Skip to main content
Log in

A Vaccine for Multiple Sclerosis

Is it a Feasible Option?

  • Leading Article
  • Vaccines for Multiple Sclerosis
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Summary

Multiple sclerosis is an immune-mediated disease of the CNS, and T cells appear to play a central role in its pathogenesis. In an animal model, T cells specific for myelin basic protein (MBP) induce a syndrome (experimental autoimmune encephalomyelitis) with symptoms similar to multiple sclerosis. This suggests that T cells specific for this protein may be pathogenic in multiple sclerosis.

Anti-T cell vaccines that induce regulation of autoreactive T cells are effective treatments for experimental autoimmune encephalomyelitis. These anti-T cell vaccines include whole T cell vaccination, T cell receptor peptide immunisation, oral administration of myelin antigens and major histocompatibility complex (MHC) class II peptide immunisation.

Preliminary experience in patients who have multiple sclerosis with the first 3 approaches suggests that anti-T cell vaccines represent feasible treatments for this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Ann Rev ImmunoI 1992; 10: 153–87

    Article  CAS  Google Scholar 

  2. Zamvil SS, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Ann Rev Immunol 1990; 8: 579–621

    Article  CAS  Google Scholar 

  3. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell 1994; 76: 241–51

    Article  PubMed  CAS  Google Scholar 

  4. Mossman TR, Coffman RL. THI and TH2 cells. Different patterns of Iymphokine secretion lead to different functional properties. Ann Rev Immunol 1989; 7: 145–73

    Article  Google Scholar 

  5. Hafler DA, Weiner HL. Immunologic mechanisms and therapy in multiple sclerosis. Immunol Rev 1995; 144: 75–107

    Article  PubMed  CAS  Google Scholar 

  6. Olsson T. Cytokine-producing cells in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurology 1995; 45 Suppl.6: S11–5

    Article  PubMed  CAS  Google Scholar 

  7. Romagnani S. Lymphokine production by human T cells in disease states. Ann Rev Immunol 1994; 12: 227–57

    Article  CAS  Google Scholar 

  8. Mokhtarian F, McFarlin DE, Raine CS. Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 1984; 309: 336–58

    Article  Google Scholar 

  9. Whitham RH, Bourdette DN, Hashim GA, et al. Lymphocytes from SJL/J mice immunized with spinal cord respond selectively to a peptide of proteolipid protein and transfer relapsing demyelinating experimental autoimmune encephalomyelitis. J Immunol 1991; 146: 101–7

    PubMed  CAS  Google Scholar 

  10. Chou YK, Bourdette DN, Offner H, et al. Frequency of T cells specific for myelin basic protein and myelin proteolipid protein in blood and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 1992; 38: 105–14

    Article  PubMed  CAS  Google Scholar 

  11. Zhang J, Markovic S, Raus J, et al. Increased frequency ofIL-2 responsive T cells specific for myelin basic protein (MBP) and proteolipid protein (PLP) in peripheral blood and cerebrospinal fluid (CSF) of patients with multiple sclerosis. J Exp Med 1994; 179: 973–84

    Article  PubMed  CAS  Google Scholar 

  12. Allegretta M, Nicklas JA, Sriram S, et al. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 1990; 247: 718–21

    Article  PubMed  CAS  Google Scholar 

  13. Chou YK, Vainiene M, Whitham R, et al. Response of human T lymphocyte lines to myelin basic protein: association of dominant epitopes with HLA class II restriction molecules. J Neurosci Res 1989; 23: 207–16

    Article  PubMed  CAS  Google Scholar 

  14. Oksenberg J, Panzara M, Begovich D, et al. Selection for T cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions. Nature 1993; 362: 68–70

    Article  PubMed  CAS  Google Scholar 

  15. Trotter JL, Hickey WF, van der Veen JC, et al. Peripheral blood mononuclear cells from mUltiple sclerosis patients recognize proteolipid protein and selected peptides. J Neuroimmunol 1991; 33: 55–62

    Article  PubMed  CAS  Google Scholar 

  16. Pelfrey CM, Trotter JL, Tranquill LR, et al. Identification of a novel T cell epitope of human proteolipid protein (residues 40-60) recognized by proliferative and cytolytic CD4+ T cells from multiple sclerosis patients. J Neuroimmunol 1993; 46: 33–42

    Article  PubMed  CAS  Google Scholar 

  17. Ando DG, Clayton J, Kono D, et al. Encephalitogenic T cells in the B 10. PL model of experimental allergic encephalomyelitis (EAE) are of the THllymphokine subtype. Cell Immunol 1989; 124: 132–43

    Article  PubMed  CAS  Google Scholar 

  18. Ben-Nun A, Wekerle H, Cohen I. Vaccination against autoimmune encephalomyelitis with T-Iymphocyte line cells reactive against myelin basic protein. Nature 1981; 292: 60–1

    Article  PubMed  CAS  Google Scholar 

  19. Lider O, Reshef T, Beraud E, et al. Anti-idiotypic network induced by T cell vaccination against experimental autoimmune encephalomyelitis. Science 1988; 239: 181–3

    Article  PubMed  CAS  Google Scholar 

  20. Offner H, Jones J, Celnik B, et al. Lymphocyte vaccination against experimental autoimmune encephalomyelitis: evaluation of vaccination protocols. J Neuroimmunol 1989; 21: 13–22

    Article  PubMed  CAS  Google Scholar 

  21. Zhang J, Medaer R, Stinissen P, Stinissen P. MHC-Restricteddepletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 1993; 261: 1451–4

    Article  PubMed  CAS  Google Scholar 

  22. Medaer R, Stinissen P, Truyen L, et al. Depletion of myelin-basicprotein autoreactive T cells by T-cell vaccination: pilot trial in multiple sclerosis. Lancet 1995; 346: 807–8

    Article  PubMed  CAS  Google Scholar 

  23. Urban JL, Kumar V, Kono DH, et al. Restricted use of T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy. Cell 1988; 54: 577–92

    Article  PubMed  CAS  Google Scholar 

  24. Acha-Orbea H, Mitchell DJ, Timmermann L, et al. Limited heterogeneity ofT cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 1988; 54: 263–73

    Article  PubMed  CAS  Google Scholar 

  25. Burns FR, Li X, Shen N, et al. Both rat and mouse T cell receptors specific for the encephalitogenic determinant of myelin basic protein use similar Va and Vβ chain genes even though the major histocompatibility complex and encephalitogenic determinants being recognized are different. J Exp Med 1989; 169: 27–39

    Article  PubMed  CAS  Google Scholar 

  26. Vandenbark AA, Hashim G, Offner H. Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 1989; 341: 541–4

    Article  PubMed  CAS  Google Scholar 

  27. Offner H, Hashim GA, Vandenbark AA. Tcell receptor peptide therapy triggers autoregulation of experimental encephalomyelitis. Science 1991; 251: 430–2

    Article  PubMed  CAS  Google Scholar 

  28. Whitham RH, Kotzin BL, Buenafe AC, et al. Treatment of relapsing EAE with T cell receptor peptides. J Neurosci Res 1993; 35: 115–28

    Article  PubMed  CAS  Google Scholar 

  29. Hashim GA, Vandenbark AA, Galang AB, et al. Antibodies specific for V~8 receptor peptide suppress experimental autoimmune encephalomyelitis. J Immunol 1990; 144: 4621–7

    PubMed  CAS  Google Scholar 

  30. Vandenbark AA, Chou YK, Bourdette DN, et al. T cell receptor peptide therapy for autoimmune disease. J Autoimmun 1992; 5 Suppl.A: 83–92

    Article  PubMed  Google Scholar 

  31. Howell MD, Winters ST, Olee T, et al. Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides. Science 1989; 246: 668–70

    Article  PubMed  CAS  Google Scholar 

  32. Stevens DB, Karpus WJ, Gould KE, et al. Studies ofV~8 Tcell receptor peptide treatment in experimental autoimmune encephalomyelitis. J Neuroimmunol 1992; 37: 123–9

    Article  PubMed  CAS  Google Scholar 

  33. Bourdette DN, Whitham RH, Chou YK, et al. Immunity to TCR peptides in multiple sclerosis: I. Successful immunization of patients with synthetic Vβ5.2 and Vβ6.1 CDR2 peptides. J Immunol 1994; 152: 2510–9

    PubMed  CAS  Google Scholar 

  34. Chou YK, Morrison WJ, Weinberg AD, et al. Immunity to TCR peptides in mUltiple sclerosis: II. T cell recognition of Vβ5.2 and Vβ6.1 CDR2 peptides. J Immunol 1994; 152: 2520–9

    PubMed  CAS  Google Scholar 

  35. Vandenbark AA, Chou YK, Weinberg A, et al. Characterization of TCR peptide-specific T cells from MS patients [abstract]. J Neuroimmunol 1994; 54: 202

    Article  Google Scholar 

  36. Kotzin BL, Karuturi S, Chou YK, et al. Preferential T cell receptor β-chain variable gene use in myelin basic protein-reactive T cell clones from patients with multiple sclerosis. Proc Natl Acad Sci USA 1991; 88: 9161–5

    Article  PubMed  CAS  Google Scholar 

  37. Wucherpfennig KW, Ota K, Endo N, et al. Shared human T cell receptor Vβ usage to immunodominant regions of myelin basic protein. Science 1990; 248: 1016–9

    Article  PubMed  CAS  Google Scholar 

  38. Weiner HL, Friedman A, Miller A, et al. Oral tolerance: immunologic mechanisms and human organ-specific autoimmune diseases by oral administration of autoantigens. Ann Rev Immunol 1994; 12: 809–37

    Article  CAS  Google Scholar 

  39. Lider O, Santos LM, Lee CSY, et al. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein: II. Suppression of disease and in vitro immune responses is mediated by antigen-specific CD8+ T lymphocytes. J Immunol 1989; 142: 748–52

    PubMed  CAS  Google Scholar 

  40. Miller A, Lider O, Roberts AB, et al. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming factor β after antigen-specific triggering. Proc Natl Acad Sci USA 1992; 89: 421–5

    Article  PubMed  CAS  Google Scholar 

  41. Khoury SJ, Hancock WW, Weiner HL. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 1992; 176: 1355–64

    Article  PubMed  CAS  Google Scholar 

  42. Weiner HL, Mackin GA, Matsui A, et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 1993; 259: 1321–4

    Article  PubMed  CAS  Google Scholar 

  43. Whitacre CC, Gienapp IE, Orosz CG, et al. Oral tolerance in experimental autoimmune encephalomyelitis: III. Evidence for clonal anergy. J Immunol 1991; 147: 2155–63

    PubMed  CAS  Google Scholar 

  44. Steinman L, Rosenbaum JT, Sriram S, et al. In vivo effects of antibodies to immune response gene products: prevention of experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 1981; 78: 7111–4

    Article  PubMed  CAS  Google Scholar 

  45. Sriram S, Steinman LS. Anti-I-A antibody suppresses active encephalomyelitis: treatment model for disease linked to Ir genes. J Exp Med 1983; 158: 1362–7

    Article  PubMed  CAS  Google Scholar 

  46. Topham DJ, Nag B, Arimilli S, et al. A synthetic peptide from the hypervariable region of major histocompatibility complex class II β chain as a vaccine for treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 1994; 91: 8005–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourdette, D.N. A Vaccine for Multiple Sclerosis. CNS Drugs 5, 1–7 (1996). https://doi.org/10.2165/00023210-199605010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199605010-00001

Navigation