CNS Drugs

, Volume 9, Supplement 1, pp 19–27 | Cite as

Pharmacological Properties of Piracetam

Rationale for Use in Stroke Patients
  • G. Hitzenberger
  • H. Rameis
  • C. Manigley
Review Article


Piracetam, the standard nootropic drug, is known to improve a whole series of mental activities, particularly higher cortical functions. Recently, this drug has come under investigation as a cerebroprotective agent in ischaemic stroke. In vitro studies showed cerebral metabolism-stimulating effects, which formed the basis for the interpretation of in vivo studies. These studies have demonstrated some benefits under experimental conditions of brain-lesioning influences (e.g. central ischaemia, hypoxia, etc.).

Piracetam has possible neuromodulatory, cerebrovascular and electrophysiological effects, as well as beneficial therapeutic effects on the microcirculation. Its haemorrheological and antithrombotic properties suggest the possible use of piracetam in ischaemic cerebral infarction and as a cerebroprotective agent in stroke.

Published data have shown that the pharmacokinetic properties of piracetam in animals and humans are similar after oral and intravenous administration, resulting in almost complete oral bioavailability.


Ischaemic Stroke Adis International Limited Piracetam Indoramin Naftidrofuryl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bering B, Müller WE. Interaction of piracetam with several neurotransmitter receptors in the central nervous system. Relative specificity for 3H-glutamate sites. Arzneimittel Forschung 1985; 35(2): 1350–2PubMedGoogle Scholar
  2. 2.
    Giurgea M. Piracetam: toxicity and reproduction studies. Farmaco Prat 1977; 32(1): 47–52PubMedGoogle Scholar
  3. 3.
    Domanska-Janik K, Zaleska M. The action of piracetam on 14C-glucose metabolism in normal and posthypoxic rat cerebral cortex slices. Pol J Pharmacol Pharm 1977; 29: 111–6PubMedGoogle Scholar
  4. 4.
    Sara SJ, Lefevre D. Hypoxia-induced amnesia in one-trial learning and pharmacological protection by piracetam. Psy- chopharmacologia 1972; 25: 32–40Google Scholar
  5. 5.
    Nikolova M, Nikolov R, Milanova D. Anti-hypoxic effect of piracetam and its interaction with prostacyclin. Methods Find Exp Clin Pharmacol 1984; 6(7): 367–71PubMedGoogle Scholar
  6. 6.
    Berga P, Beckett PR, Roberts DJ, et al. Synergistic interactions between piracetam and dihydroergocristine in some animal models of cerebral hypoxia and ischaemia. Arzneimittel Forschung 1986; 36(2): 1314–20PubMedGoogle Scholar
  7. 7.
    Ostrovskaya RU, Hoffmann W, Molodawkin GM. Studies of the antihypoxic activity of tisochromide (16-244) as compared with piracetam. Dr Pharmazie 1983; 38: 251–3Google Scholar
  8. 8.
    Wyllie MG, Paciorek PM, Waterfall JF. Adenosinetriphosphate conservation by indoramin and other drugs. Biochem Pharmacol 1981; 30: 1605–12PubMedCrossRefGoogle Scholar
  9. 9.
    Nicholson VJ, Wolthuis OL. Effect of the acquisition-enhancing drug piracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and metamphetamine. Biochem Pharmacol 1976; 25: 2241–4CrossRefGoogle Scholar
  10. 10.
    Woelk H. Zum Einfluss von Piracetam auf die neuronale und synaptosomale Phospholipase-A2-Aktivität. Arzneimittel Forschung 1979; 29(4): 615–8PubMedGoogle Scholar
  11. 11.
    Benzi G, Pastoris O, Villa RF, et al. Influence of aging and exogenous substances on cerebral energy metabolism in post-hypoglycemic recovery. Biochem Pharmacol 1985; 34(9): 1477–83PubMedCrossRefGoogle Scholar
  12. 12.
    Woelk H. Effects of piracetam on the incorporation of 32P into the phospholipids of neurons and glial cells isolated from rabbit cerebral cortex. Pharmakopsychiat 1979; 12: 251–6CrossRefGoogle Scholar
  13. 13.
    Platt D, Hering H, Hering FJ. Messungen lysosomaler Enzym-Aktivitäten sowie von Leuzin-Inkorporationsraten im Gehirn junger und alter Ratten nach Gabe von Piracetam. Arzneimittel Forschung 1974; 24(10): 1588–90PubMedGoogle Scholar
  14. 14.
    Schiller E. Elektronenmikroskopische und mikrointer-ferometrische Beiträge zum Wirkungsmechanismus von Piracetam. Verh Dtsch Ges Path 1974; 58: 578Google Scholar
  15. 15.
    Nikolova M, Tsikalova R, Nikolov R, et al. Simultaneous investigation of the cerebral circulation and cortical bioelectrical activity in dogs under the influence of piracetam. Methods Find Exp Clin Pharmacol 1979; 1(2): 97–104PubMedGoogle Scholar
  16. 16.
    Nybäck H, Wiesel FA, Skett P. Effects of piracetam on brain monoamine metabolism and serum prolactin levels in the rat. Psychopharmacology 1979; 61: 235–8PubMedCrossRefGoogle Scholar
  17. 17.
    Rägo LK, Allikmets LH, Zarkovsky AM. Effects of piracetam on the central dopaminergic transmission. Arch Pharmacol 1981; 318: 36–7CrossRefGoogle Scholar
  18. 18.
    Pavlik A, Benesova O. Screening of nootropic drugs for cholinergic and free-radical scavenger action. Acta Neurol Scand Suppl 1988; 116: 145Google Scholar
  19. 19.
    Wurtman RJ, Magil SG, Reinstein DK. Piracetam diminishes hippocampal acetylcholine levels in rats. Life Sciences 1981; 28: 1091–3PubMedCrossRefGoogle Scholar
  20. 20.
    Bartus RT, Dean RL, Sherman KA, et al. Profound effects of combining choline and piracetam on memory enhancement and cholinergic function in aged rats. Neurobiol Aging 1981; 2: 105–11PubMedCrossRefGoogle Scholar
  21. 21.
    Müller WE, Pilch H, Stoll L, et al. Piracetam as a possible cell communication modulator: focus on central m-cholinoceptors. Pharm Ztg Wiss 1990; 3(3): 81–7Google Scholar
  22. 22.
    Moyanova S, Nikolov R, Dimov S. Effect of piracetam on the electroencephalogram after traumatic brain oedema in cats. Methods Find Exp Clin Pharmacol 1985; 7(12): 623–6PubMedGoogle Scholar
  23. 23.
    Dimov S, Moyanova S, Nikolova M. Piracetam and brain excitability: an electrophysiological study in cats. Methods Find Exp Clin Pharmacol 1984; 6(2): 83–9PubMedGoogle Scholar
  24. 24.
    Saletu B, Grünberger J. Memory dysfunction and vigilance: neurophysiological and pharmacological aspects. Ann N Y Acad Sci 1985; 444: 406–27PubMedCrossRefGoogle Scholar
  25. 25.
    Giurgea C, Mouravieff-Lesuisse F, Leemans R. Corrélations électro-pharmacologiques au cours de l’anoxie oxyprivé chez le lapin en respiration libre ou artificielle. Société d’électroencephalographie de langue française; Séance du 4 mars 1970: 484-6Google Scholar
  26. 26.
    Nikolova M, Tsikalova R, Nikolov R, et al. Simultaneous investigation of the cerebral circulation and cortical bioelectrical activity in dogs under the influence of piracetam. Methods Find Exp Clin Pharmacol 1979; 1(2): 97–104PubMedGoogle Scholar
  27. 27.
    Dimov S, Nikolov R, Nikolova M, et al. Effect of piracetam in some models of general and local depression of the cortical bioelectrical activity in cats. Arch Int Pharmacodyn 1983; 262: 13–23PubMedGoogle Scholar
  28. 28.
    Giurgea C, Moyersoons F. Differential pharmacological reactivity of three types of cortical evoked potentials. Arch Int Pharmacodyn 1970; 188: 401–4PubMedGoogle Scholar
  29. 29.
    Wolthuis OL. Experiments with UCB 6215, a drug which enhances acquisition in rats: its effects compared with those of metamphetamine. Eur J Pharmacol 1971; 16: 283–97PubMedCrossRefGoogle Scholar
  30. 30.
    Nikolova M, Tsikalova R, Nikolov R, et al. Experimental rheoencephalographic investigations on piracetam. Methods Find Exp Clin Pharmacol 1980; 2(6): 327–33PubMedGoogle Scholar
  31. 31.
    Nikolova M, Nikolov R, Tsikalova R, et al. Piracetam effect on the visual evoked potentials in cats. Drugs Exp Clin Res 1980; 6(1): 33–7Google Scholar
  32. 32.
    Peuvot J, Schenck A, Deleers M, et al. Piracetam-induced changes to membrane physical properties — a combined approach by P-31 nuclear magnetic resonance and conformational analysis. Biochem Pharmacol 1995; 50: 1129–34PubMedCrossRefGoogle Scholar
  33. 33.
    Müller WE, Koch S, Scheur K, et al. Effects of piracetam on membrane fluidity in the aged mouse, rat and human brain. Biochem Pharmacol 1997; 53: 135–40PubMedCrossRefGoogle Scholar
  34. 34.
    Sato M, Heiss WD. Effect of piracetam on cerebral blood flow and somatosensory evoked potential during normotension and hypotensive ischemia in cats. Arzneimittel Forschung 1985; 35: 790–2PubMedGoogle Scholar
  35. 35.
    Gianello P, Janssen T, Chatzopoulos C, et al. Beneficial effect of piracetam on renal blood flow in ischemically injured kidneys in the rat. Transplant Proc 1988; 20: 914–6PubMedGoogle Scholar
  36. 36.
    Bick RL, Farced J, Skondia V. Piracetam: a new platelet suppressing drug. Thromb Haemost 1981; 46: 67Google Scholar
  37. 37.
    Henry RL, Nalbandian RM, Dzandu JK. Effect of membrane bound protein phosphorylation of intact normal and diabetic human erythrocytes: enhanced membrane deformability. Diabetes 1981; 30Suppl. 1: 83aGoogle Scholar
  38. 38.
    Nalbandian RM, Henry RL, Burek CL, et al. Diminished adherence of sickle erythrocytes to cultured vascular endothelium by piracetam. Am J Hematol 1983; 15: 147–51PubMedCrossRefGoogle Scholar
  39. 39.
    Moriau M, Crasborn L, Lavenne-Pardonge E, et al. Platelet antiaggregant and rheological properties of piracetam: a pharmacodynamic study in normal subjects. Arzneimittel Forschung 1993; 43(1): 110–8PubMedGoogle Scholar
  40. 40.
    Grotemeyer KH, Hofferberth B, Hirschberg M. Influence of piracetam on hyperactive platelets in patients suffering from transitory ischemic attacks. Der Nervenarzt 1986; 57: 180–3PubMedGoogle Scholar
  41. 41.
    DeMelo GOS. Piracetam in sickle-cell anaemia. Lancet 1976; II: 1139–40CrossRefGoogle Scholar
  42. 42.
    Rossillon D, Vanwyck R, Bayet B, et al. The action of piracetam in ischaemic flaps. Br J Plast Surg 1987; 40: 459–66PubMedGoogle Scholar
  43. 43.
    Cohen SA, Müller WE. Effects of piracetam on n-methyl-d-as-partate receptor properties in the aged mouse brain. Pharmacology 1993; 47: 217–22PubMedCrossRefGoogle Scholar
  44. 44.
    Heiss WD, Ilsen HW, Wagner R, et al. Remote functional depression of glucose metabolism in stroke and its alteration by activating drugs. In: Heiss WD, Phelps ME, editors. PET of the brain. Berlin: Springer Verlag, 1983; 162–8Google Scholar
  45. 45.
    Herrschaft H. Die Wirkung von Piracetam auf die Gehirndurchblutung des Menschen. Med Klin 1978; 73(6): 195–202PubMedGoogle Scholar
  46. 46.
    Saletu B, Hitzenberger G, Grünberger J, et al. Double-blind, placebo-controlled pharmacokinetic and -dynamic studies with 2 new formulations of piracetam (infusion and syrup) under hypoxia in man. Int J Clin Pharmacol Ther 1995; 33(5): 249–62PubMedGoogle Scholar
  47. 47.
    Hund E, Hacke W. Current trends in therapy of acute ischaemic stroke. Ann Med 1995; 27(1): 1173CrossRefGoogle Scholar
  48. 48.
    The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333(24): 1581–7CrossRefGoogle Scholar
  49. 49.
    Del Zoppo GJ, Pessin MS, Mori E, et al. Thrombolytic intervention in acute thrombotic and embolic stroke. Semin Neurol 1991; 11: 368–84PubMedCrossRefGoogle Scholar
  50. 50.
    De Deyn PP, De Reuck J, Deberdt W. Treatment of acute ischaemic stroke with piracetam. Stroke 1997; 28: 2347–52PubMedCrossRefGoogle Scholar
  51. 51.
    Lapka R, Rejholec V, Smolik S. Pharmacokinetics of piracetam in plasma and brain. Act Nerv Super 1990; 32(1): 58–9Google Scholar
  52. 52.
    Ostrowski J, Keil M, Schraven E. Autoradiographische Untersuchungen zur Verteilung von Piracetam-14C bei Ratte und Hund. Arzneimittel Forschung 1975; 25(4): 589–96PubMedGoogle Scholar
  53. 53.
    Gobert JG. Genèse d’un médicament: le piracetam. Métabolisation et recherche biochimique. J Pharm Belg 1972; 27(3): 281–304Google Scholar
  54. 54.
    Ostrowski J, Keil M. Autoradiographische Untersuchungen zur Verteilung von 14C-Piracetam im Affengehirn. Arzneimittel Forschung 1978; 28(1): 29–35PubMedGoogle Scholar
  55. 55.
    Rameis H, Hitzenberger GR, Kutscher R, et al. Pharmacokinetics of piracetam: a study on the bioavailability with special regard to renal and non-renal elimination. Int J Clin Pharm Ther 1994; 32: 458–65Google Scholar
  56. 56.
    Louchahi K, Tod M, Bonnardel P, et al. Determination of piracetam in human plasma and urine by liquid chromatography. J Chromatogr B Biomed Appl 1995; 663: 385–9PubMedCrossRefGoogle Scholar
  57. 57.
    Gobert JG, Baltes EL. Availability and plasma clearance of piracetam in man. Farmaco Prat 1977; 32: 83–91PubMedGoogle Scholar
  58. 58.
    Alebic-Kolbah T, Hirsl-Stracevic S. Determination of piracetam in serum by gas chromatography. J Chromatogr 1990; 526: 556–61PubMedCrossRefGoogle Scholar
  59. 59.
    Schulz HU, Wittler T. Age-related changes in pharmacokinetics of 2-oxo-pyrrolidine-l-acetamide (piracetam) in man. Naunyn Schmiedebergs Arch Pharmacol 1980; 313: R15Google Scholar
  60. 60.
    Gobert JG. Developing drugs: piracetam. Metabolism and biochemical research. J Pharm Belg 1972; 27: 281–304Google Scholar
  61. 61.
    Schäfer RM. Bestimmung der glomerulären Filtrationsrate beim Menschen mittels Single-shot-Piracetamclearance. Internist 1992; 33: 23–6Google Scholar
  62. 62.
    Verpooten GA, Guiliano RA, Deberdt W, et al. Pharmacokinetics of piracetam in the elderly and patients with renal insufficiency. UCB Pharma (Braine-l’Alleud), 1989: Clinical reportGoogle Scholar
  63. 63.
    Platt D, Mühlberg W, Rieck W. The effect of age on clinical pharmacokinetics of piracetam. Arzneimittel Forschung 1985; 35(2): 533–5PubMedGoogle Scholar
  64. 64.
    Madai A, Höltl W. Publication; good or bad? Critical appraisal of scientific papers. Wien Klin Wschr 1998; 110/2: 58–62Google Scholar
  65. 65.
    Burd GS, Gekht AB, Bogolepova AN, et al. Nootropil in treatment of disorders of high mental functions in patients with ischaemic stroke. Zh Neuropat i Psich Imeni SS Korsakov 1997; 10: 24–8Google Scholar
  66. 66.
    Gusev EI, Burd GS, Gekht AN, et al. Metabolic therapy of ischaemic stroke: application of Nootropil. Zh Neuropat i Psich Imeni SS Korsakov 1997; 10: 29–34Google Scholar
  67. 67.
    Platt D, Horn J, Summa J-D, et al. Zur Wirksamkeit von Piracetam bei geriatrischen Patienten mit zerebraler Ischämie. Eine klinisch kontrollierte Doppelblindstudie. Med Welt 1992; 43: 181–90Google Scholar
  68. 68.
    Herrschaft H. Die Wirksamkeit von Piracetam bei der akuten zerebralen Ischämie des Menschen: klinisch kontrollierte Doppelblindstudie Piracetam/10% Dextran 40 versus 10% 40/Placebo. Med Klin 1988; 83: 667–77Google Scholar

Copyright information

© Adis International Limited 1998

Authors and Affiliations

  • G. Hitzenberger
    • 1
  • H. Rameis
    • 2
  • C. Manigley
    • 2
  1. 1.Society of Clinical PharmacologyViennaAustria
  2. 2.Vienna Working Group for Applied Clinical Pharmacology and TherapyViennaAustria

Personalised recommendations