25PubMedCrossRefGoogle Scholar
  45. 45.
    Renwick AB, Mistry H, Ball SE, et al. Metabolism of zaleplon by human hepatic microsomal cytochrome P450 isoforms. Xenobiotica 1998; 28(4): 337–48PubMedCrossRefGoogle Scholar
  46. 46.
    Fernandez C, Maradeix V, Gimenez F, et al. Pharmacokinetics of zopiclone and its enantiomers in Caucasian young healthy volunteers. Drug Metab Dispos 1993; 21(6): 1125–8PubMedGoogle Scholar
  47. 47.
    Chouinard G, Lefko-Singh K, Teboul E. Metabolism of anxiolytics and hypnotics: benzodiazepines, buspirone, zopiclone, and zolpidem. Cell Mol Neurobiol 1999; 19(4): 533–52PubMedCrossRefGoogle Scholar
  48. 48.
    Gaillot J, Heusse D, Hougton GW, et al. Pharmacokinetics and metabolism of zopiclone. Pharmacology 1983; 27Suppl. 2: 76–91PubMedCrossRefGoogle Scholar
  49. 49.
    Goa KL, Heel RC. Zopiclone: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy as an hypnotic. Drugs 1986; 32(1): 48–65PubMedCrossRefGoogle Scholar
  50. 50.
    Noble S, Langtry HD, Lamb HM. Zopiclone: an update of its pharmacology, clinical efficacy and tolerability in the treatment of insomnia. Drugs 1998; 55(2): 277–302PubMedCrossRefGoogle Scholar
  51. 51.
    Gaillot J, Le Roux Y, Houghton GW, et al. Critical factors for pharmacokinetics of zopiclone in the elderly and in patients with liver and renal insufficiency. Sleep 1987; 10Suppl. 1: 7–21PubMedGoogle Scholar
  52. 52.
    Becquemont L, Mouajjah S, Escaffre O, et al. Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism. Drug Metab Dispos 1999; 27(9): 1068–73PubMedGoogle Scholar
  53. 53.
    Venkatesan K. Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet 1992; 22(1): 47–65PubMedCrossRefGoogle Scholar
  54. 54.
    Rae JM, Johnson MD, Lippman ME, et al. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 2001; 299(3): 849–57PubMedGoogle Scholar
  55. 55.
    Rodriguez-Antona C, Jover R, Gomez-Lechon MJ, et al. Quantitative RT-PCR measurement of human cytochrome P-450s: application to drug induction studies. Arch Biochem Biophys 2000; 376(1): 109–16PubMedCrossRefGoogle Scholar
  56. 56.
    Backman JT, Olkkola KT, Neuvonen PJ. Rifampin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 1996; 59(1): 7–13PubMedCrossRefGoogle Scholar
  57. 57.
    Villikka K, Kivistö KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61(1): 8–14PubMedCrossRefGoogle Scholar
  58. 58.
    Ohnhaus EE, Brockmeyer N, Dylewicz P, et al. The effect of antipyrine and rifampin on the metabolism of diazepam. Clin Pharmacol Ther 1987; 42(2): 148–56PubMedCrossRefGoogle Scholar
  59. 59.
    Ochs HR, Greenblatt DJ, Roberts GM, et al. Diazepam interaction with antituberculosis drugs. Clin Pharmacol Ther 1981; 29(5): 671–8PubMedCrossRefGoogle Scholar
  60. 60.
    Brockmeyer NH, Mertins L, Klimek K, et al. Comparative effects of rifampin and/or probenecid on the pharmacokinetics of temazepam and nitrazepam. Int J Clin Pharmacol Ther Toxicol 1990; 28(9): 387–93PubMedGoogle Scholar
  61. 61.
    Backman JT, Olkkola KT, Ojala M, et al. Concentrations and effects of oral midazolam are greatly reduced in patients treated with carbamazepine or phenytoin. Epilepsia 1996; 37(3): 253–7PubMedCrossRefGoogle Scholar
  62. 62.
    Scott AK, Khir AS, Steele WH, et al. Oxazepam pharmacokinetics in patients with epilepsy treated long-term with phenytoin alone or in combination with phenobarbitone. Br J Clin Pharmacol 1983; 16(4): 441–4PubMedCrossRefGoogle Scholar
  63. 63.
    Moore LB, Goodwin B, Jones SA, et al. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci U S A 2000; 97(13): 7500–2Google Scholar
  64. 64.
    Wang Z, Gorski JC, Hamman MA, et al. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity. Clin Pharmacol Ther 2001; 70(4): 317–26PubMedGoogle Scholar
  65. 65.
    Darwish M. Overview of drug-interaction studies with zaleplon [abstract]. Sleep 1999; 22: S280Google Scholar
  66. 66.
    Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56(6 Pt 1): 601–7PubMedCrossRefGoogle Scholar
  67. 67.
    von Moltke LL, Greenblatt DJ, Harmatz JS, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 1996; 276(2): 370–9Google Scholar
  68. 68.
    Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55(5): 481–5PubMedCrossRefGoogle Scholar
  69. 69.
    Greenblatt DJ, Wright CE, von Moltke LL, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 1998; 64(3): 237–47PubMedCrossRefGoogle Scholar
  70. 70.
    Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Inhibition of triazolam clearance by macrolide antimicrobial agents: in vitro correlates and dynamic consequences. Clin Pharmacol Ther 1998; 64(3): 278–85PubMedCrossRefGoogle Scholar
  71. 71.
    Phillips JP, Antal EJ, Smith RB. A pharmacokinetic drug interaction between erythromycin and triazolam. J Clin Psychopharmacol 1986; 6(5): 297–9PubMedCrossRefGoogle Scholar
  72. 72.
    Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993; 53(3): 298–305PubMedCrossRefGoogle Scholar
  73. 73.
    Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 1996; 34(9): 400–5PubMedGoogle Scholar
  74. 74.
    Luurila H, Olkkola KT, Neuvonen PJ. Lack of interaction of erythromycin with temazepam. Ther Drug Monit 1994; 16(6): 548–51PubMedCrossRefGoogle Scholar
  75. 75.
    Ahonen J, Olkkola KT, Neuvonen PJ. Lack of effect of antimycotic itraconazole on the pharmacokinetics or pharmacodynamics of temazepam. Ther Drug Monit 1996; 18(2): 124–7PubMedCrossRefGoogle Scholar
  76. 76.
    Sparber A, Wootton JC, Bauer L, et al. Use of complementary medicine by adult patients participating in HIV/AIDS clinical trials. J Altern Complement Med 2000; 6(5): 415–22PubMedCrossRefGoogle Scholar
  77. 77.
    Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38(1): 41–57PubMedCrossRefGoogle Scholar
  78. 78.
    Kanamitsu S, Ito K, Green CE, et al. Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4. Pharm Res 2000; 17(4): 419–26PubMedCrossRefGoogle Scholar
  79. 79.
    Weber FH, Richards RD, McCallum RW. Erythromycin: a motilin agonist and gastrointestinal prokinetic agent. Am J Gastroenterol 1993; 88(4): 485–90PubMedGoogle Scholar
  80. 80.
    Hansten PD. Drug interactions with antisecretory agents. Aliment Pharmacol Ther 1991; 5Suppl. 1: 121–8PubMedGoogle Scholar
  81. 81.
    Martinez C, Albet C, Agundez JA, et al. Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther 1999; 65(4): 369–76PubMedCrossRefGoogle Scholar
  82. 82.
    Powell JR, Rogers JF, Wargin WA, et al. Inhibition of theophylline clearance by cimetidine but not ranitidine. Arch Intern Med 1984; 144(3): 484–6PubMedCrossRefGoogle Scholar
  83. 83.
    Humphries TJ, Merritt GJ. Review article: drug interactions with agents used to treat acid-related diseases. Aliment Pharmacol Ther 1999; 13Suppl. 3: 18–26PubMedCrossRefGoogle Scholar
  84. 84.
    Russell RM, Golner BB, Krasinski SD, et al. Effect of antacid and H2 receptor antagonists on the intestinal absorption of folic acid. J Lab Clin Med 1988; 112(4): 458–63PubMedGoogle Scholar
  85. 85.
    Schmidt EK, Antonin KH, Flesch G, et al. An interaction study with cimetidine and the new angiotensin II antagonist valsartan. Eur J Clin Pharmacol 1998; 53(6): 451–8PubMedCrossRefGoogle Scholar
  86. 86.
    Fee JP, Collier PS, Howard PJ, et al. Cimetidine and ranitidine increase midazolam bioavailability. Clin Pharmacol Ther 1987; 41(1): 80–4PubMedCrossRefGoogle Scholar
  87. 87.
    Sanders LD, Whitehead C, Gildersleve CD, et al. Interaction of H2-receptor antagonists and benzodiazepine sedation: a double-blind placebo-controlled investigation of the effects of cimetidine and ranitidine on recovery after intravenous midazolam. Anaesthesia 1993; 48(4): 286–92PubMedCrossRefGoogle Scholar
  88. 88.
    Ochs HR, Greenblatt DJ, Friedman H, et al. Bromazepam pharmacokinetics: influence of age, gender, oral contraceptives, cimetidine, and propranolol. Clin Pharmacol Ther 1987; 41(5): 562–70PubMedCrossRefGoogle Scholar
  89. 89.
    Friedman H, Greenblatt DJ, Burstein ES, et al. Triazolam kinetics: interaction with cimetidine, propranolol, and the combination. J Clin Pharmacol 1988; 28(3): 228–33PubMedGoogle Scholar
  90. 90.
    Abernethy DR, Greenblatt DJ, Divoll M, et al. Interaction of cimetidine with the triazolobenzodiazepines alprazolam and triazolam. Psychopharmacology (Berl) 1983; 80(3): 275–8CrossRefGoogle Scholar
  91. 91.
    Klotz U, Reimann I. Elevation of steady-state diazepam levels by cimetidine. Clin Pharmacol Ther 1981; 30(4): 513–7PubMedCrossRefGoogle Scholar
  92. 92.
    Abernethy DR, Greenblatt DJ, Divoll M, et al. Differential effect of cimetidine on drug oxidation (antipyrine and diazepam) vs. conjugation (acetaminophen and lorazepam): prevention of acetaminophen toxicity by cimetidine. J Pharmacol Exp Ther 1983; 224(3): 508–13Google Scholar
  93. 93.
    Greenblatt DJ, Abernethy DR, Divoll M, et al. Noninteraction of temazepam and cimetidine. J Pharm Sci 1984; 73(3): 399–401PubMedCrossRefGoogle Scholar
  94. 94.
    Klotz U, Reimann I. Influence of cimetidine on the pharmacokinetics of desmethyldiazepam and oxazepam. Eur J Clin Pharmacol 1980; 18(6): 517–20PubMedCrossRefGoogle Scholar
  95. 95.
    Grimsley SR, Jann MW. Paroxetine, sertraline, and fluvoxamine: new selective serotonin reuptake inhibitors. Clin Pharm 1992; 11(11): 930–57PubMedGoogle Scholar
  96. 96.
    Rascati K. Drug utilization review of concomitant use of specific serotonin reuptake inhibitors or clomipramine with antianxiety/sleep medications. Clin Ther 1995; 17(4): 786–90PubMedCrossRefGoogle Scholar
  97. 97.
    Ruther E. Depression, circadian rhythms and trimipramine. Drugs 1989; 38Suppl. 1: 1–3PubMedCrossRefGoogle Scholar
  98. 98.
    Ware JC. Tricyclic antidepressants in the treatment of insomnia. J Clin Psychiatry 1983; 44(9 Pt 2): 25–8PubMedGoogle Scholar
  99. 99.
    Haria M, Fitton A, McTavish D. Trazodone: a review of its pharmacology, therapeutic use in depression and therapeutic potential in other disorders. Drugs Aging 1994; 4(4): 331–55PubMedCrossRefGoogle Scholar
  100. 100.
    Boerner RJ, Moller HJ. The importance of new antidepressants in the treatment of anxiety/depressive disorders. Pharmacopsychiatry 1999; 32(4): 119–26PubMedCrossRefGoogle Scholar
  101. 101.
    Kast RE. Mirtazapine may be useful in treating nausea and insomnia of cancer chemotherapy. Support Care Cancer 2001; 9(6): 469–70PubMedCrossRefGoogle Scholar
  102. 102.
    Scates AC, Doraiswamy PM. Reboxetine: a selective norepinephrine reuptake inhibitor for the treatment of depression. Ann Pharmacother 2000; 34(11): 1302–12PubMedCrossRefGoogle Scholar
  103. 103.
    Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52(5): 479–86PubMedCrossRefGoogle Scholar
  104. 104.
    Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol 1994; 46(1): 35–9PubMedCrossRefGoogle Scholar
  105. 105.
    Hemeryck A, Belpaire FM. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab 2002; 3(1): 13–37PubMedCrossRefGoogle Scholar
  106. 106.
    Wright CE, Lasher-Sisson TA, Steenwyk RC, et al. A pharmacokinetic evaluation of the combined administration of triazolam and fluoxetine. Pharmacotherapy 1992; 12(2): 103–6PubMedGoogle Scholar
  107. 107.
    Preskorn SH, Alderman J, Greenblatt DJ, et al. Sertraline does not inhibit cytochrome P450 3A-mediated drug metabolism in vivo. Psychopharmacol Bull 1997; 33(4): 659–65PubMedGoogle Scholar
  108. 108.
    Preskorn SH, Greenblatt DJ, Harvey AT. Lack of effect of sertraline on the pharmacokinetics of alprazolam. J Clin Psychopharmacol 2000; 20(5): 585–6PubMedCrossRefGoogle Scholar
  109. 109.
    Stark P, Hardison CD. A review of multicenter controlled studies of fluoxetine vs imipramine and placebo in outpatients with major depressive disorder. J Clin Psychiatry 1985; 46(3 Pt 2): 53–8PubMedGoogle Scholar
  110. 110.
    Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32Suppl. 1: 1–21PubMedCrossRefGoogle Scholar
  111. 111.
    Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Human cytochromes and some newer antidepressants: kinetics, metabolism, and drug interactions. J Clin Psychopharmacol 1999; 19(5): 23S–35SPubMedCrossRefGoogle Scholar
  112. 112.
    Liston HL, DeVane CL, Boulton DW, et al. Differential time course of cytochrome P450 2D6 enzyme inhibition by fluoxetine, sertraline, and paroxetine in healthy volunteers. J Clin Psychopharmacol 2002; 22(2): 169–73PubMedCrossRefGoogle Scholar
  113. 113.
    Cone AM, Stott SA. Flumazenil. Br J Hosp Med 1994; 51(7): 346–8PubMedGoogle Scholar
  114. 114.
    Mattila MJ, Nuotto E. Caffeine and theophylline counteract diazepam effects in man. Med Biol 1983; 61(6): 337–43PubMedGoogle Scholar
  115. 115.
    Mattila MJ, Vainio P, Nurminen ML, et al. Midazolam 12mg is moderately counteracted by 250mg caffeine in man. Int J Clin Pharmacol Ther 2000; 38(12): 581–7PubMedGoogle Scholar
  116. 116.
    Lariviere L, Caille G, Elie R. The effects of low and moderate doses of alcohol on the pharmacokinetic parameters of zopiclone. Biopharm Drug Dispos 1986; 7(2): 207–10PubMedCrossRefGoogle Scholar
  117. 117.
    Delcker A, Wilhelm H, Timmann D, et al. Side effects from increased doses of carbamazepine on neuropsychological and posturographic parameters of humans. Eur Neuropsychopharmacol 1997; 7(3): 213–8PubMedCrossRefGoogle Scholar
  118. 118.
    Kuitunen T, Mattila MJ, Seppälä T, et al. Actions of zopiclone and carbamazepine, alone and in combination, on human skilled performance in laboratory and clinical tests. Br J Clin Pharmacol 1990; 30(3): 453–61PubMedCrossRefGoogle Scholar
  119. 119.
    Sanchez Garcia P, Paty I, Leister CA, et al. Effect of zaleplon on digoxin pharmacokinetics and pharmacodynamics. Am J Health Syst Pharm 2000; 57(24): 2267–70PubMedGoogle Scholar
  120. 120.
    Darwish M. Analysis of potential drug interactions with zaleplon [abstract]. J Am Geriatr Soc 1999; 47: S62Google Scholar
  121. 121.
    Greenblatt DJ, Shader RI. Effects of age and other drugs on benzodiazepine kinetics. Arzneimittel Forschung 1980; 30(5a): 886–90PubMedGoogle Scholar
  122. 122.
    Ono S, Hatanaka T, Miyazawa S, et al. Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica 1996; 26(11): 1155–66PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2003

Authors and Affiliations

  • Leah M. Hesse
    • 1
    • 2
  • Lisa L. von Moltke
    • 1
    • 2
  • David J. Greenblatt
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacology and Experimental TherapeuticsTufts University School of MedicineBostonUSA
  2. 2.The Division of Clinical PharmacologyTufts-New England Medical CenterBostonUSA

Personalised recommendations