Skip to main content
Log in

Cholecystokinin and Psychiatric Disorders

Role in Aetiology and Potential of Receptor Antagonists in Therapy

  • Review Articles
  • Pharmacology and Pathophysiology
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain. It is found in the highest levels in cortical and limbic structures and also in the basal ganglia. Two subtypes of CCK receptors have been described in the brain and gastrointestinal tissues. CCKA (alimentary subtype) receptors are mainly located in the gastrointestinal tract, regulating secretion of enzymes from the pancreas and emptying of the gallbladder. However, CCKA receptors are also found in several brain regions, with the highest densities in structures poorly protected by the haematoencephalic barrier (the area postrema, nucleus tractus solitarius and hypothalamus). The distribution of CCKB (brain subtype) receptors overlaps with the localisation of CCK and its mRNA in different brain areas, with the highest densities in the cerebral cortex, basal ganglia, nucleus accumbens and forebrain limbic structures.

Both subtype of CCK receptor belong to the guanine nucleotide-binding protein-(G protein)-linked receptor superfamily containing 7 transmembrane domains. Signal transduction at CCK receptors is mediated via Gq protein-related activation of phospholipase C and the formation of inositol 1,4,5-triphosphate (IP3) and 1,2-diacylglycerol (DAG). Recent cloning of CCKA and CCKB receptors has shown that mRNA for both receptors is distributed in the same tissues as established in radioligand binding and receptor autoradiography studies, with few exceptions.

The existence of multiple CCK receptors has fuelled the development of selective CCKA and CCKB receptor antagonists. These antagonists belong to distinct chemical groups, including dibutyryl derivatives of cyclic nucleotides, amino acid derivatives, partial sequences and derivatives of the -COOH terminal sequence heptapeptides of CCK, benzodiazepine derivatives, ‘peptoids’ based on fragments of the CCK molecule, and pyrazolidinones. At the present time, the compounds of choice for blockade of the CCKA receptor are lorglumide, devazepide and lintitript (SR27897). L-365,260, CI-988, L-740,093 and LY288513 are the drugs most widely used to block CCKB receptors.

Studies with CCK antagonists (and agonists) in animals and humans suggest a role for CCK in the regulation of anxiety and panic. The administration of CCK agonists [ceruletide (caerulein), CCK-4, pentagastrin] has an anxiogenic action in various animal models and in different animal species. However, the anxiogenic action of CCK agonists is restricted to nonconditioned (ethological) models of anxiety, with very limited activity in the ‘classical’ conditioned models. Pharmacological studies have revealed that CCKB receptors are the key targets in the anxiogenic action of CCK agonists. Nevertheless, CCKB antagonists displayed very little activity, if any at all, in these models, but strongly antagonised the effects of CCKB agonists. The anxiogenic/panicogenic action of CCKB agonists (CCK-4, pentagastrin) is even more pronounced in human studies, but the effectiveness of CCKB antagonists as anxiolytics remains unclear. Clinical trials performed to date have provided inconclusive data about the anxiolytic potential of CCKB receptor antagonists, probably because of limiting pharmacokinetic factors.

The results of some animal experiments suggest a role for CCK in depression. The administration of CCKB antagonists causes antidepressant-like action in mouse models of depression. However, human studies replicating this result have yet to be carried out.

A prominent biochemical alteration in schizophrenia is a reduction of CCK levels in the cerebral cortex. This change may be related to the loss of cortical neurons, due to the schizophrenic process itself. In animal studies (mainly in mice), administration of CCK agonists and antagonists has been shown to be effective in several models, reflecting a possible antipsychotic activity of these drugs. However, the data obtained in human studies suggest that CCK agonists and antagonists do not improve the symptoms of schizophrenia. Taking into account the reduced levels of CCK and its receptors found in schizophrenia, treatments increasing, but not blocking, brain CCK activity may be more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rehfeld JF, Nielsen FC. Molecular forms and regional distribution of cholecystokinin in the central nervous system. In: Bradwejn J, Vasar E, editors. Cholecystokinin and anxiety: from neuron to behavior. Austin: Springer Verlag-R.G. Landes Company, 1995: 33–56

    Google Scholar 

  2. Vanderhaegen J-J, Signeau JC, Gepts W. New peptide in vertebrate CNS reacting with antigastrin antibodies. Nature 1975; 257: 604–5

    Article  Google Scholar 

  3. Dockray GJ. Immunochemical evidence of cholecystokinin-like peptides in brain. Nature 1976; 264: 568–70

    Article  PubMed  CAS  Google Scholar 

  4. Rehfeld JF. Neuronal cholecystokinin: one or multiple transmitters? J Neurochem 1985; 44: 1–10

    Article  PubMed  CAS  Google Scholar 

  5. Rehfeld JF, Hansen HF. Characterization of preprocholecystokinin products in the porcine cerebral cortex: evidence of different processing pathways. J Biol Chem 1986; 261: 5832–40

    PubMed  CAS  Google Scholar 

  6. Rehfeld JF. CCK and anxiety: introduction. In: Dourish CT, Cooper SJ, Iversen SD, et al., editors. Multiple cholecystokinin receptors in the CNS. New York: Oxford University Press, 1992: 117–20

    Google Scholar 

  7. Dockray GJ. CCK neurons and receptors in the CNS: introduction. In: Dourish CT, Cooper SJ, Iversen SD, et al., editors. Multiple cholecystokinin receptors in the CNS. New York: Oxford University Press, 1992: 3–7

    Google Scholar 

  8. Beinfeld MC, Meyer DK, Eskay RL, et al. The distribution of cholecystokinin immunoreactivity in the central nervous system of the rat as determined by radioimmunoassay. Brain Res 1981; 212: 51–7

    Article  PubMed  CAS  Google Scholar 

  9. Savasta M, Palacios JM, Mengod G. Regional localization of the mRNA coding for the neuropeptide cholecystokinin in the rat brain studied by in situ hybridization. Neurosci Lett 1988; 93: 132–8

    Article  PubMed  CAS  Google Scholar 

  10. Vanderhaegen J-J, Schiffmann SN. Distribution of brain neuronal CCK: an in situ hybridization study. In: Dourish CT, Cooper SJ, Iversen SD, et al., editors. Multiple cholecystokinin receptors in the CNS. New York: Oxford University Press, 1992: 38–56

    Google Scholar 

  11. Pinget M, Strauss E, Yalow RS. Localization of cholecystokinin-like immunoreactivity in isolated nerve terminals. Proc Natl Acad Sci U S A 1978; 75: 6324–6

    Article  PubMed  CAS  Google Scholar 

  12. Emson PC, Lee CM, Rehfeld JF. Cholecystokinin octapeptide: vesicular localization and calcium dependent release from rat brain in vitro. Life Sci 1980; 26: 2157–63

    Article  PubMed  CAS  Google Scholar 

  13. Goltermann NR, Rehfeld JF, Rigaard-Petersen H. In vivo biosynthesis of cholecystokinin in rat cerebral cortex. J Biol Chem 1980; 255: 6181–5

    PubMed  CAS  Google Scholar 

  14. Pinget M, Strauss E, Yalow RS. Release of cholecystokinin peptides from synaptosomal-enriched fraction of rat cerebral cortex. Life Sci 1979; 25: 339–42

    Article  PubMed  CAS  Google Scholar 

  15. Verhage M, Ghijsen WEJM, Nicholls DG, et al. Characterization of the release of cholecystokinin-8 from isolated nerve terminals and comparison with exocytosis of classical transmitters. J Neurochem 1991; 23: 1394–400

    Article  Google Scholar 

  16. Moran TH, Robinson PH, Goldrich MS, et al. Two brain cholecystokinin receptors: implications for behavioral actions. Brain Res 1986; 362: 175–9

    Article  PubMed  CAS  Google Scholar 

  17. Dodd J, Kelly JS. Excitation of CA1 pyramidal neurons of the hippocampus by tetra- and octapeptide C-terminal fragments of cholecystokinin. J Physiol (Lond) 1979; 295: 61–2

    Google Scholar 

  18. Dodd J, Kelly JS. The actions of cholecystokinin and related peptides on pyramidal neurons of the mammalian hippocampus. Brain Res 1981; 205: 337–50

    Article  PubMed  CAS  Google Scholar 

  19. Boden P, Hill RG. Effects of cholecystokinin and related peptides on neuronal activity in the ventromedial nucleus of the rat hypothalamus. Br J Pharmacol 1988; 94: 246–52

    Article  PubMed  CAS  Google Scholar 

  20. Ishibashi S, Oomura Y, Okaijma T, et al. Cholecystokinin, motilin and secretin effects on the central nervous system. Physiol Behav 1979; 23: 401–3

    Article  PubMed  CAS  Google Scholar 

  21. MacVicar BA, Kerrin JP, Davison JS. Inhibition of synaptic transmission in the hippocampus by cholecystokinin (CCK) and its antagonism by CCK analog CCK27–33. Brain Res 1987; 406: 130–5

    Article  PubMed  CAS  Google Scholar 

  22. Lopes da Silva FH, Witter MP, Boeijinga PH, et al. Anatomical organization and physiology of limbic cortex. Physiol Rev 1990; 70: 453–511

    PubMed  CAS  Google Scholar 

  23. Peters A, Miller M, Kimerer LM. Cholecystokinin-like immuno-reactive neurons in rat cerebral cortex. Neuroscience 1983; 8: 431–48

    Article  PubMed  CAS  Google Scholar 

  24. Migaud M, Durieux C, Roques BP. Evidences of cholecystokinin octapeptide (CCK-8) uptake in rat cortex synaptosomal fractions [abstract]. J Neurochem 1993; 61 Suppl.: S83B

    Google Scholar 

  25. Hays SE, Beinfeld MC, Jensen RT, et al. Demonstration of a putative receptor site for cholecystokinin in rat brain. Neuropeptides 1980; 1: 53–62

    Article  Google Scholar 

  26. Innis RB, Snyder SH. Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci USA 1980; 77: 6917–21

    Article  PubMed  CAS  Google Scholar 

  27. Saito AH, Sancaran H, Goldfine ID, et al. Cholecystokinin receptors in the brain: characterization and distribution. Science 1980; 208: 1155–6

    Article  PubMed  CAS  Google Scholar 

  28. Sancaran H, Goldfine ID, Deveney CW, et al. Binding of cholecystokinin in the brain: characterization and distribution. J Biol Chem 1980; 255: 1849–53

    Google Scholar 

  29. Barrett RW, Steffey ME, Wolfram CAW. Type-A sites in cow brain: characterization using (-)-[3H]-L-364,718 membrane binding assays. Mol Pharmacol 1989; 36: 285–90

    PubMed  CAS  Google Scholar 

  30. Gerhardt GA, Friedmann M, Brodie MS, et al. The effect of cholecystokinin (CCK-8) on dopamine-containing nerve terminals in the caudate nucleus and nucleus accumbens of the anaesthetized rat: in vivo electrochemical studies. Brain Res 1989; 499: 157–63

    Article  PubMed  CAS  Google Scholar 

  31. Vickroy TW, Bianchi BR. Pharmacological and mechanistic studies of cholecystokinin-facilitated [3H]-dopamine efflux from rat nucleus accumbens. Neuropeptides 1989; 13: 43–50

    Article  PubMed  CAS  Google Scholar 

  32. Hill DR, Shaw TM, Graham W, et al. Autoradiographical detection of cholecystokinin-A receptors in primate brain using 125I-Bolton-Hunter-CCK-S and 3H-MK-329. J Neurosci 1990; 10: 1070–81

    PubMed  CAS  Google Scholar 

  33. Wank SA. Cholecystokinin receptors. Am J Physiol 1995; 269: G628–46

    PubMed  CAS  Google Scholar 

  34. Matozaki T, Sakomoto C, Nagano M, et al. G protein in stimulation of PI hydrolysis by CCK in isolated rat pancreatic acinar cells. Am J Physiol 1988; 255 (Endocrinol Metab 18): E652–9

    PubMed  CAS  Google Scholar 

  35. Merrit JE, Taylor CW, Rubin PR, et al. Isomers of inositol triphosphate in exocrine pancreas. Biochem J 1985; 238: 825–9

    Google Scholar 

  36. Pang I-H, Sternweiss PC. Purification of unique αr-subunits of GTP-binding regulatory proteins (G-proteins) by affinity chromatography with immobilized βrγrsubunits. J Biol Chem 1990; 265: 18707–12

    PubMed  CAS  Google Scholar 

  37. Rhee SG, Kim H, Suh P-G, et al. Multiple forms of phosphoinositide-specific phospholipase C and different modes of activation. Biochem Soc Trans 1991; 19: 337–41

    PubMed  CAS  Google Scholar 

  38. Smrcka AV, Sternweiss PC. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C by G protein a and βrγr subunits. J Biol Chem 1993; 268: 9667–74

    PubMed  CAS  Google Scholar 

  39. Taylor SJ, Chae HZ, Rhee SG, et al. Activation of beta 1 isoenzyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature 1991; 350: 516–8

    Article  PubMed  CAS  Google Scholar 

  40. Wu S, Lee CH, Rhee SG, et al. Activation of phospholipase C by the αr-subunits of the Gq and G11 proteins in transfected Cos-7 cells. J Biol Chem 1992; 267: 1811–7

    PubMed  CAS  Google Scholar 

  41. Berridge MJ. Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 1987; 56: 159–93

    Article  PubMed  CAS  Google Scholar 

  42. Streb H, Irvine RF, Berridge MJ, et al. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5,-triphosphate. Nature 1983; 306: 67–9

    Article  PubMed  CAS  Google Scholar 

  43. Williams JA, Yule DI. Stimulus-secretion coupling in pancreatic acinar cells. In: Go VLW, editor. The exocrine pancreas: biology, pathobiology and disease. 2nd ed. New York: Raven Press, 1993: 167–89

    Google Scholar 

  44. Yule DI, Williams JA. U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not JMV-180 in rat acinar cells. J Biol Chem 1992; 267: 13830–50

    PubMed  CAS  Google Scholar 

  45. Wakui M, Osipchuk YV, Petersen OH. Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol triphosphate is due to Ca2+ induced Ca2+ release. Cell 1990; 63: 1025–32

    Article  PubMed  CAS  Google Scholar 

  46. Wakui M, Potter BVL, Petersen OH. Pulsatile intracellular calcium release does not depend on fluctuations in inositol triphosphate concentration. Nature 1989; 339: 317–20

    Article  PubMed  CAS  Google Scholar 

  47. Pollo DA, Baldassare JJ, Honda T, et al. Effects of cholecystokinin and other secretagogues on isoforms of protein kinase C (PKC) in pancreatic acini. Biochim Biophys Acta 1990; 1224: 127–38

    Article  Google Scholar 

  48. Roche S, Bali JP, Magous R. Involvement of a pertussis toxin-sensitive G protein in the action of gastrin on gastric parietal cells. Biochim Biophys Acta 1990; 1055: 287–94

    Article  PubMed  CAS  Google Scholar 

  49. Tsunoda Y, Yodozawa S, Tashiro J. Heterogenous distribution of free calcium and propagation of calcium transient in gastric parietal cells revealed by digital imaging microscopy. J Histochem Cytochem 1989; 37: 999–1005

    Article  PubMed  CAS  Google Scholar 

  50. De Valle J, Tsunoda Y, Williams JA, et al. Regulation of [Ca2+]i by secretagogue stimulation of canine gastric parietal cells. Am J Physiol 1992; 262 (Gastrointest Liver Physiol 25): G420–6

    Google Scholar 

  51. Zhang LJ, Lu XY, Han JS. Influences of cholecystokinin octapeptide on phosphoinositide turnover in neonatal-rat brain cells. Biochem J 1992; 285: 847–50

    PubMed  CAS  Google Scholar 

  52. Galas MC, Bernard N, Martinez J. Pharmacological studies on CCK-B receptors in guinea pig synaptoneurosomes. Eur J Pharmacol 1992; 226: 321–5

    Google Scholar 

  53. Kaufmann R, Lindschau C, Schönberg T, et al. Type B cholecystokinin receptors on rat glioma C6 cells: binding studies and measurement of intracellular calcium mobilization. Brain Res 1994; 639: 109–14

    Article  PubMed  CAS  Google Scholar 

  54. Miyoshi R, Kito S, Nomoto T. Cholecystokinin increases intracellular Ca2+ concentration in cultured striatal neurons. Neuropeptides 1991; 18: 115–9

    Article  PubMed  CAS  Google Scholar 

  55. Wank SA, Harkins R, Jensen RT, et al. Purification, molecular cloning, and functional expression of the cholecystokinin expression from rat pancreas. Proc Natl Acad Sci U S A 1992; 89: 3125–9

    Article  PubMed  CAS  Google Scholar 

  56. Ulrich CD, Ferber I, Holicky E, et al. Molecular cloning and functional expression of the human gallbladder cholecystokinin A receptor. Biochem Biophys Res Commun 1993; 193: 204–11

    Article  PubMed  CAS  Google Scholar 

  57. Kopin AS, Lee Y-M, McBride EW, et al. Expression, cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci U S A 1992; 89: 3605–9

    Article  PubMed  CAS  Google Scholar 

  58. Lee Y-M, Beinborn M, McBride EW, et al. The human brain cholecystokinin-B/gastrin receptor. J Biol Chem 1993; 268: 8164–9

    PubMed  CAS  Google Scholar 

  59. Huppi K, Siwarski D, Pisenga JR, et al. Chromosomal localization of the gastric and brain receptors for cholecystokinin (CCKAR and CCKBR) in human and mouse. Genomics 1995; 25: 727–9

    Article  PubMed  CAS  Google Scholar 

  60. Talkad VD, Fortune KP, Pollo DA, et al. Direct demonstration of three different states of the pancreatic cholecystokinin receptor. Proc Natl Acad Sci U S A 1994; 91: 1868–72

    Article  PubMed  CAS  Google Scholar 

  61. Van Dijk A, Richards JG, Trzeciak A, et al. Cholecystokinin receptors: biochemical demonstration and autoradiographical localization in rat brain and pancreas using [3H]cholecystokinin as radioligand. J Neurosci 1984; 4: 1021–33

    PubMed  Google Scholar 

  62. Sekigushi R, Moroji T. A comparative study on characterization and distribution of cholecystokinin binding sites among the rat, mouse and guinea-pig brain. Brain Res 1986; 399: 271–81

    Article  Google Scholar 

  63. Song I, Brown DR, Wilshire RN, et al. The human gastrin/cholecystokinin type b receptor gene: alternative splice donor site in exon 4 generates two variant mRNAs. Proc Natl Acad Sci USA 1993; 90: 9085–9

    Article  PubMed  CAS  Google Scholar 

  64. Honda T, Wada E, Battey JF, et al. Differential gene expression of CCKA and CCKB receptors in the rat brain. Mol Cell Neurosci 1993; 4: 143–54

    Article  PubMed  CAS  Google Scholar 

  65. Woodruff GN, Hughes J. Cholecystokinin antagonists. Annu Rev Pharmacol Toxicol 1991; 31: 469–501

    Article  PubMed  CAS  Google Scholar 

  66. Hahne WF, Jensen RT, Lemp GF, et al. Proglumid and benzotript: members of a different class of cholecystokinin receptors antagonists. Proc Natl Acad Sci U S A 1981; 78: 6304–8

    Article  PubMed  CAS  Google Scholar 

  67. Chang RSL, Lotti VJ. Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci USA 1986; 83: 4923–6

    Article  PubMed  CAS  Google Scholar 

  68. Rovati LC, Bani M, Macovec F, et al. Lorglumide and loxiglumide: two potent and specific antagonists of peripheral CCK. In: Bali J-P, Martinez J, editors. Gastrin and cholecystokinin: chemistry, physiology and pharmacology. Amsterdam: Elsevier, 1987: 45–8

    Google Scholar 

  69. Gully D, Frehel D, Marcy C, et al. Peripheral biological activity of SR 27897: a new potent non-peptide antagonist of CCKA receptors. Eur J Pharmacol 1993; 232: 13–9

    Article  PubMed  CAS  Google Scholar 

  70. Lotti VJ, Chang RSL. A new and selective non-peptide gastrin antagonist and brain cholecystokinin receptor (CCK-B) lig-and: L-365,260. Eur J Pharmacol 1989; 162: 273–80

    Article  PubMed  CAS  Google Scholar 

  71. Showell GA, Bourrain S, Neduveil JG, et al. L-740,093: high affinity and potent, water soluble 5-amino-1,4-benzodiazepine CCKB/gastrin receptor antagonist containing a cationic solubilizing group. J Med Chem 1994; 37: 719–21

    Article  PubMed  CAS  Google Scholar 

  72. Hughes J, Boden P, Costali B, et al. Development of a class of selective cholecystokinin type B receptor antagonists having potent anxiolytic activity. Proc Natl Acad Sci U S A 1990; 87: 6728–32

    Article  PubMed  CAS  Google Scholar 

  73. Howbert JJ, Lobb KL, Brown RF, et al. A novel series of non-peptide CCK and gastrin antagonists: medicinal chemistry and electrophysiological demonstration of antagonism. In: Dourish CT, Cooper SJ, Iversen SD, et al., editors. Multiple cholecystokinin receptors in the CNS. New York: Oxford University Press, 1992: 28–37

    Google Scholar 

  74. Fekete M, Lengyel A, Hegedues B, et al. Further analysis of the effects of cholecystokinin octapeptide on avoidance behavior in rats. Eur J Pharmacol 1984; 98: 79–91

    Article  PubMed  CAS  Google Scholar 

  75. Della-Fera MA, Baile CA. Cholecystokinin octapeptide: continuous picomole injections into the cerebral ventricles of sheep suppress feeding. Science 1979; 206: 471–3

    Article  PubMed  CAS  Google Scholar 

  76. Csonka E, Fekete M, Nagy G, et al. Anxiogenic effect of cholecystokinin in rats. In: Penke B, Török A, editors. Peptides: chemistry, biology, interactions with proteins. New York: Walter de Gruyter & Co, 1988: 249–52

    Google Scholar 

  77. Harro J, Põld M, Vasar E. Anxiogenic-like action of caerulein, a CCK-8 receptor agonist, in the mouse: influence of acute and subchronic diazepam treatment. Naunyn Schmiedebergs Arch Pharmacol 1990; 341: 62–7

    Article  PubMed  CAS  Google Scholar 

  78. Harro J, Vasar E. Evidence that CCKB receptors mediate the regulation of exploratory behaviour in the rat. Eur J Pharmacol 1991; 193: 379–81

    Article  PubMed  CAS  Google Scholar 

  79. Singh L, Lewis AS, Field MJ, et al. Evidence for an involvement of the brain cholecystokinin B receptor in anxiety. Proc Natl Acad Sci U S A 1991; 88: 1130–3

    Article  PubMed  CAS  Google Scholar 

  80. Palmour RM, Bradwejn J, Ervin FR. The anxiogenic effects of CCK-4 in monkeys are reduced by CCKB antagonists, benzodiazepines or adenosine A2 agonists. Eur Neuropsychopharmacol 1992; 2: 193–5

    Article  Google Scholar 

  81. Biro E, Sarnyai Z, Penke B, et al. Role of endogenous corticotropin-releasing factor in mediation of neuroendocrine and behavioral responses to cholecystokinin octapeptide sulfate ester in rats. Neuroendocrinology 1993; 57: 340–5

    Article  PubMed  CAS  Google Scholar 

  82. Rex A, Barth T, Voigt J-P, et al. Effect of cholecystokinin tetrapeptide and sulfated cholecystokinin tetrapeptide in rat models of anxiety. Neurosci Lett 1994; 172: 139–42

    Article  PubMed  CAS  Google Scholar 

  83. Rex A, Fink H, Mardsen CA. Effects of Boc-CCK-4 and L-365,260 on cortical 5-HT release in guinea-pigs on exposure to elevated plus maze. Neuropharmacology 1994; 33: 559–65

    Article  PubMed  CAS  Google Scholar 

  84. Harro J, Vasar E, Bradwejn J. CCK in animal and human research on anxiety. Trends Pharmacol Sci 1993; 14: 244–9

    Article  PubMed  CAS  Google Scholar 

  85. Swerdlow NR, van der Kooy D, Koob GF, et al. Cholecystokinin produces conditioned place-aversions, not place-preferences, in food-deprived rats: evidence against involvement in satiety. Life Sci 1983; 32: 2087–93

    Article  PubMed  CAS  Google Scholar 

  86. Bayley PJ, Dawson GR. The effect of i.v. administration of CCK-4 on lever pressing rates of rats on an operant random interval schedule [abstract]. Br J Pharmacol 1993; 108 Suppl.: 244P

    Google Scholar 

  87. Rupnjak NMJ, Schaffer L, Siegl P, et al. Failure of intravenous pentagastrin challenge to induce panic-like effects in rhesus monkeys. Neuropeptides 1993; 25: 115–9

    Article  Google Scholar 

  88. Harro J, Vasar E. Cholecystokinin-induced anxiety: how is it reflected in studies on exploratory behaviour. Neurosci Bio-behav Rev 1991; 15: 473–7

    Article  CAS  Google Scholar 

  89. Crawley JN. Subtype selective cholecystokinin receptor antagonists block cholecystokinin modulation of dopamine-mediated behaviors in the rat mesolimbic pathway. J Neurosci 1992; 12: 3380–91

    PubMed  CAS  Google Scholar 

  90. Vasar E, Lang A, Harro J, et al. Evidence for potentiation by CCK antagonists of the effect of cholecystokinin octapeptide in the elevated plus maze. Neuropharmacology 1994; 33: 729–35

    Article  PubMed  CAS  Google Scholar 

  91. Dawson GR, Rupnjak NMJ, Iversen SD, et al. Lack of effect of CCKB receptor antagonists in ethological and conditioned animal screens for anxiolytic drugs. Psychopharmacology 1995; 121: 109–17

    Article  PubMed  CAS  Google Scholar 

  92. Hökfelt T. Neuropeptide in perspective: the last ten years. Neuron 1991; 7: 867–79

    Article  PubMed  Google Scholar 

  93. Harro J, Põld M, Vasar E, et al. The role of CCK-ergic mechanisms in the regulation of emotional behaviour in rodents. J Higher Nervous Act 1989; 39: 877–83

    CAS  Google Scholar 

  94. Vasar E, Harro J, Põld M, et al. CCK receptors and anxiety in rats. In: Dourish CT, Cooper SJ, Iversen SD, et al., editors. Multiple cholecystokinin receptors in the CNS. New York: Oxford University Press, 1992: 143–8

    Google Scholar 

  95. Pratt JA, Brett RR. The benzodiazepine receptor inverse agonist FG 7142 induces cholecystokinin gene expression in rat brain. Neurosci Lett 1995; 184: 197–200

    Article  PubMed  CAS  Google Scholar 

  96. Harro J, Kiivet RA, Lang A, et al. Rats with anxious or non-anxious type of exploratory behaviour differ in their CCK8 and benzodiazepine receptor characteristics. Behav Brain Res 1990; 39: 63–71

    Article  PubMed  CAS  Google Scholar 

  97. Vasar E, Peuranen E, Harro J, et al. Social isolation of rats increases the density of cholecystokinin receptors in the frontal cortex and abolishes the anti-exploratory effect of caerulein. Naunyn Schmiedebergs Arch Pharmacol 1993; 348: 96–101

    Article  PubMed  CAS  Google Scholar 

  98. Harro J. Studies on the brain cholecystokinin receptors and behaviour [dissertation]. Acta Universitas Upsaliensis vol 421. Uppsala: Uppsala University Press, 1993

    Google Scholar 

  99. Palasevic S, Bednar I, Qureshi GA, et al. Brain cholecystokinin tetrapeptide levels are increased in a rat model of anxiety. Neuroreport 1993; 5: 225–8

    Article  Google Scholar 

  100. Harro J, Lofberg C, Rehfeld JF, et al. Cholecystokinin peptides and receptors in the rat-brain during stress. Naunyn Schmiedebergs Arch Pharmacol 1996; 354(1): 59–66

    Article  PubMed  CAS  Google Scholar 

  101. Powell KR, Barett JE. Evaluation of the effects of PD 134308 (CI-988), a CCK-B antagonist, on the punished responding of squirrel monkeys. Neuropeptides 1991; 19 Suppl.: 75–8

    Article  PubMed  CAS  Google Scholar 

  102. Dooley DJ, Klamt I. Differential profile of the CCKB receptor antagonist CI-988 and diazepam in the 4-plate test. Psychopharmacology 1993; 112: 452–4

    Article  PubMed  CAS  Google Scholar 

  103. Hökfelt T, Skirboll LR, Rehfeld JF, et al. A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immuno-histochemistry combined with retrograde tracing. Neuroscience 1980; 5: 2093–142

    Article  PubMed  Google Scholar 

  104. Vanderhaegen J-J, Lotstra F, Demey J, et al. Immunohistochemical localization of cholecystokinin- and gastrin-like peptides in the brain and hypophysis of the rats. Proc Natl Acad Sci USA 1980; 77: 1190–4

    Article  Google Scholar 

  105. Wise RA, Rompré PP. Brain dopamine and reward. Annu Rev Psychol 1989; 40: 191–225

    Article  PubMed  CAS  Google Scholar 

  106. Derrien M, Durieux C, Daugé V, et al. Involvement of D2 dopaminergic receptors in the emotional and motivational responses induced by injection of CCK-8 in the posterior part of the rat nucleus accumbens. Brain Res 1993; 617: 181–8

    Article  PubMed  CAS  Google Scholar 

  107. Bradwejn J, de Montigny C. Benzodiazepines antagonize cholecystokinin-induced activation of rat hippocampal neurons. Nature 1984; 312: 363–4

    Article  PubMed  CAS  Google Scholar 

  108. de Montigny C. Cholecystokinin tetrapeptide induces panic-like attacks in healthy volunteers. Arch Gen Psychiatry 1989; 46: 511–7

    Article  PubMed  Google Scholar 

  109. Bradwejn J, Koszycki D, Meterissian G. Cholecystokinin tetrapeptide in panic disorder. Can J Psychiatry 1990; 35: 83–5

    PubMed  CAS  Google Scholar 

  110. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 3rd ed. Washington, DC: American Psychiatric Association, 1980

    Google Scholar 

  111. Bradwejn J, Koszycki D, Shriqui C. Enhanced sensitivity to cholecystokinin tetrapeptide in panic disorder. Arch Gen Psychiatry 1991; 48: 603–10

    Article  PubMed  CAS  Google Scholar 

  112. Bradwejn J, Koszycki D, Bourin M. Comparison of the effects of cholecystokinin and carbon dioxide in healthy volunteers. Eur Neuropsychopharmacol 1991; 1: 137–41

    Article  PubMed  Google Scholar 

  113. Bradwejn J, Koszycki D. Comparison of CO2-induced panic attacks in PD. Prog Neuropsych Biol Psychiatry 1991; 15: 237–9

    CAS  Google Scholar 

  114. Abelson JL, Nesse RM, Vinik A. Stimulation of corticotropin release by pentagastrin in normal subjects and patients with panic disorder. Biol Psychiatry 1991; 29: 1220–3

    Article  PubMed  CAS  Google Scholar 

  115. Van Megen HJGM, Westenberg HGM, den Boer JA, et al. Pentagastrin induced panic attacks: enhanced sensitivity in panic disorder patients. Psychopharmacology (Berl) 1994; 114: 449–55

    Article  Google Scholar 

  116. Lydiard RB, Ballenger JC, Laraia MT, et al. CSF cholecystokinin concentrations in patients with panic disorder and in normal comparison subjects. Am J Psychiatry 1992; 149: 691–3

    PubMed  CAS  Google Scholar 

  117. Brambilla F, Bellodi L, Perna G, et al. Lymphocyte cholecystokinin concentrations in panic disorder. Am J Psychiatry 1993; 150: 1111–3

    PubMed  CAS  Google Scholar 

  118. Kennedy JL, Koszycki D, Katzman MA, et al. CCK-B receptor gene alleles associated with panic disorder [abstract]. American Psychiatric Association Annual Meeting: 1997 May 17–22; San Diego, NR615

    Google Scholar 

  119. Bradwejn J. Cholecystokinin and panic disorder. In: Bradwejn J, Vasar E, editors. Cholecystokinin and anxiety: from neuron to behavior. Austin: Springer Verlag-R.G. Landes Company, 1995: 73–86

    Google Scholar 

  120. Bradwejn J, Koszycki D. Imipramine antagonizes the panicogenic effects of CCK-4 in panic disorder patients. Am J Psychiatry 1994; 151: 261–3

    PubMed  CAS  Google Scholar 

  121. van Megen HJGM, Westenberg HGM, den Boer JA. Effect of the selective serotonin reuptake inhibitor fluvoxamine on CCK-4 induced panic attacks. Psychopharmacology 1997; 129: 357–64

    Article  PubMed  Google Scholar 

  122. Shlik J, Aluoja A, Vasar V, et al. Effects of Citalopram treatment on behavioral, cardiovascular and neuroendocrine response to CCK-4 challenge in panic disorder patients [abstract]. American Psychiatric Association Annual Meeting: 1997 May 17–22; San Diego, NR145

    Google Scholar 

  123. Bradwejn J, Cöuetoux du Tetre A, van Megen HJGM, et al. The panicogenic effects of cholecystokinin tetrapeptide are antagonized by L-365,260, a central cholecystokinin receptor antagonist, in patients with panic disorder. Arch Gen Psychiatry 1994; 51: 486–93

    Article  PubMed  CAS  Google Scholar 

  124. Lines C, Challenor J, Traub M. Cholecystokinin and anxiety in normal volunteers: an investigation of the anxiogenic properties of pentagastrin and reversal by the cholecystokinin receptor subtype B antagonist L-365,260. Br J Clin Pharmacol 1995; 39(3): 235–42

    Article  PubMed  CAS  Google Scholar 

  125. Bradwejn J, Paradis M, Koszycki D, et al. The effects of CI-988 on CCK-4 panic in healthy volunteers. Biol Psychiatry 1995; 38: 742–6

    Article  PubMed  CAS  Google Scholar 

  126. Van Megen HJGM, Westenberg HGM, den Boer JA, et al. The cholecystokinin-B receptor antagonists CI-988 failed to affect CCK-4 induced symptoms in panic disorder patients. Psychopharmacology 1997; 129: 243–8

    Article  PubMed  Google Scholar 

  127. Cowley DS, Adams JB, Pyke RE, et al. Effect of CI-988, a cholecystokinin-B receptor antagonist, on lactate-induced panic. Biol Psychiatry 1996; 40: 550–2

    Article  PubMed  CAS  Google Scholar 

  128. van Megen HJ, Westenberg HG, den Boer JA. Effect of the cholecystokinin-B receptor antagonist L-365,260 on lactate-induced panic attacks in panic disorder patients. Biol Psychiatry 1996; 40: 804–6

    Article  PubMed  Google Scholar 

  129. Grasing K, Murphy MG, Lin J, et al. Human pharmacokinetics and tolerability of L-365,260, a novel cholecystokinin-B antagonist. J Clin Pharmacol 1996; 36: 292–300

    PubMed  CAS  Google Scholar 

  130. Kramer MS, Cutler NR, Ballenger JC, et al. A placebo-controlled trial of L-365,260, a CCKB antagonist, in panic disorder. Biol Psychiatry 1995; 37: 462–6

    Article  PubMed  CAS  Google Scholar 

  131. Le Melledo J-M, Bradwejn J, Koszycki D, et al. Premenstrual dysphoric disorder and response to cholecystokinin-tetrapeptide. Arch Gen Psychiatry 1995; 52: 605–6

    Article  PubMed  Google Scholar 

  132. Coupland NJ, Nutt DJ. Neurobiology of anxiety and panic. In: Bradwejn J, Vasar E, editors. Cholecystokinin and anxiety: from neuron to behavior. Austin: Springer Verlag-R.G. Landes Company, 1995: 1–32

    Google Scholar 

  133. McCann UD, Slate SO, Geraci M, et al. A comparison of the effects of intravenous pentagastrin on patients with social phobia, panic disorder and healthy controls. Neuropsychopharmacology 1997; 16: 229–37

    Article  PubMed  CAS  Google Scholar 

  134. De Leeuw AS, den Boer JA, Slaap BR, et al. Pentagastrin has panic inducing properties in obsessive-compulsive disorder. Psychopharmacology 1996; 126(4): 339–44

    Article  PubMed  CAS  Google Scholar 

  135. Brawman-Mintzer O, Lydiard RB, Bradwejn J, et al. Effects of the cholecystokinin agonist pentagastrin in patients with generalized anxiety disorder. Am J Psychiatry 1997; 5: 700–2

    Google Scholar 

  136. Adams JB, Pyke RE, Costa J, et al. A double-blind, placebo-controlled study of a CCK-B receptor antagonist, CI-988, in patients with generalized anxiety disorder. J Clin Psychopharmacol 1995; 15: 428–34

    Article  PubMed  CAS  Google Scholar 

  137. Patel S, Chapman KL, Heald A, et al. Measurement of central nervous activity of systemically administered CCKB receptor antagonists by ex vivo binding. Eur J Pharmacol 1994; 253: 237–44

    Article  PubMed  CAS  Google Scholar 

  138. Harro J, Vasar E, Koszycki D, et al. Cholecystokinin in panic and anxiety disorders. In: Panksepp J, editor. Advances in biological psychiatry. Vol. 1. Greenwich (CT): JAI Press Inc., 1995: 235–62

    Google Scholar 

  139. Crawley JN. Interactions between cholecystokinin and other neurotransmitter systems. In: Bradwejn J, Vasar E, editors. Cholecystokinin and anxiety: from neuron to behavior. Austin: Springer Verlag-R.G. Landes Company, 1995: 101–26

    Google Scholar 

  140. Daugé V, Roques BP. Opioid and CCK systems in anxiety and reward. In: Bradwejn J, Vasar E, editors. Cholecystokinin and anxiety: from neuron to behavior. Austin: Springer Verlag-R.G. Landes Company, 1995: 151–71

    Google Scholar 

  141. Derrien M, McCort-Tranchepain I, Ducos B, et al. Heterogeneity of CCK-B receptors involved in animal models of anxiety. Pharmacol Biochem Behav 1994; 49(1): 133–41

    Article  PubMed  CAS  Google Scholar 

  142. Léna I, Daugé V, Roques BP, et al. Distinct pharmacological profiles of two CCK-B agonists: further evidence of rat CCK-B receptor subsites [abstract]. Soc Neurosci Abstr 1996; 22(1): 78

    Google Scholar 

  143. Harper EA, Roberts SP, Shankley NP, et al. Analysis of variation in L-365,260 competition curves in radioligand binding assays. Br J Pharmacol 1996; 118(7): 1717–26

    Article  PubMed  CAS  Google Scholar 

  144. Gorman JM, Liebowitz MR, Fyer AJ, et al. The neuroanatomical hypothesis of panic disorder. Am J Psychiatry 1989; 146(2): 148–61

    PubMed  CAS  Google Scholar 

  145. Denavit-Saubié M, Hurle MA, Morin-Surum MP, et al. The effects of cholecystokinin-8 in the nucleus tractus solitarius. In: Vanderhaegen JJ, Crawley JN, editors. Neuronal cholecystokinin. New York: The New York Academy of Sciences, 1985: 375–84

    Google Scholar 

  146. Gerner RH, Yamada T. Altered neuropeptide concentrations in cerebrospinal fluid of psychiatric patients. Brain Res 1982; 238: 298–302

    Article  PubMed  CAS  Google Scholar 

  147. Gjerris A, Rafaelsen OJ, Vendsborg P, et al. Vasoactive intestinal neuropeptide decreased in cerebrospinal fluid (CSF) in atypical depression. J Affect Disord 1984; 7: 325–37

    Article  PubMed  CAS  Google Scholar 

  148. Lotstra F, Verbanck PMP, Gilles C, et al. Reduced cholecystokinin levels in cerebrospinal fluid of Parkinsonian and schizophrenic patients. Ann N Y Acad Sci 1985; 448: 507–17

    Article  PubMed  CAS  Google Scholar 

  149. Rafaelsen OJ, Gjerris A. Neuropeptides in the cerebrospinal fluid (CSF) in psychiatric disorders. Prog Neuropsych Biol Psychiatry 1985; 9: 533–8

    CAS  Google Scholar 

  150. Verbanck PMP, Lotstra F, Gilles C, et al. Reduced cholecystokinin immunoreactivity in the cerebrospinal fluid of patients with psychiatric disorders. Life Sci 1984; 34: 67–72

    Article  PubMed  CAS  Google Scholar 

  151. Harro J, Marcusson J, Oreland L. Alterations in brain cholecystokinin receptors in suicide victims. Eur Neuropsychopharmacol 1992; 27: 57–63

    Article  Google Scholar 

  152. Brodin K, Rosen A, Iwarsson K, et al. Increased levels of substance P and cholecystokinin in rat cerebral cortex following repeated electroconvulsive shock and subchronic treatment with a serotonin uptake inhibitor. Acta Physiol Scand 1989; 136: 613–4

    Article  PubMed  CAS  Google Scholar 

  153. Kelly JP, Leonard BE. An examination of CI 988 in 3 animal models of depression [abstract]. J Psychopharmacol 1992; 6 Suppl.: A14

    Google Scholar 

  154. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatment. Nature 1977; 266: 730–2

    Article  PubMed  CAS  Google Scholar 

  155. Van Riezen HV, Leonard BE. Effect of psychotropic drugs on the behavior and neurochemistry of olfactory bulbectomized rats. Pharmacol Ther 1990; 47: 21–37

    Article  PubMed  Google Scholar 

  156. Derrien M, Durieux C, Roques BP. Antidepressant-like effects of CCK-B antagonists in mice: antagonism by naltrindole. Br J Pharmacol 1994; 111: 956–60

    Article  PubMed  CAS  Google Scholar 

  157. Smadja C, Maldonado R, Turcaud MC, et al. Opposite role of CCKA and CCKB receptors in the modulation of endogenous enkephalin antidepressant-like effects. Psychopharmacology 1995; 120: 400–8

    Article  PubMed  CAS  Google Scholar 

  158. Hernando F, Fuentes JA, Roques BP, et al. The CCK-B receptor antagonist, L-365,260, elicits antidepressant-type effects in the forced-swim test in mice. Eur J Pharmacol 1994; 261: 257–63

    Article  PubMed  CAS  Google Scholar 

  159. Crawley JN, Corwin RL. Biological actions of cholecystokinin. Peptides 1994; 15(4): 731–55

    Article  PubMed  CAS  Google Scholar 

  160. Wang RY. Cholecystokinin, dopamine, and schizophrenia: recent progress and current problems. Ann N Y Acad Sci 1988; 89: 3125–9

    Google Scholar 

  161. Fuxe K, Andersson K, Locatelli V, et al. Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the brain following intraventricular injection. Eur J Pharmacol 1980; 67: 329–31

    Article  PubMed  CAS  Google Scholar 

  162. Meyer M, Holland A, Conzelmann U. Dopamine D1-receptor stimulation reduces neostriatal cholecystokinin release. Eur J Pharmacol 1984; 104: 387–8

    Article  PubMed  CAS  Google Scholar 

  163. Voigt M, Wang RY, Westfall TC. Cholecystokinin octapeptides alter the release of endogenous dopamine from the rat nucleus accumbens in vitro. J Pharmacol Exp Ther 1986; 237: 147–53

    PubMed  CAS  Google Scholar 

  164. Hommer DW, Skirboll LR. Cholecystokinin-like peptides potentiate apomorphine-induced inhibition of dopamine neurons. Eur J Pharmacol 1983; 91: 151–2

    Article  PubMed  CAS  Google Scholar 

  165. Crawley JN, Stivers JA, Blumstein LK, et al. Cholecystokinin potentiates dopamine-mediated behaviors: evidence for modulation specific to a site of coexistence. J Neurosci 1985; 5: 1972–83

    PubMed  CAS  Google Scholar 

  166. Vaccarino FJ, Rankin J. Nucleus accumbens cholecystokinin (CCK) can either attenuate or potentiate amphetamine-induced locomotor activity: evidence for rostral-caudal differences in accumbens CCK function. Behav Neurosci 1989; 103: 831–6

    Article  PubMed  CAS  Google Scholar 

  167. Virgo L, Humphries C, Mortimer A, et al. Cholecystokinin messenger RNA deficit in frontal cortex and temporal cerebral cortex in schizophrenia. Biol Psychiatry 1995; 37: 694–701

    Article  PubMed  CAS  Google Scholar 

  168. Chang RSL, Lotti VS, Martin GE, et al. Increase in brain [125I]-cholecystokinin (CCK) receptor binding following chronic haloperidol treatment, intracisternal 6-hydroxydopamine and ventral tegmental lesions. Life Sci 1983; 32: 871–8

    Article  PubMed  CAS  Google Scholar 

  169. Suzuki T, Moroji T, Hori T, et al. Autoradiographic localization of CCK-8 binding sites in the rat brain: effects of chronic metamphetamine on these sites. Biol Psychiatry 1993; 34: 781–90

    Article  PubMed  CAS  Google Scholar 

  170. Dumbrille-Ross A, Seeman P. Dopamine receptor elevation by cholecystokinin. Peptides 1984; 5: 1207–12

    Article  PubMed  CAS  Google Scholar 

  171. Cohen SL, Stivers JA, Blumstein LK, et al. Cholecystokinin octapeptide effects on conditioned avoidance behavior, stereotypy and catalepsy. Eur J Pharmacol 1982; 83: 213–22

    Article  PubMed  CAS  Google Scholar 

  172. Van Ree JM, Gaffori O, De Wied D. In rats, the behavioral profile of CCK8 related peptides resembles that of antipsychotic drugs. Eur J Pharmacol 1983; 93: 63–78

    Article  PubMed  Google Scholar 

  173. Zetler G. Caerulein and its analogues: neuropharmacological properties. Peptides 1985; 6 Suppl. 3: 33–46

    Article  PubMed  CAS  Google Scholar 

  174. Vasar E, Allikmets L, Ryzhov I, et al. Interspecies differences in the behavioural effects of caerulein, an agonist of CCK-8 receptors, in mice and rats. Bull Exp Biol Med 1988; 105: 168–70

    CAS  Google Scholar 

  175. Britton DR, Curzon P, Yahiro L, et al. Evaluation of a stable CCK agonist (A68552) in conditioned avoidance responding in mice, rats, and primates: comparison with typical and atypical antipsychotics. Pharmacol Biochem Behav 1992; 43: 369–76

    Article  PubMed  CAS  Google Scholar 

  176. Lang A, Harro J, Soosaar A, et al. Role of N-methyl-D-aspartic acid and cholecystokinin receptors in apomorphine-induced aggressive behaviour in rats. Naunyn Schmiedebergs Arch Pharmacol 1995; 351: 363–70

    Article  PubMed  CAS  Google Scholar 

  177. Csernansky JG, Glick S, Mellentin J. Differential effects of proglumide on mesolimbic and nigrostriatal dopamine function. Psychopharmacology 1987; 91: 440–4

    Article  PubMed  CAS  Google Scholar 

  178. Wettstein JG, Grouhel A, Earley B, et al. Unique behavioral profiles of CCK antagonists in rats [abstract]. Soc Neurosci Abstr 1992; 18: 815

    Google Scholar 

  179. Chiodo LA, Bunney BS. Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 1983; 3: 1607–19

    PubMed  CAS  Google Scholar 

  180. White FJ, Wang RY. Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Life Sci 1983; 221: 1054–7

    CAS  Google Scholar 

  181. Rasmussen K, Stockton ME, Czachura JF, et al. Cholecystokinin and schizophrenia: the selective CCK-B antagonist LY 262691 decreases midbrain dopamine unit activity. Eur J Pharmacol 1991; 209: 749–53

    Article  Google Scholar 

  182. Rasmussen K, Czachura JF, Stockton ME, et al. Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons. J Pharmacol Exp Ther 1993; 264: 480–8

    PubMed  CAS  Google Scholar 

  183. Stockton ME, Howbert JJ, Rasmussen K. Localization of receptors mediating the effects of the selective CCK-B antagonist LY262291 on A9 and A10 dopamine cells: lesion and microinjection studies [abstract]. Soc Neurosci Abstr 1992; 18: 278

    Google Scholar 

  184. Chiodo LA, Bunney BS. Population response of midbrain dopaminergic neurons to neuroleptics: further studies on time course and nondopaminergic influences. J Neurosci 1987; 7: 629–33

    PubMed  CAS  Google Scholar 

  185. Jiang LH, Kasser RJ, Wang RY. Cholecystokinin antagonist lorglumide reverses chronic haloperidol-induced effects on dopamine neurons. Brain Res 1988; 473: 165–8

    Article  PubMed  CAS  Google Scholar 

  186. Minabe Y, Ashby CR, Wang RY. The CCK-A receptor antagonist devazepide but not the CCK-B receptor antagonist L-365,260 reverses the effects of chronic Clozapine and haloperidol on midbrain dopamine neurons. Brain Res 1991; 549: 151–4

    Article  PubMed  CAS  Google Scholar 

  187. Zhang J, Chiodo LA, Freeman AS. Effects of the CCK-A receptor antagonist CR 1409 on the activity of rat midbrain dopamine neurons. Peptides 1991; 12: 339–43

    Article  PubMed  CAS  Google Scholar 

  188. Innis R, Bunney BS, Charney DS, et al. Does the cholecystokinin antagonist proglumide possess antipsychotic activity? J Psychiatr Res 1986; 18: 1–7

    Article  CAS  Google Scholar 

  189. Hicks PB, Vinogradov S, Riney SJ, et al. A preliminary dose-ranging trial of proglumide for the treatment of refractory schizophrenics. J Clin Psychopharmacol 1989; 9: 209–12

    Article  PubMed  CAS  Google Scholar 

  190. Lotstra F, Verbanck PMP, Mendelewicz J, et al. No evidence of antipsychotic effect of caerulein in schizophrenic patients free of neuroleptics: a double-blind cross-over study. Biol Psychiatry 1984; 19: 877–82

    PubMed  CAS  Google Scholar 

  191. Tamminga CA, Littman RL, Alphs LD, et al. Neuronal cholecystokinin and schizophrenia: pathogenic and therapeutic studies. Psychopharmacology 1986; 88: 387–91

    Article  PubMed  CAS  Google Scholar 

  192. Ferrier IN, Roberts GW, Crow TJ, et al. Reduced cholecystokinin-like and somatostatin-like immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia. Life Sci 1983; 33: 475–82

    Article  PubMed  CAS  Google Scholar 

  193. Ferrier IN, Crow TJ, Farmery SM, et al. Reduced cholecystokinin levels in the limbic lobe in schizophrenia. Ann N Y Acad Sci 1985; 448: 495–506

    Article  PubMed  CAS  Google Scholar 

  194. Roberts GW, Ferrier IN, Lee Y, et al. Peptides, the limbic lobe and schizophrenia. Brain Res 1983; 288: 199–211

    Article  PubMed  CAS  Google Scholar 

  195. Carruthers B, Dawbarn D, De Quidt M, et al. Changes in neuropeptide content of amygdala in schizophrenia [abstract]. Br J Pharmacol 1984; 81 Suppl.: 190P

    Google Scholar 

  196. Farmery SM, Owen F, Poulter M, et al. Reduced high activity cholecystokinin binding in hippocampus and frontal cortex of schizophrenic patients. Life Sci 1985; 36: 473–7

    Article  PubMed  CAS  Google Scholar 

  197. Garver DL, Beinfeld MC, Yao JK. Cholecystokinin, dopamine and schizophrenia. Psychol Bull 1991; 26: 377–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Bradwejn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shlik, J., Vasar, E. & Bradwejn, J. Cholecystokinin and Psychiatric Disorders. CNS Drugs 8, 134–152 (1997). https://doi.org/10.2165/00023210-199708020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199708020-00005

Keywords

Navigation