Skip to main content
Log in

Beyond Tacrine

Recently Developed Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease

  • Drug Therapy
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Alzheimer’s disease still remains a diagnosis of exclusion. Until treatment strategies aimed at targeting its underlying aetiology become available, a cholinergic approach appears to be the most promising treatment for improving cognition in this devastating disease. Research to date suggests that cholinesterase inhibitors (ChEIs) produce only modest, if any, improvement in cognition. However, this class of drugs could be of greater interest if they slow the rate of deterioration in Alzheimer’s disease compared with placebo-treated patients. The ChEIs tacrine and donepezil are to date the only drugs approved by the US Food and Drug Administration (FDA) for use in Alzheimer’s disease. Donepezil is a long-acting drug and does not exhibit the adverse events, especially hepatotoxicity, associated with tacrine. The safety and tolerability features and efficacy of several other investigational drugs including metrifonate, rivastigmine (ENA 713), eptastigmine, galantamine (galanthamine) and huperzine A are being studied to evaluate their use in the management of patients with Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Progress report on Alzheimer’s disease. In: US Department of Health and Human Services, National Institutes of Health. National Institute on Aging: NIH Publication No. 97-4014, 1997

  2. Feldman H, Gracon S.Alzheimer’s disease: symptomatic drugs under development. In: Gauthier S, editor. Clinical diagnosis and management of Alzheimer’s disease. London: Martin Dunitz, 1996: 239–59

    Google Scholar 

  3. Whitehouse PJ, Voci J. Therapeutic trials in Alzheimer’s disease. Curr Opin Neurol 1995; 8(4): 275–8

    PubMed  CAS  Google Scholar 

  4. Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; II: 1403–5

    Google Scholar 

  5. Whitehouse PJ, Price DL, Struble RG, et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 215: 1237–9

    PubMed  CAS  Google Scholar 

  6. Francis FT, Palmer AM, Sims NR, et al. Neurochemical studies of early-onset Alzheimer’s disease. N Engl J Med 1985; 313: 7–11

    PubMed  CAS  Google Scholar 

  7. Sims NR, Bowen DM, Allen SJ, et al. Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 1983; 40(2): 503–9

    PubMed  CAS  Google Scholar 

  8. Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 1983; 219: 1184–90

    PubMed  CAS  Google Scholar 

  9. Marx J. Searching for drugs that combat Alzheimer’s. Science 1996 M 5; 273: 50–3

    PubMed  CAS  Google Scholar 

  10. Gottfries CG. Therapy options in Alzheimer’s disease. Br J Clin Pharmacol 1994; 48(6): 327–30

    CAS  Google Scholar 

  11. Becker RE, Giacobini E. Pharmacokinetics and pharmacodynamics of acetylcholinesterase inhibition: can acetylcholine levels in the brain be improved in Alzheimer’s disease? Drug Dev Res 1988; 14: 235–46

    Google Scholar 

  12. Becker RE, Giacobini E. Mechanisms of cholinesterase inhibition in senile dementia of the Alzheimer type: clinical, pharmacological and therapeutic aspects. Drug Dev Res 1988; 12: 163–95

    CAS  Google Scholar 

  13. Drukarch B, Kits S, Van Der Meer EG, et al. 9-Amino-l,2,3,4-tetrahydroacridine (THA), an alleged drug for the treatment of Alzheimer’s disease, inhibits acetylcholinesterase activity and slow outward K+ current. Eur J Pharmacol 1987; 141: 153–7

    PubMed  CAS  Google Scholar 

  14. Drukarch B, Leysen JE, Stoof JC. Further analysis of the neuropharmacological profile of 9-amino-l,2,3,4-tetrahydroacridine (THA), an alleged drug for the treatment of Alzheimer’s disease. Life Sci 1988; 42: 1011–7

    PubMed  CAS  Google Scholar 

  15. Smalheiser NR, Swanson DR. Linking estrogen to Alzheimer’s disease: an informatics approach. Neurology 1996 Sep; 47(3): 809–10

    PubMed  CAS  Google Scholar 

  16. Stephenson J. More evidence links NSAID, estrogen use with reduced Alzheimer risk. JAMA 1996 May 8; 275(18): 1389–90

    PubMed  CAS  Google Scholar 

  17. Fowler CJ, Tipton KF, MacKay AVP. Human platelet monoamine oxidase — a useful enzyme in the study of psychiatric disorders? Neuroscience 1982; 7: 1577–94

    PubMed  CAS  Google Scholar 

  18. Tariot PN, Sunderland T, Weingartner T, et al. Cognitive effects of l-deprenyl in Alzheimer’s disease. Psychopharmacology 1987; 91: 489–95

    PubMed  CAS  Google Scholar 

  19. Tariot PN, Cohen RM, Sunderland T, et al. L-Deprenyl in Alzheimer’s disease; preliminary evidence for behavioral change with monoamine oxidase B inhibition. Arch Gen Psychiatry 1987; 44: 427–33

    PubMed  CAS  Google Scholar 

  20. McGeer PL, Schulzer M, McGeer EG. Arthritis and antiinflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 1996 Aug; 47(2): 425–32

    PubMed  CAS  Google Scholar 

  21. MacKenzie IR. Anti-inflammatory drugs in the treatment of Alzheimer’s disease. J Rheumatol 1996 May; 23(5): 806–8

    PubMed  CAS  Google Scholar 

  22. Aisen PS, Davis KL. Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 1994; 15(8): 1105–13

    Google Scholar 

  23. Oken RJ. Towards a unifying hypothesis of neurodegenerative diseases and a concomitant rational strategy for their prophylaxis and therapy. Med Hypotheses 1995 Oct; 45(4): 341–2

    PubMed  CAS  Google Scholar 

  24. Becker RE, Giacobini E, editors. Alzheimer’s disease: from molecular biology to brain. Boston: Birkhauser, 1996

    Google Scholar 

  25. Sussman JL, Harel M, Frolow F, et al. Atomic structure of acetylcholinesterase from Torpedo californical: a prototypic acetylcholine binding protein. Science 1991; 253: 872–9

    PubMed  CAS  Google Scholar 

  26. Mesulam MM, Moran A. Cholinesterases within neurofibrillary tangles related to age and Alzheimer’s disease. Ann Neurol 1987; 22: 223–8

    PubMed  CAS  Google Scholar 

  27. Becker RE, Moriearty PL, Unni LK. The second generation of cholinesterase inhibitors: clinical and pharmacological effects. In: Becker R, Giacobini E, editors. Cholinergic basis for Alzheimer therapy. Boston: Birkhauser, 1991: 263–96

    Google Scholar 

  28. Freeman SE, Dawson RM. Tacrine: a pharmacological review. Prog Neurobiol 1991; 36: 257–77

    PubMed  CAS  Google Scholar 

  29. Rogers SL, Yamanishi Y, Yamatsu K. E2020 — the pharmacology of piperidine cholinesterase inhibitor. In: ai]Becker_R, Giacobini E, editors. Cholinergic basis for Alzheimer therapy. Boston: Birkhauser, 1991: 314–20

    Google Scholar 

  30. Ohnishi A, Mihara M, Kamakura H, et al. Comparison of the pharmacokinetics of E2020, a new compound for Alzheimer’s disease, in healthy young and elderly subjects. J Clin Pharmacol 93; 33: 1086–91

  31. Unni LK, Womack C, Hannant M, et al. Pharmacokinetics and pharmacodynamics of metrifonate in humans. Methods Find Exp Clin Pharmacol 1994; 16(4): 285–9

    PubMed  CAS  Google Scholar 

  32. Becker RE, Colliver JA, Markwell SJ, et al. Double-blind, placebo-controlled study of metrifonate, an acetylcholinesterase inhibitor, for Alzheimer’s disease. Alz Dis Assoc Disord 1996; 10(3): 124–31

    CAS  Google Scholar 

  33. Anand R, Hartman RD, Hayes PE. An overview of the development of ENA713, abrain selective cholinesterase inhibitor. In: Becker R, Giacobini E, editors. Alzheimer’s disease: from molecular biology to therapy. Boston: Birkhauser, 1996: 239–43

    Google Scholar 

  34. Unni LK, Hutt V, Imbimbo BP, et al. Kinetics of cholinesterase inhibition of eptastigmine in man. Eur J Clin Pharmacol 1991; 41: 83–4

    PubMed  CAS  Google Scholar 

  35. Auteri A, Mosca A, Lattuada A, et al. Pharmacodynamics and pharmacokinetics of eptastigmine in elderly subjects. Eur J Clin Pharmacol 1993; 45: 373–6

    PubMed  CAS  Google Scholar 

  36. Fulton B, Benfield P.Galanthamine. Drugs Aging 1996; 9(1): 60–5

    PubMed  CAS  Google Scholar 

  37. Kewitz H, Wilcock G, Davis B. Galanthamine in Alzheimer’s disease. In: Giacobini E, Becker R, editors. Alzheimer disease: therapeutic strategies. Boston: Birkhauser, 1994: 140–4

    Google Scholar 

  38. Bores GM, Huger FP, Petko W. Pharmacological evaluation of novel Alzheimer’s disease therapeutics: acetylcholinesterase inhibitors related to galanthamine. J Pharmacol Exp Ther 1996; 277: 728–38

    PubMed  CAS  Google Scholar 

  39. Fink DM, Bores GM, Effland RC, et al. Synthesis and evaluation of 5-amino-5,6,7,8-tetrahydroquinolinones as potential agents for the treatment of Alzheimer’s disease. J Med Chem 1995; 38: 3645–51

    PubMed  CAS  Google Scholar 

  40. Mohs RC, Davis BM, Johns CA, et al. Oral physostigmine treatment of patients with Alzheimer’s disease. Am J Psychiatry 1985; 142: 28–33

    PubMed  CAS  Google Scholar 

  41. Thal JL. Physostigmine in Alzheimer’s disease. In: Becker R, Giacobini E, editors. Cholinergic basis for Alzheimer therapy. Boston: Birkhauser, 1991: 209–15

    Google Scholar 

  42. Davis KL, Mohs RC. Enhancement of memory processes in Alzheimer’s disease with multiple-dose intravenous physostigmine. Am J Psychiatry 1982; 139: 1421–4

    PubMed  CAS  Google Scholar 

  43. Masur DM, Blau AD, Thal LJ, et al. Measuring changes in memory and cognitive functioning in Alzheimer’s disease with administration of oral physostigmine. In: Giacobini E, Becker R, editors. Current research in alzheimer therapy: cholinesterase inhibitors. New York: Taylor and Francis, 1988: 141–51

    Google Scholar 

  44. Thal LJ, Masur DM, Sharpless NS, et al. Acute and chronic effects of oral physostigmine and lecithin in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1986; 10: 627–36

    PubMed  CAS  Google Scholar 

  45. Tariot PN, Schneider L. Contemporary treatment approaches to Alzheimer’s disease. Consult Pharm 1996; 11 Suppl. E: 16–24

    Google Scholar 

  46. Becker RE, Colliver J, Elble R, et al. Effects of metrifonate, a long-acting cholinesterase inhibitor, in Alzheimer’s disease: report of an open trial. Drug Dev Res 1990; 19: 425–34

    Google Scholar 

  47. Summers WK, Majovski LV, Marsh GM, et al. Oral tetrahydro-aminoacridine in long-term treatment of senile dementia, Alzheimer type. N Engl J Med 1986; 315: 1241–5

    PubMed  CAS  Google Scholar 

  48. Madden S, Spaldin V, Park BK. Clinical pharmacokinetics of tacrine. Clin Pharmacokinet 1995; 28(6): 449–57

    PubMed  CAS  Google Scholar 

  49. Eagger SA, Levy R, Sahakian BJ. Tacrine in Alzheimer’s disease. Lancet 1991; 337: 989–92

    PubMed  CAS  Google Scholar 

  50. Jogerst G. Alzheimer’s disease: the role of tacrine therapy. Iowa Med 1995; 85(10): 409–11

    PubMed  CAS  Google Scholar 

  51. Soares JC. THA — historical aspects, review of pharmacological properties and therapeutic effects. Dementia 1995; 6: 225–34

    PubMed  CAS  Google Scholar 

  52. Crimson LM. Tacrine: first drug approved for Alzheimer’s disease. Ann Pharmacother 1994 Jun; 28: 744–51

    Google Scholar 

  53. Rogers SL, Friedhoff LT, et al. The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US multicentre, randomized, double-blind, placebo-controlled trial. Dementia 1996; 7: 293–303

    PubMed  CAS  Google Scholar 

  54. Bryson HM, Benfield P. Donepezil. Drugs Aging 1997 Mar; 10(3): 234–9

    PubMed  CAS  Google Scholar 

  55. Tariot PN, Schneider L, Porsteinson AP. Treating Alzheimer’s disease: pharmacologic options now and in the near future. Postgrad Med Jun 1997; 101(6): 73–90

    CAS  Google Scholar 

  56. Watkins PB, Zimmerman HJ, Knapp MJ, et al. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 1994 Apr 6; 271(13): 992–8

    PubMed  CAS  Google Scholar 

  57. Boiler F, Orgogozo JM. Tacrine: Alzheimer’s disease and the cholinergic theory. A critical review and results of a new therapy. Neurologia 1995 May; 10(5): 194–5

    Google Scholar 

  58. Knapp MJ, Knopman DK, Solomon PR, et al. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. JAMA 1994 Apr; 271(13): 985–91

    PubMed  CAS  Google Scholar 

  59. Davis KL, Thal LJ, Gamzu ER, et al. Double-blind, placebocontrolled multicenter study of tacrine for Alzheimer’s disease. N Engl J Med 1992 Oct; 327(18): 1253–9

    PubMed  CAS  Google Scholar 

  60. Aricept (donepezil hydrochloride tablets). Package insert, 1996; Eisai, Teaneck (NJ)

  61. Becker RE, Moriearty P, Unni L, et al. Cholinesterase inhibitors as therapy in Alzheimer’s disease: benefit to risk considerations in clinical application. In: Becker R, Giacobini E, editors. Alzheimer’s disease: from molecular biology to therapy. Boston: Birkhauser, 1996: 257–66

    Google Scholar 

  62. Becker RE, Colliver JA, Markwell SJ, et al. Effects of metrifonate on cognitive decline in Alzheimer’s disease. Alz Dis Assoc Disord 1998; 12(1): 54–7

    CAS  Google Scholar 

  63. Morris JC, Cyrus PA, Orazem J, et al. Metrifonate benefits cognitive, behavioural, and global function in patients with Alzheimer’s disease. Neurology 1998; 50: 1222–30

    PubMed  CAS  Google Scholar 

  64. Kewitz H, Berzewski, Rainer M, et al. Galanthamine, a selective nontoxic acetylcholinesterase inhibitor, is significantly superior over placebo in the treatment of SDAT [abstract no. P58-147]. Neuropsychopharmacology 1994; 10(3S Pt 2): 130S

    Google Scholar 

  65. Spencer CM, Noble S. Rivastigmine. A review of its use in Alzheimer’s disease. Drugs Aging 1998; 13(5): 391–411

    PubMed  CAS  Google Scholar 

  66. Friedhoff LT, Rogers SL. Donepezil lengthens time to loss of activities of daily living and cognition in patients with mild to moderate Alzheimer’s disease. Presented at the 49th Annual Meeting of the American Academy of Neurology; 1997 Apr 12–19: Boston

  67. Metcalf RL, Fukoto RB, March RB. Toxication of Diptrex and DDVP to the housefly. J Eur Entomol 1959; 52: 44–9

    CAS  Google Scholar 

  68. Talaat S, Amin N, Massry BE. The treatment of bilharziasis and other intestinal parasites with Diptrex: a preliminary report on a hundred cases. J Egypt Med Assoc 1963; 46: 827–32

    PubMed  CAS  Google Scholar 

  69. Reiner E, Krauthacker B, Simeon V, et al. Mechanism of inhibition in vitro of mammalian acetylcholinesterase and cholin-esterase in solutions of O,O-dimethyl-2,2,2-trichloro-l-hydroxyethyl phosphonate (trichlorphon). Biochem Pharmacol 1975; 24: 717–22

    PubMed  CAS  Google Scholar 

  70. Nordgren I, Bergstrom M, Holmsted B, et al. Transformation and action of metrifonate. Arch Toxicol 1978; 41: 3–41

    PubMed  Google Scholar 

  71. Snellen WM. Therapeutic properties of metrifonate. Acta Pharmacol Toxicol 1981; 49: 114–7

    Google Scholar 

  72. Holmstedt BR, Nordgren I. Toxicological limitations to cholinomimetic therapy. In: Becker R, Giacobini E, editors. Cholinergic basis for Alzheimer therapy. Boston: Birkhauser, 1991: 114–7

    Google Scholar 

  73. Cummings JL, Cyrus PA, Bieber F, et al. Metrifonate treatment of the cognitive deficits of Alzheimer’s disease. Neurology 1998; 50: 1214–21

    PubMed  CAS  Google Scholar 

  74. Cummings J, Bieber F, Mas J, et al. Metrifonate in Alzheimer’s disease: results of a dose-finding study. In: Iqbal K, Winbald B, Nishimura T, et al., editors. Alzheimer’s disease: biology, diagnosis and therapeutics. Chichester: John Wiley and Sons, 1997: 665–9

    Google Scholar 

  75. Cutler NR, Jhee SS, Cyrus P, et al. Safety and tolerability of metrifonate in patients with Alzheimer’s disease: results of a maximum tolerated dose study. Life Sci 1998; 62(16): 1433–41

    PubMed  CAS  Google Scholar 

  76. Lamb HM, Faulds D. Metrifonate. Drugs Aging 1997; 11(6): 490–6

    PubMed  CAS  Google Scholar 

  77. Enz A, Meier D, Spiegel R. Effects of novel acetylcholinesterase inhibitors based on the mechanism of enzyme inhibition. In: Giacobini E, Becker R, editors. Alzheimer disease: therapeutic strategies. Boston: Birkhauser, 1994: 125–30

    Google Scholar 

  78. Sramek JJ, Anand R, Wardle TS, et al. Safety/tolerability trial of ENA 713 in patients with probable Alzheimer’s disease. Life Sci 1996; 58(15): 1201–7

    PubMed  CAS  Google Scholar 

  79. Enz A, Floersheim P. Cholinesterase inhibitors: an overview of their mechanisms of action. In: Becker R, Giacobini E, editors. Alzheimer’s disease: from molecular biology to therapy. Boston: Birkhauser, 1996: pp211-5

  80. Cutler NR, Polinsky RJ, Sramek JJ, et al. Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. Acta Neurol Scand 1998; 9(1): 69–75

    Google Scholar 

  81. Unni LK, Radcliffe J, Latham G, et al. Oral administration of heptylphysostigmine in healthy volunteers: a preliminary study. Methods Find Clin Pharmacol 1994; 16(5): 373–6

    CAS  Google Scholar 

  82. Imbimbo PI, Lucchelli PE. Apharmacodynamic strategy to optimize the clinical response to eptastigmine (MF-201). In: Giacobini E, Becker R, editors. Alzheimer disease: therapeutic strategies. Boston: Birkhauser, 1994: 103–7

    Google Scholar 

  83. McClellan KJ, Benfield P. Eptastigmine. CNS Drugs 1998; 9(1): 69–75

    CAS  Google Scholar 

  84. Imbimbo B. Eptastigmine: a cholinergic approach to the treatment of Alzheimer’s disease. In: Becker R, Giacobini E, editors. Alzheimer’s disease: from molecular biology to therapy. Boston: Birkhauser, 1996: 223–30

    Google Scholar 

  85. Canal N, Imbimbo B. Relationship between pharmacodynamic activity and cognitive effects of eptastigmine in patients with Alzheimer’s disease. Clin Trials Ther 1996; 60(2): 218–27

    CAS  Google Scholar 

  86. Mant T, Troetel WM, Imbimbo BP. Maximum tolerated dose and pharmacodynamics of eptastigmine in elderly healthy volunteers. J Clin Pharmacol 1998; 38: 610–7

    PubMed  CAS  Google Scholar 

  87. Harvey AL. The pharmacology of galanthamine and its analogues. Pharmacol Ther 1995; 68(1): 113–28

    PubMed  CAS  Google Scholar 

  88. Thomsen T, Bickel U, Fischer JP, et al. Stereoselectivity of cholinesterase inhibition by galanthamine and tolerance in humans. Eur J Clin Pharmacol 1990; 39: 603–5

    PubMed  CAS  Google Scholar 

  89. Liu JS, Zhu YL, Yu CM, et al. The structure of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem 1986; 64: 837–9

    CAS  Google Scholar 

  90. Tang XC, DeSarno P, Sugaya K, et al. Effect of huperzine-A, a new cholinesterase inhibitor, on the central cholinergic system of the rat. J Neurosci Res 1989; 24: 276–85

    PubMed  CAS  Google Scholar 

  91. Xiong ZQ, Tang XC. Effect of huperzine A, a novel acetylcholinsterase inhibitor, on radial maze performance in rats. Pharmacol Biochem Behav 1995; 51: 415–9

    PubMed  CAS  Google Scholar 

  92. Qian B, Wang M, Zhou Z, et al. Pharmacokinetics of tablet huperzine A in six volunteers. Acta Pharmacol Sin 1995 Sep; 16(5): 396–8

    CAS  Google Scholar 

  93. Xia Y, Kozikowski AP. A practical synthesis of the Chinese ’nootropic’ agent huperzine-A: a possible lead in the treatment of Alzheimer’s disease. J Am Chem Soc 1989; 111: 4116–7

    CAS  Google Scholar 

  94. Cheng YS, Lu CZ, Ying ZL, et al. 128 cases of myasthenia gravis treated with huperzine A. New Drugs Clin Remedies 1986; 5(4): 197–9

    Google Scholar 

  95. Grunwald J, Raveh L, Doctor BP, et al. Huperzine A as a pretreatment candidate drug against nerve agent toxicity. Life Sci 1994; 54(14): 991–7

    PubMed  CAS  Google Scholar 

  96. Moriearty PL, Womack C, Dick BW, et al. Stability of peripheral hematological parameters after chronic acetylcholinesterase inhibition in man. Am J Hematol 1991; 37: 280–2

    PubMed  CAS  Google Scholar 

  97. Anand R, Gharabawi G, Enz A. Efficacy and safety results of the early phase studies with Exelon (ENA 713) in Alzheimer’s disease: an overview. J Drug Dev Clin Pract 1996; 5: 109–16

    Google Scholar 

  98. Sramek JJ, Block GA, Reines SA, et al. A multi-dose safety trial of eptastigmine in Alzheimer’s disease, with pharmacodynamic observations of red blood cell cholinesterase. Life Sci 1995; 56(5): 319–26

    PubMed  CAS  Google Scholar 

  99. Tang XC, Xiong ZQ, Qian BC, et al. Cognition improvement by oral huperzine A: a novel acetylcholinesterase inhibitor. In: Giacobini E, Becker R, editors. Alzheimer disease: therapeutic strategies. Boston: Birkhauser, 1994: 113–9

    Google Scholar 

  100. Xu SS, Gao ZZ, Weng Z, et al. Efficacy of tablet huperzine-A on memory, cognition and behavior in Alzheimer’s disease. Acta Pharmacol Sin 1995; 16(5): 391–5

    CAS  Google Scholar 

  101. Han Y, Tang X. Preclinical and clinical progress with huperzine A: a novel acetylcholinesterase inhibitor. In: Becker R, Giacobini E, editors. Alzheimer’s disease: from molecular biology to therapy. Boston: Birkhauser, 1996: 245–50

    Google Scholar 

  102. Unni LK, Unni RK, Becker RE. A theoretical model to predict the pharmacodynamics of metrifonate, an experimental drug for Alzheimer’s disease. Presented at the IMACS International Symposium on Mathematical Modeling and Scientific Computing; 1992 Dec 17: Bangalore

  103. Dai-Bianco P, Maly J, Wober Ch, et al. Galanthamine treatment in Alzheimer’s disease. J Neural Transm 1991; 33 Suppl.: 59–63

    Google Scholar 

  104. Rainer M, Mucke H, Janoch P, et al. Galanthamine treatment in Alzheimer’s disease — the identification of responders [abstract no. P174-12]. Neuropsychopharmacology 1994 May; 10(3S Pt 2):215S

    Google Scholar 

  105. Knopman D, Schneider L, Davis K, et al. Long-term tacrine (Cognex) treatment: effects on nursing home placement and mortality. Neurology 1996; 47: 166–77

    PubMed  CAS  Google Scholar 

  106. The economic impact of tacrine in the treatment of Alzheimer’s disease. Clin Ther 1997; 19 (2): 330-45

  107. Gracon S, Smith F, Hoover T, et al. Long-term tacrine treatment: effect on nursing home placement and mortality. In: Becker R, Giacobini E, editors. Alzheimer’s disease: from molecular biology to therapy. Boston: Birkhauser, 1996: 205–9

    Google Scholar 

  108. Lubeck DP, Mazonson PD, Bowe T. Potential effect of tacrine on expenditures for Alzheimer’s disease. Med Interface 1994 Oct; 132-8

  109. Gauthier S, Bouchard R, Lamontagne A, et al. Tetrahydro-aminoacridine-lecithin combination treatment in patients with intermediate-stage Alzheimer’s disease. N Engl J Med 1990; 322: 1272–6

    PubMed  CAS  Google Scholar 

  110. Carlton PL. Brain acetylcholine and habituation. Prog Brain Res 1968; 28: 48–60

    PubMed  CAS  Google Scholar 

  111. Russell RW. Effects of ‘biochemical lesions’ on behavior. Acta Psychol 1958; 14: 281–94

    CAS  Google Scholar 

  112. Mesulam M-M. Butyrylcholinesterase in Alzheimer’s disease. In: Giacobini E, Becker R, editors. Alzheimer disease: therapeutic strategies. Boston: Birkhauser, 1994: 79–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latha K. Unni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unni, L.K. Beyond Tacrine. CNS Drugs 10, 447–460 (1998). https://doi.org/10.2165/00023210-199810060-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199810060-00006

Keywords

Navigation