Skip to main content
Log in

Evidence for Psychotropic Effects of Acetylcholinesterase Inhibitors

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is a dementing illness, the risk of which increases markedly with age. It is estimated that it consumes $US90 billion annually. Alzheimer’s disease is marked by an expanding cholinergic deficit, with a direct relationship between the degree of cholinergic dysfunction and the cognitive impairment. Substantial research continues to be focused on the development of newer and better medications, in particular acetylcholinesterase inhibitors (AChEIs), to compensate for the cholinergic deficit.

Trial observations over the past several years suggest that in addition to positive effects on cognitive function, AChEIs may be able to decrease and ameliorate the neuropsychiatric symptoms frequently associated with Alzheimer’s disease. These observations have also shown that the instrumentation used can significantly influence the interpretation and outcome of a study. Typically the individual subscores of the noncognitive component of the Alzheimer’s Disease Assessment Scale (ADAS-noncog) and the Neuropsychiatric Inventory (NPI) scale have most consistently reflected the ability of AChEIs to improve the noncognitive behavioural problems and neuropsychiatric symptoms.

Apathy and visual hallucinations are the symptoms that respond most positively to AChEIs. These agents may have the potential to decrease polypharmacy in this elderly population by achieving symptom reduction without additional use of antipsychotic medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Evans DA, Funkenstein HH, Albert MS, et al. Prevalence ofAlzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA 1989; 262(18): 2551–6

    CAS  Google Scholar 

  2. Hebert LE, Scherr PA, Beckett LA, et al. Age-specific incidence of Alzheimer’s disease in a community population. JAMA 1995; 273(17): 1354–9

    Article  PubMed  CAS  Google Scholar 

  3. Winblad B, Wimo A, Mobius HJ, et al. Severe dementia: a common condition entailing high costs at individual and societallevels. Int J Geriatr Psychiatry 1999; 14(11): 911–4

    Article  PubMed  CAS  Google Scholar 

  4. Whitehouse PJ. The cholinergic deficit in Alzheimer’s disease. J Clin Psychiatry 1998; 59. Suppl. 13: 19–22

    Google Scholar 

  5. Taylor P. Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease. Neurology 1998; 51 Suppl. 1: S30–5

    Article  PubMed  CAS  Google Scholar 

  6. Cummings JL. Cholinesterase inhibitors: a new class of psychotropic compounds. Am J Psychiatry 2000; 157: 4–15

    PubMed  CAS  Google Scholar 

  7. Harrell LE, Calloway R, Morere D, et al. The effect of long-term physostigmine administration in Alzheimer’s disease. Neurology 1990; 40: 1350–4

    Article  PubMed  CAS  Google Scholar 

  8. Schwartz AS, Kohlstaedt EV. Physostigmine effects in Alzheimer’s disease: relationship to dementia severity. Life Sci 1986; 38: 1021–8

    Article  PubMed  CAS  Google Scholar 

  9. Thal LJ, Ferguson JM, Mintzer J, et al. A 24 week randomized trial of controlled-release physostigmine patients with Alzheimer’s Disease. Neurology 1999; 52: 1146–52

    Article  PubMed  CAS  Google Scholar 

  10. Cummings JL, Gorman DG, Shapira J. Physostigmine ameliorates the delusions of Alzheimer’s disease. Biol Psychiatry 1993; 33: 536–41

    Article  PubMed  CAS  Google Scholar 

  11. Gorman DG, Read S, Cummings JL. Cholinergic therapy of behavioral disturbances in Alzheimer’s disease. Neuropsychiatry Neuropsychol Behav Neurol 1993; 6: 229–34

    Google Scholar 

  12. Folstein MF, Folstein SE, McHugh PR. ‘Mini-Mental State’: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12: 189–98

    Article  PubMed  CAS  Google Scholar 

  13. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984; 141: 1356–64

    PubMed  CAS  Google Scholar 

  14. Davis KL, Thal LJ, Gamzu ER, et al. A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. N Engl J Med 1992; 327: 1253–9

    Article  PubMed  CAS  Google Scholar 

  15. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34: 939–44

    Article  PubMed  CAS  Google Scholar 

  16. Farlow M, Gracon SI, Hershey LA, et al. A controlled trial of tacrine in Alzheimer’s disease. JAMA 1992; 268: 2523–9

    Article  PubMed  CAS  Google Scholar 

  17. Knapp MJ, Knopman DS, Solomon PR, et al. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. JAMA 1994; 271: 985–94

    Article  PubMed  CAS  Google Scholar 

  18. Quizilbash N, Whitehead A, Higgins J, et al. Cholinesterase inhibition for Alzheimer’s disease: a meta-analysis of the tacrine trials. JAMA 1998; 280: 1777–82

    Article  Google Scholar 

  19. Raskind MA, Sadowsky CH, Sigmund WR, et al. Effect of tacrine on language, praxis, and noncognitive behavioral problems in Alzheimer disease. Arch Neurol 1997; 54: 836–40

    Article  PubMed  CAS  Google Scholar 

  20. Cummings JL, Mega M, Gray K, et al. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994; 44: 2308–14

    Article  PubMed  CAS  Google Scholar 

  21. Cummings JL. The meuropsychiatric inventory: assessing psychopathology in dementia patients. Neurology 1997; 48 Suppl. 6: 10–6

    Article  Google Scholar 

  22. Kaufer DI, Cummings JL, Christine D. Effect of tacrine on behavioral symptoms in Alzheimer’s disease: an open-label study. J Geriatr Psychiatry Neurol 1996; 9: 1–6

    PubMed  CAS  Google Scholar 

  23. Kaufer D, Cummings JL, Christine D. Differential neuropsychiatric symptom responses to tacrine in Alzheimer’s disease: relationship to dementia severity. J Neuropsychiatry Clin Neurosci 1998; 10: 55–63

    PubMed  CAS  Google Scholar 

  24. Antuono PG, for The Mentane Study Group. Effectiveness and safety of velnacrine for the treatment of Alzheimer’s disease: a double-blind, placebo-controlled study. Arch Intern Med 1995; 155: 1766–72

    Article  PubMed  CAS  Google Scholar 

  25. Raskin A, Crook T. Relative’s assessment of global symptomatology (RAGS). Psychopharmacol Bull 1988; 24: 759–63

    PubMed  CAS  Google Scholar 

  26. Kaufer D, Catt K, Pollock B, et al. Donepezil in Alzheimer’s disease: relative cognitive and neuropsychiatric responses and impact on caregiver distress. American Geriatrics Society Meeting; 1998 May 8; Seattle (WA)

  27. Small G, Donohue J, Brooks R. An economic evaluation of donepezil in the treatment of Alzheimer’s disease. Clin Ther 1998; 20: 838–50

    Article  PubMed  CAS  Google Scholar 

  28. Shea C, MacKnight C, Rockwood K. Aspects of dementia. Donepezil for treatment of dementia with Lewy bodies: a case series of nine patients. Int Psychogeriatr 1998; 10: 229–38

    Article  PubMed  CAS  Google Scholar 

  29. Kaufer DI, Catt KE, Lopez OL, et al. Dementia with Lewy bodies: response of delirium-like features to donepezil. Neurology 1998; 51: 1512

    Article  PubMed  CAS  Google Scholar 

  30. Morris JC, Cyrus PA, Orazem J, et al. Metrifonate benefits cognitive, behavioral, and global function in patients with Alzheimer’s disease. Neurology 1998; 50: 1222–30

    Article  PubMed  CAS  Google Scholar 

  31. Cummings JL, Cyrus PA, Bieber F, et al. The effect of metrifonate on the cognitive, functional and behavioral symptoms of Alzheimer’s disease patients. [abstract]. American Association of Geriatric Psychiatry Annual Meeting; 1998 Mar 10; San Diego (CA)

  32. Raskin M, Cyrus PA, Ruzicka BB, et al. The effects of metrifonate on the cognitive, behavioral, and functional performance of Alzheimer’s disease patients. J Clin Psychiatry 1999; 60: 318–25

    Article  Google Scholar 

  33. Imbimbo BP, Lucca U, Lucchelli F, et al. A 25-week placebo-controlled study of eptastigmine in patients with Alzheimer’s disease. Alzheimer Dis Assoc Disord 1998; 12: 313–22

    Article  PubMed  CAS  Google Scholar 

  34. Spagnoli A, Lucca U, Menasce G. Long-term acetyl-L-carnitine treatment in Alzheimer’s disease. Neurology 1991; 41: 1726–32

    Article  PubMed  CAS  Google Scholar 

  35. Imbimbo BP, Martelli P, Troetel WM, et al. Efficacy and safety of eptastigmine for the treatment of patients with Alzheimer’s disease. Neurology 1990; 40: 1350–4

    Article  Google Scholar 

  36. Jan G, McKeith IG. Special workshop in dementia with Lewy bodies. Neurobiol Aging 1998; 19: 45

    Google Scholar 

  37. Aarsland D, Bronnick K, Karlsen K. Donezepil for dementia with Lewy bodies: a case study. Int J Geriatr Psychiatry 1999; 14: 69–72

    Article  PubMed  CAS  Google Scholar 

  38. Hutchinson M, Fazzini E. Cholinesterase inhibition in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1996; 61: 324–5

    Article  PubMed  CAS  Google Scholar 

  39. Cummings JL, Back C. The cholinergic hypothesis of Neuropsychiatric Symptoms in Alzheimer’s Disease. Am J Geriatr Psychiatry 1998; 6 Suppl. : S64–78

    Article  PubMed  CAS  Google Scholar 

  40. Mesulam M-M. Structure and function of cholinergic pathways in the cerebral cortex, limbic system, basal ganglia, and thalamus of the human brain. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York: Raven Press Ltd, 1995: 135–46

    Google Scholar 

  41. Mesulam M-M, Mufson EJ. Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 1984; 107: 253–74

    Article  PubMed  Google Scholar 

  42. Geula C. Abnormalities of neural circuitry in Alzheimer’s disease: hippocampus and cortical cholinergic innervation. Neurology 1998; 51 Suppl. 1: S18–29

    Article  PubMed  CAS  Google Scholar 

  43. Fernandez HL, Moreno RD, Inestrosa NC. Tetrameric (G4) acetylcholine structure, localization, and physiological regulation. J Neurochem 1996; 66(4): 1335–46

    Article  PubMed  CAS  Google Scholar 

  44. Pontecorvo MJ, Parys W. Clinical development of galantamine: evaluation of a compound with possible acetylcholinesterase inhibiting and nicotinic modulating activity [abstract]. 6th International Conference on Alzheimer’s Disease and Related Disorders; 1998 Jul 18–23; Amsterdam

Download references

Acknowledgements

This project was supported by a National Institute on Aging Alzheimer’s Disease Research Center grant (AG 16570), an Alzheimer’s Disease Research Center of California grant, and the Sidell-Kagan Foundation. Dr Cummings has served as a consultant or performed research in conjunction with Novartis, Parke-Davis, Pfizer/Eisai, Bayer, Lilly, Janssen and Smith-Kline Beecham regarding agents relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Cummings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cummings, J.L., Askin-Edgar, S. Evidence for Psychotropic Effects of Acetylcholinesterase Inhibitors. Mol Diag Ther 13, 385–395 (2000). https://doi.org/10.2165/00023210-200013060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200013060-00001

Keywords

Navigation