Skip to main content
Log in

Tolerability of Newer and Older Anticonvulsants

A Comparative Review

  • Comparative Review
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

This review provides a comparison of conventional [phenobarbital (phenobarbitone), phenytoin, primidone, carbamazepine, ethosuximide and valproic acid (sodium valproate)] and newer (felbamate, oxcarbazepine, zonisamide, vigabatrin, gabapentin and lamotrigine) anticonvulsants.

The advantages and disadvantages of the older agents are well documented, because they have been administered to large numbers of patients for prolonged periods of time. A complete assessment of the adverse effects of the newer agents is not yet possible because of the relative lack of experience with them, such that the potential for infrequent adverse reactions or reactions occurring only after long term use is unknown.

Common early adverse effects (i.e. acute toxicity) mainly affect the CNS. Sedation or drowsiness are associated with phenobarbital, primidone and zonisamide, and sometimes with vigabatrin and gabapentin, usually transiently with the latter 2 drugs. Dizziness, vertigo, diplopia and motor incoordination characterise the acute toxicity of phenytoin and carbamazepine, and can occur when lamotrigine is coadministered with carbamazepine. Drug-induced stupor or coma is a rare adverse effect of valproic acid and vigabatrin. The initiation of treatment with several anticonvulsants can be followed by an increase in seizure frequency. However, true drug-induced seizures tend to only occur in patients with particular epileptic syndromes.

Gastrointestinal disturbances are more frequent after initiation of primidone, valproic acid and ethosuximide than other anticonvulsants. Leucopenia and increases in liver enzyme levels are frequent with all anticonvulsants, but usually are without clinical significance.

Rare early adverse reactions mainly involve a hypersensitivity syndrome, most often limited to a skin rash. Skin eruptions have been reported to occur with all the anticonvulsants, and are probably benign in most cases. However, potentially fatal reactions are possible. Toxic acute fulminant liver failure has been associated with exposure to valproic acid, mainly in polymedicated infants with particular epilepsies, and to felbamate.

CNS effects after long term administration of anticonvulsants are common. Sedation, drowsiness, fatigue and dizziness are common consequences of phenobarbital, primidone and zonisamide therapy. Other anticonvulsants usually produce minimal sedation. Lamotrigine may cause insomnia in adults. Phenytoin may slow motor functioning. Occasionally, phenytoin and valproic acid have been responsible for a subacute encephalopathy presenting as a reversible dementia. Movement disorders of various types are also a rare adverse reaction to all conventional anticonvulsants, although only valproic acid-induced tremor is of clinical significance. Behavioural changes and acute psychosis may result from the use of barbiturates, valproic acid and vigabatrin.

Anticonvulsant-related leucopenia has various significance. Aplastic anaemia has been reported secondary to many conventional drugs and to felbamate, usually in polymedicated patients. Thrombocytopenia or platelet dysfunction has only been associated with valproic acid. Connective tissue disorders are a possible consequence of prolonged exposure to barbiturates or phenytoin. They have not been reported with carbamazepine or the new drugs.

Increases in bodyweight are a prevalent adverse effect of valproic acid and vigabatrin, and have also been noted in patients exposed to gabapentin. Immunological disorders have to date not been associated with the newer drugs, but this may be a result of the limited experience with these agents.

Phenobarbital, primidone, phenytoin and carbamazepine have been reported to induce clinical, and more often biological, signs of osteomalacia, while oxcarbazepine has not. Hyponatraemia may be a complication of carbamazepine and oxcarbazepine therapy. The other older and newer anticonvulsants do not modify electrolyte levels.

All conventional anticonvulsants are metabolised in the liver, which leads to numerous more or less clinically significant drug-drug interactions. Phenytoin, phenobarbital, primidone and carbamazepine are enzyme-inducers, and valproic acid is an enzyme-inhibitor Phenytoin and valproic acid are also highly protein-bound. Obviously, the newer agents will be easier to prescribe because of no or minimal drug-drug interactions.

The older anticonvulsants are also all weak teratogenic agents. No conclusions can be drawn concerning the teratogenic potential of the newer drugs in humans, although animal data suggest that they are devoid of this effect.

To date, there has been insufficient experience with new drugs in elderly patients to compare their tolerability with that of conventional agents in this patient population. Elderly patients often receive multiple medications for systemic illnesses. Therefore, they may benefit greatly from drugs, such as vigabatrin and gabapentin, that are unlikely to cause drug interactions, as well as from drugs with moderate protein binding, such as lamotrigine, Limited data suggest that the newer drugs are well tolerated in this age group, even in the presence of some decrease in hepatic or renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dam M, Ostergaard LH. Oxcarhazepine. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 987–95

    Google Scholar 

  2. Peters DH, Sorkin EM. Zonisamide: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy. Drugs 1993; 45 (5): 760–87

    PubMed  CAS  Google Scholar 

  3. Leppik IE, Willmore LJ, Homan RW, et al. Efficacy and safety of zonisamide: results of a multicenter study. Epilepsy Res 14 (2): 165–73

  4. Schmidt D, Jacob R, Loiseau P, et al. Zonisamide for add-on treatment of refractory partial epilepsy: a European double-blind trial. Epilepsy Res 1993; 15 (1): 67–73

    PubMed  CAS  Google Scholar 

  5. Grant SM, Heel RC. Vigabatrin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy. Drugs 1991; 41 (6): 889–926

    PubMed  CAS  Google Scholar 

  6. Fisher RS, Kerrigan III JF. Vigabatrin: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs, 4th ed. New York: Raven Press, 1995: 931–9

    Google Scholar 

  7. Mumford JP, Dam M. Meta-analysis of European placebo controlled studies of vigabatrin in drug resistant epilepsy. Br J Clin Pharmacol 1989; 27 Suppl. 1: 101–7

    Google Scholar 

  8. Remy C, Beaumont D. Efficacy and safety of vigabatrin in the long-term treatment of refractory epilepsy. Br J Clin Pharmacol 1989; 27 Suppl. 1: 125–9

    Google Scholar 

  9. Sofia RD. Felbamate: mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 791–7

    Google Scholar 

  10. Leppik IE, Wolff DL. The place of felbamate in the treatment of epilepsy. CNS Drugs 1995; 4 (4): 294–301

    CAS  Google Scholar 

  11. Goa KL, Sorkin EM. Gabapentin: a review of its pharmacological properties and clinical potential in epilepsy. Drugs 1993 (3); 46: 409–27

    PubMed  CAS  Google Scholar 

  12. Ramsay RE. Clinical efficacy and safety of gabapentin. Neurology 1994; 34 Suppl. 5: 9–16

    Google Scholar 

  13. McLean MJ. Gabapentin. Epilepsia 1995; 36 Suppl. 2: 73–86

    Google Scholar 

  14. Goa KL, Ross SR, Chrisp P. Lamotrigine: a review of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1993; 46 (1): 152–76

    PubMed  CAS  Google Scholar 

  15. Messenheimer JA. Lamotrigine. Epilepsia 1995; 36 Suppl. 2: 87–94

    Google Scholar 

  16. Mattson RH, Cramer JA, Collins JF, et al. Comparison of carbamazepine, phenobarbital, phenytoin and primidone in partial and secondary generalized tonic-clonic epileptic seizures. N Engl J Med 1985; 313: 145–51

    PubMed  CAS  Google Scholar 

  17. Heller AJ, Chesterman P, Elwes RDC, et al. Phenobarbitone, Phenytoin, carbamazepine, or sodium valproate for newly diagnosed adult epilepsy: a randomised comparative monotherapy trial. J Neurol Neurosurg Psychiatry 1995; 58: 44–50

    PubMed  CAS  Google Scholar 

  18. Booker HE. Idiosyncratic reactions to antiepileptic drugs. Epilepsia 1975; 16: 171–81

    PubMed  CAS  Google Scholar 

  19. Saltzstein SL, Ackerman LV. Lymphadenopathy induced by anticonvulsant drugs and mimicking clinically and pathologically malignant lymphomas. Cancer 1959; 12: 164–72

    PubMed  CAS  Google Scholar 

  20. Anthony JJ. Malignant lymphoma associated with hydantoin drugs. Arch Neurol 1970; 22: 450–4

    PubMed  CAS  Google Scholar 

  21. Herranz JL, Arteaga R, Armijo JA. Side effects of sodium valproate in monotherapy controlled by plasma levels; a study in 88 pediatric patients. Epilepsia 1982; 23: 203–14

    PubMed  CAS  Google Scholar 

  22. US Gabapentin Study Group. No 5. Gabapentin as add-on therapy in refractory partial epilepsy: a double-blind, placebo-controlled, parallel-group study. Neurology 1993; 43: 2292–8

    Google Scholar 

  23. Manon-Espaillat R, Burnstine TH, Remler B, et al. Antiepileptic drug intoxication: factors and their significance. Epilepsia 1991; 32 (1): 96–100

    PubMed  CAS  Google Scholar 

  24. Plaa GL. Acute toxicity of antiepileptic drugs. Epilepsia 1975; 16: 183–91

    PubMed  CAS  Google Scholar 

  25. Reynolds EH. Chronic antiepileptic toxicity: a review. Epilepsia 1975; 16: 319–52

    PubMed  CAS  Google Scholar 

  26. Cramer JA, Mattson RH. Phenobarbital: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 409–20

    Google Scholar 

  27. Leppik IE, Cloyd JC. Primidone: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs, 4th ed. New York: Raven Press, 1995: 487–90

    Google Scholar 

  28. Reynolds EH. Phenytoin: toxicity. In: Levy RH, Mattson RH, Meldrum BS, et al., editors. Antiepileptic drugs, 3rd ed. New York: Raven Press, 1989: 241–55

    Google Scholar 

  29. Holmes GL. Carbamazepine: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 567–79

    Google Scholar 

  30. Dam M, Ekberg R, Loyning Y, et al. A double-blind study comparing oxcarbazepine and carbamazepine in patients with newly diagnosed, previously untreated epilepsy. Epilepsy Res 1989; 3: 70–6

    PubMed  CAS  Google Scholar 

  31. Seino M, Miyasaki H, Ito T. Zonisamide. In: Pisani F, Perucca E, Avanzini G, et al., editors. New antiepileptic drugs. Epilepsy Research Suppl. 3. Amsterdam: Elsevier Science Publishers, 1991: 169–74

    Google Scholar 

  32. Richens A. Safety of lamotrigine. Epilepsia 1994; 35 Suppl. 5: 37–40

    Google Scholar 

  33. Davis R, Peters DH, McTavish D. Valproic acid: a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1994; 47 (2): 332–72

    PubMed  CAS  Google Scholar 

  34. Triggs WJ, Bohan TP, Lin SM, et al. Valproate-induced coma with ketosis and carnitine deficiency. Arch Neurol 1990; 47: 1131–3

    PubMed  CAS  Google Scholar 

  35. Marescaux C, Warter JM, Micheletti G, et al. Stuporous episodes during treatment with sodium valproate: report of seven cases. Epilepsia 1982; 23: 297–30533.

    PubMed  CAS  Google Scholar 

  36. Sharief MK, Sander JWA, Shorvon SD. Acute encephalopathy with vigabatrin [letter]. Lancet 1993; 342: 619

    PubMed  CAS  Google Scholar 

  37. Troupin AS, Ojemann LM. Paradoxical intoxication: a complication of anticonvulsant administration. Epilepsia 1975; 16 (5): 753–8

    PubMed  CAS  Google Scholar 

  38. Lerman P. Seizures induced or aggravated by anticonvulsants. Epilepsia 1986; 27 (6): 706–10

    PubMed  CAS  Google Scholar 

  39. Lortie A, Chiron C, Mumford J, et al. The potential for increasing seizure frequency, relapse, and appearance of new seizure types with vigabatrin. Neurology 1993; 43 Suppl.: 24S–27S

    Google Scholar 

  40. So EL, Ruggles KH, Cascino GD, et al. Seizure exacerbation and status epilepticus related to carbamazepine-10, 11-epoxide. Ann Neurol 1994; 35: 743–6

    PubMed  CAS  Google Scholar 

  41. Caraballo R, Fontana E, Michelizza B, et al. Carbamazepina, ‘assence atipiche’, ‘crisi atoniche’ e stato di PO continua del sonno (POCS). Boll Lega It Epil 1989; 66/67: 379–81

    Google Scholar 

  42. Sachdeo R, Kramer LD, Rosenberg A, et al. Felbamate monotherapy: controlled trial in patients with partial onset seizures. Ann Neurol 1992; 32 (3): 386–92

    PubMed  CAS  Google Scholar 

  43. Heipertz R, Eickhoff K, Poser W. Anticonvulsant therapy and serum gamma-glutamyl-transferase. Klin Wochenschr 1978; 56: 921–8

    PubMed  CAS  Google Scholar 

  44. Giroud M, D’Athis Ph, Guard O, et al. Elévation des taux de gamma-glutamyl-transférase chez les épileptiques traités. Presse Med 1986; 15 (17): 791–4

    PubMed  CAS  Google Scholar 

  45. Jeavons PM. Hepatotoxicity of antiepileptic drugs. In: Oxley J, Janz D, Meinardi H, editors. Antiepileptic therapy: chronic toxicity of antiepileptic drugs. New York: Raven Press, 1983: 1–45

    Google Scholar 

  46. Bryant III AE, Dreifuss FE. Hepatotoxicity associated with anti-epileptic drug therapy: avoidance, identification and management. CNS Drugs 1995; 4 (2): 99–113

    CAS  Google Scholar 

  47. Dreifuss FE, Santilli N, Langer DH, et al. Valproic acid fatalities: a retrospective review. Neurology 1987; 37: 379–85

    PubMed  CAS  Google Scholar 

  48. Wyllie E, Wyllie R. Routine laboratory monitoring for serious adverse effects of antiepileptic drug medications: the controversy. Epilepsia 1991; 32 Suppl. 5: 74–9

    Google Scholar 

  49. Siemes H, Nau H, Schultze K, et al. Valproate (VPA) metabolites in various clinical conditions of probable VPA-associated hepatotoxicity. Epilepsia 1993; 34 (2): 332–46

    PubMed  CAS  Google Scholar 

  50. Asconapé JJ, Penry JK, Dreifuss FE, et al. Valproate-associated pancreatitis. Epilepsia 1993; 34 (1): 177–83

    PubMed  Google Scholar 

  51. Pelekanos J, Camfield P, Camfield C, et al. Allergic rash due to antiepileptic drugs: clinical features and management. Epilcpsia 1991; 32 (4): 554–9

    CAS  Google Scholar 

  52. Schmidt D. Adverse effects of antiepileptic drugs. New York: Raven Press, 1982

    Google Scholar 

  53. Chadwick D, Shaw M, Foy P, et al. Serum anticonvulsant concentrations and the risk of drug induced skin eruptions. J Neurol Neurosurg Psychiatry 1984; 47: 642–4

    PubMed  CAS  Google Scholar 

  54. Richens A, Davidson DLW, Cartlidge NEF, et al. A multicentre comparative trial of sodium valproate and carbamazepine in adult onset epilepsy. J Neurol Neurosurg Psychiatry 1994; 57: 682–7

    PubMed  CAS  Google Scholar 

  55. Houtkooper MA, Lammertsma A, Meyer JWA, et al. Oxcarbazepine (GP 47 680): a possible alternative to carbamazepine. Epilepsia 1987; 28: 693–8

    PubMed  CAS  Google Scholar 

  56. The Danish Oxcarbazepine Study Group. Oxcarbazepine in patients hypersensitive to carbamazepine [abstract]. Acta Neurol Scand 1984; 70: 223

    Google Scholar 

  57. Pellock JM, Willmore LJ. A rational guide to blood monitoring in patients receiving antiepileptic drugs. Neurology 1991; 41: 961–4

    PubMed  CAS  Google Scholar 

  58. Dodrill CB, Troupin AS. Neuropsychological effects of carbamazepine and phenytoin: a reanalysis. Neurology 1991; 41: 141–3

    PubMed  CAS  Google Scholar 

  59. Browne TR, Mattson RH, Penry JK, et al. A multicentre study of vigabatrin for drug-resistant epilepsy. Br J Clin Pharmacol 1989; 27 Suppl. 1: 95–100

    Google Scholar 

  60. Tartara A, Manni R, Galimberti CA, et al. Six-year follow-up study on the efficacy and safety of vigabatrin in patients with epilepsy. Acta Neurol Scand 1992; 86: 247–51

    PubMed  CAS  Google Scholar 

  61. Logan WJ, Freeman JM. Pseudodegenerative disease due to diphenylhydantoin intoxication. Arch Neurol 1969; 21: 631–7

    PubMed  CAS  Google Scholar 

  62. Vallarta JM, Bell DB, Reichert A. Progressive encephalopathy due to chronic hydantoin intoxication. Am J Dis Child 1974; 128: 27–34

    PubMed  CAS  Google Scholar 

  63. Ambrosetto G, Tassinari CA, Baruzzi A, et al. Phenytoin encephalopathy as probable idiosyncratic reaction: case report. Epilepsia 1977; 18 (3): 405–8

    PubMed  CAS  Google Scholar 

  64. Zaret BS, Cohen RA. Reversible valproic acid-induced dementia: a case report. Epilepsia 1986; 27 (3): 234–40

    PubMed  CAS  Google Scholar 

  65. Chadwick D, Reynolds EH, Marsden CD. Anticonvulsant-induced dyskinesias: a comparison with dyskinesias induced by neuroleptics. J Neurol Neurosurg Psychiatry 1976; 39: 1210–8

    PubMed  CAS  Google Scholar 

  66. Rasmussen S, Kristensen M. Choreoathetosis during phenytoin treatment. Acta Med Scand 1977; 201: 239–41

    PubMed  CAS  Google Scholar 

  67. Dravet C, Dalla Bernardina B, Mesdjian E, et al. Dyskinésies paroxystiques au cours des traitements par la diphenylhydantoine. Rev Neur (Paris) 1980; 136 (1): 1–14

    CAS  Google Scholar 

  68. Crosley CJ, Swender PT. Dystonia associated with carbamazepine administration: experience in brain-damaged children. Pediatrics 1979; 63: 612–5

    PubMed  CAS  Google Scholar 

  69. Winitzer M, Younkin D. Phenobarbital-induced dyskinesia in a neurologically-impaired child. Neurology 1984; 34: 1600–1

    Google Scholar 

  70. Bodensteiner JB, Morris HH, Golden GS. Asterixis associated with sodium valproate. Neurology 1981; 31: 186–90

    Google Scholar 

  71. Karas BJ, Wilder BJ, Hammond EJ, et al. Valproate tremors. Neurology 1992; 32: 428–32

    Google Scholar 

  72. Sasso E, Delsoldato S, Negroni A, et al. Reversible valproate-induced extrapyramidal disorders. Epilepsia 1994; 35 (2): 391–3

    PubMed  CAS  Google Scholar 

  73. Devinsky O. Cognitive and behavioral effects of antiepileptic drugs. Epilepsia 1995; 36 Suppl. 2: S46–S65

    PubMed  CAS  Google Scholar 

  74. Kälviäinen R, Äikiä M, Riekkinen PJ. Cognitive adverse effects of antiepileptic drugs: incidence, mechanisms and therapeutic implications. CNS Drugs 1996 May: 5 (5): 358–68

    Google Scholar 

  75. Ounsted C. The hyperkinetic syndrome in epileptic children. Lancet 1955; 1: 303 11

    Google Scholar 

  76. Berent S, Sackellares JC, Giordani B, et al. Zonisamide (CI-912) and cognition: results from preliminary study. Epilepsia 1987; 28 (1): 61–7

    PubMed  CAS  Google Scholar 

  77. Brent DA, Crumrine PK, Varma RR, et al. Phenobarbital treatment and major depressive disorder in children with epilepsy. Pediatrics 1987; 80: 909–17

    PubMed  CAS  Google Scholar 

  78. Robertson MM, Trimble MR, Townsend HRA. The phenomenology of depression in epilepsy. Epilepsia 1987; 28: 364–72

    PubMed  CAS  Google Scholar 

  79. Ring HA, Crellin R, Kirker S, et al. Vigabatrin and depression. J Neurol Neurosurg Psychiatry 1993; 56: 925–8

    PubMed  CAS  Google Scholar 

  80. Fischer M, Korskjeer G, Pederson E. Psychotic episodes in Zarondan treatment. Epilepsia 1965; 6: 325–34

    PubMed  CAS  Google Scholar 

  81. Sander JW, Hart YM, Trimble MR, et al. Vigabatrin and psychosis. J Neurol Neurosurg Psychiatry 1991; 54: 435–9

    PubMed  CAS  Google Scholar 

  82. Palkanis A, Drake ME, Kuruvilla J, et al. Forced normalization, Acute psychosis after seizure control in seven patients. Arch Neurol 1987; 44: 289–92

    Google Scholar 

  83. McKee RJW, Larkin JG, Brodie MJ. Acute psychosis with carbamazepine and sodium valproate [letter]. Lancet 1989; I: 167

    Google Scholar 

  84. Schmitz B, Thorbecke R, Wolf P. Psychosis in epilepsy: epidemiology and relation to seizure activity. Bollet Epileps 1992; 1: 52–7

    Google Scholar 

  85. Geraldini C, Faedda MT, Sideri G. Anticonvulsant therapy and its possible consequences on peripheral nervous system: a neuronographic study. Epilepsia 1984; 25 (4): 502–5

    PubMed  CAS  Google Scholar 

  86. Taylor JW, Murphy MJ, Rivey MP. Clinical and electrophysiologic evaluation of peripheral nerve function in chronic phenytoin therapy. Epilepsia 1985; 26 (5): 416–20

    PubMed  CAS  Google Scholar 

  87. Ramirez JA, Mendell JR, Warmolts JR, et al. Phenytoin neuropathy: structural changes in the sural nerve. Ann Neurol 1986; 19: 162–7

    PubMed  CAS  Google Scholar 

  88. Shorvon SD, Reynolds EH. Anticonvulsant peripheral neuropathy a clinical and electrophysiological study of patients on single drug treatment with phenytoin, carbamazepine or barbiturates. J Neurol Neurosurg Psychiatry 1982; 45: 620–6

    PubMed  CAS  Google Scholar 

  89. Bono A, Beghi E, Bogliun G, et al. and the Collaborative Group for the Study of Epilepsy. Antiepileptic drugs and peripheral nerve function: a multicenter screening investigation of 141 patients with chronic treatment. Epilepsia 1993; 34 (2): 323–31

    PubMed  CAS  Google Scholar 

  90. Riester O’Connor CR, Schraeder PL, Kurland AH, et al. Evaluation of the mechanisms of antiepileptic drug-related chronic leukopenia. Epilepsia 1994; 35 (1): 149–54

    Google Scholar 

  91. Hughes JR, DeTolve-Donoghue M. Chronic leukopenia associated with carbamazepine and other antiepileptic drugs. J Epilepsy 1995; 8: 282–8

    Google Scholar 

  92. Robins MM. Aplastic anemia secondary to anticonvulsants. Am J Dis Child 1962; 104: 61–74

    Google Scholar 

  93. Gram L, Jensen PK. Carbamazepine: toxicity. In: Levy RH, Dreifuss FE, Mattson RH, et al., editors. Antiepileptic drugs, 3rd ed. New York: Raven Press, 1989: 555–65

    Google Scholar 

  94. Leppik IE. Felbamate. Epilepsia 1995; 36 Suppl. 2: S66–S72

    PubMed  CAS  Google Scholar 

  95. Reynolds EH. Adverse haematological effects of antiepileptic drugs. In: Oxley J, Janz D, Meinardi H, editors. Antiepileptic therapy: chronic toxicity of antiepileptic drugs. New York: Raven press, 1983: 91–103

    Google Scholar 

  96. Mattson RH, Cramer JA, McCutchen B. Barbiturate-related connective tissue disorders. Arch Inter Med 1989; 149: 911–4

    CAS  Google Scholar 

  97. Critchley EMR, Vakil SD, Hayward HW, et al. Dupuytren’s disease in epilepsy: result of prolonged use of anticonvulsants. J Neurol Neurosurg Psychiatry 1976; 39: 498–501

    PubMed  CAS  Google Scholar 

  98. Babeock JR. Incidence of gingival hyperplasia associated with dilantin therapy in a hospital population. J Am Dent Assoc 1965; 71: 1447–50

    Google Scholar 

  99. Behari M. Gingival hyperplasia due to sodium valproate. J Neurol Neurosurg Psychiatry 1991; 54: 279–80

    PubMed  CAS  Google Scholar 

  100. Jeavons PM. Non-dose-related side effects of valproate. Epilepsia 1984; 25 Suppl. 1: S50–S55

    PubMed  Google Scholar 

  101. Christiansen C, Rodbro P, Tjellesen L. Pathophysiology behind anticonvulsant osteomalacia. Acta Neurol Scand 1983; Suppl. 94: 21–8

    Google Scholar 

  102. Offerman G. Chronic antiepileptic drug treatment and disorders of mineral metabolism. In: Oxley J, Janz D, Meinardi H, editors. Antiepileptic therapy: chronic toxicity of antiepileptic drugs. New York: Raven Press, 1983; 175–84

    Google Scholar 

  103. Dam M. Practical aspects of oxcarbazepine treatment. Epilepsia 1994; 35 Suppl. 3: 21–5

    Google Scholar 

  104. Dinessen H, Gram L, Andersen T, et al. Weight gain during treatment with valproate. Acta Neurol Scand 1984; 69: 65–9

    Google Scholar 

  105. Egger J, Brett EM. Effects of sodium valproate in 100 children with special reference to weight. BMJ 1981; 283: 577–81

    PubMed  CAS  Google Scholar 

  106. UK Gabapentin Study Group. Gabapentin in partial epilepsy. Lancet 1990; 335: 1114–7

    Google Scholar 

  107. Dorfmann H, Kahn MF, de Sèze S. Lupus iatrogène induit par les anticonvulsivants. Sem Hop Pans 1972; 48 (46): 2991–3000

    CAS  Google Scholar 

  108. Asconapé JJ, Manning KR, Laneman ME. Systemic lupus erythematosus associated with use of valproate. Epilepsia 1994; 35 (1): 162–3

    PubMed  Google Scholar 

  109. Clemmesen J, Fuglsang-Frederiksen V, Plum CM. Are anticonvulsants ontogenic? Lancet 1974; I: 705–7

    Google Scholar 

  110. Pisani E, Russo M, Trio R, et al. Lamotrigine in patients wilh refractory epilepsy: a follow-up of 33 months [abstract]. Epilepsia 1991; 32 Suppl. 1: 58

    Google Scholar 

  111. Sander JWAS, Trevisol-Bittencourt PC, Hart M, et al. The efficacy and long-term tolerability of lamotrigine in the treatment of severe epilepsy. Epilepsy Res 1990; 7: 226–9

    PubMed  CAS  Google Scholar 

  112. Cocito L, Maffini M, Loeb C. Long-term observations on the clinical use of lamotrigine as add-on therapy in outpatients with refractory epilepsy. Epilepsv Res 1994; 19: 123–7

    CAS  Google Scholar 

  113. US Gabapentin Study Group. The long-term safety and efficacy of gabapentin (Neurontin) as add-on therapy in drug-resistant partial epilepsy. Epilepsy Res 1994; 18 (1): 67–73

    Google Scholar 

  114. Sivenius J, Ylinen A, Murros K, et al. Vigabatrin in drug-resistant partial epilepsy: a 5-year follow-up study. Neurology 1991; 41: 562–5

    PubMed  CAS  Google Scholar 

  115. Leetsma JE, Annegers JF, Brodie MJ, et al. Incidence of sudden unexplained death in the ‘Lamictal’ (lamotrigine) clinical development program [abstract]. Epilepsia 1994; 35 Suppl. 12: 12

    Google Scholar 

  116. Leppik IE, So EL, Hauser WA, et al. Prospective study of death in epilepsy [abstract]. Epilepsia 1995; 36 Suppl. 3: 224

    Google Scholar 

  117. Perucca E. Pharmacokinetic interactions with antiepileptic drugs. Clin Pharmacokinet 1982; 7: 57–84

    PubMed  CAS  Google Scholar 

  118. Brodie MJ. Drug interactions in epilepsy. Epilepsia 1992; 33 Suppl. 1: 13–22

    Google Scholar 

  119. Sackellares JC, Donofrio PD, Wagner JG, et al. Pilot study of zonisamide (1,2-benzisoxazole-3-methanesulfonamide) in patients with refractory partial seizures. Epilepsia 1985; 26 (3): 206–11

    PubMed  CAS  Google Scholar 

  120. Grant SM, Faulds D. Oxcarbazepine: a review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs 1992; 43 (6): 873–88

    PubMed  CAS  Google Scholar 

  121. Yuen YC. Lamotrigine: interactions with other drugs. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs, 4th ed. New York: Raven Press, 1995: 883–7

    Google Scholar 

  122. Klosterskov Jensen P, Saano V, Haring P, et al. Possible interaction between oxcarbazepine and an oral contraceptive. Epilepsia 1992; 33 (6): 1149–52

    PubMed  CAS  Google Scholar 

  123. Holdich T, Whiteman P, Orme M, et al. Effect of lamotrigine on the pharmacology of the combined oral contraceptive pill [abstract]. Epilepsia 1991; 32 Suppl. 1: 96

    Google Scholar 

  124. Lindhout D, Omtzigt JGC. Teratogenic effects of antiepileptic drugs: implications for the management of epilepsy in women of childbearing age. Epilepsia 1994; 35 Suppl. 4: 19–28

    Google Scholar 

  125. Delgado-Escueta AV, Janz D. Consensus guidelines: preconception counselling management, and care of the pregnant woman with epilepsy. Neurology 1992; 42 Suppl. 5: 149–60

    PubMed  CAS  Google Scholar 

  126. Posner J, Holdich T, Crome P. Comparison of lamotrigine pharmacokinetics in young and elderly healthy volunteers. J Pharm Med 1991; 1: 121–8

    Google Scholar 

  127. Comstock TI, Sica DA, Bockbrader HN, et al. Gabapentin pharmacokinetics in subjects with various degrees of renal function [abstract]. J Clin Pharmacol 1990; 30: 862

    Google Scholar 

  128. Haegele KD, Huebert ND, Ebel M, et al. Pharmacokinetics of vigabatrin: implications of creatinine clearance. Clin Pharmacol Ther 1988; 4: 558–65

    Google Scholar 

  129. Kälviäinen R, Äikiä M, Riekkinen PJ. Vigabatrin monotherapy in newly diagnosed patients with epilepsy: two-year comparative follow-up of efficacy, safety, and cognitive effects [abstract]. Epilepsia 1995; 36 Suppl. 3: 103

    Google Scholar 

  130. Tanganelli P, Regesta G. Vigabatrin versus carbamazepine in newly diagnosed epileptic patients: a randomized response conditional cross-over study [abstract]. Epilepsia 1995; 36 Suppl. 3: 104

    Google Scholar 

  131. Piatella L, Zamponi N, Cardinali C. Vigabatrin versus carbamazepine in newly diagnosed partial epilepsy in childhood [abstract]. Epilepsia 1995; 36 Suppl. 3: 105

    Google Scholar 

  132. Steiner TJ, Silveria C, Yuen AWC, et al. Comparison of lamotrigine (Lamictal) and phenytoin monotherapy in newly diagnosed epilepsy [abstract]. Epilepsia 1994; 35 Suppl. 7: 61

    Google Scholar 

  133. Chapman A, Yuen AWC. Lamotrigine (Lamictal) versus carbamazepine as monotherapy in patients with epilepsy [abstract]. Epilepsia 1994; 35 Suppl. 7: 69

    Google Scholar 

  134. Brodie MJ, Richens A, Yuen AWC. on behalf of UK Lamotrigine/Carbamazepine Monotherapy Trial Group. Double-blind comparison of lamotrigine in newly diagnosed epilepsy. Lancet 1995; 345: 476–9

    PubMed  CAS  Google Scholar 

  135. Brodie MJ, Yuen AWC. Lamotrigine tolerability: a view from the monotherapy trials [abstract]. Epilepsia 1995; 36 Suppl. 3: 117

    Google Scholar 

  136. Severi S, Bianchi A, Zolo P, et al. Lamotrigine monotherapy in patients with partial epilepsy [abstract]. Epilepsia 1995; 36 Suppl. 3: 113

    Google Scholar 

  137. Anhut H, Greiner M, Möckel V, et al. Double-blind, fixed dose comparison study of Gabapentin (Neurontin) and carbamazepine monotherapy in patients with newly diagnosed partial epilepsy [abstract]. Epilepsia 1995; 36 Suppl. 4: 67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loiseau, P. Tolerability of Newer and Older Anticonvulsants. CNS Drugs 6, 148–166 (1996). https://doi.org/10.2165/00023210-199606020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199606020-00006

Keywords

Navigation