Skip to main content
Log in

Newer and Older Antidepressants

A Comparative Review of Drug Interactions

  • Review Articles
  • Comparative Review
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

A large number of drug interactions involving antidepressants have been described. Some of these are common to specific classes of antidepressant drugs, while others are related to peculiar properties of individual compounds and vary greatly from one compound to another within the same drug class.

In general, the broader the range of receptors and enzymes affected by a given drug, the greater the potential for pharmacodynamic interactions. Older generation monoamine oxidase inhibitors (MAOIs) are particularly likely to cause interactions. These can occur with a wide range of compounds including tyra-mine-containing foods, alcohol (ethanol), opioids, sympathomimetic agents and other antidepressant drugs [e.g. tricyclic antidepressants (TCAs) and selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs)]. The more recently developed reversible and selective inhibitors of monoamine oxidase-A, such as moclobemide, appear to carry a much lower risk of causing serious drug interactions.

TCAs affect several neurotransmitter systems, but to differing degrees. This may result in many clinically significant pharmacodynamic interactions, including the reversal of the hypotensive action of some centrally active antihypertensive agents and the potentiation of the effects of anticholinergic agents and CNS depressants. Important pharmacokinetic interactions with TCAs include induction of their metabolism by anticonvulsants and impairment of their elimination by metabolic inhibitors such as fluoxetine, fluvoxamine, antipsychotics and quinidine. Appropriate dosage adjustments may be required to minimise the potentially adverse effects resulting from these interactions.

Some second generation antidepressants do not differ greatly from TCAs in pharmacological profile and so may be involved in similar interactions. However, others have a more selective mechanism of action and a lower potential for drug interactions. This is especially true for the SSRIs, which cause fewer pharmacodynamic interactions than MAOIs and TCAs. Nevertheless, SSRIs may interact adversely with drugs that also affect serotonergic transmission (including lithium) and may inhibit selectively the hepatic enzymes involved in the metabolism of concurrently prescribed drugs such as TCAs, antipsychotics, carbamazepine, oral anticoagulants and β-adrenoceptor blocking agents. Fluoxetine and paroxetine, in particular, appear to be powerful inhibitors of CYP2D6, whereas fluvoxamine is a more potent inhibitor of CYP1A2.

Avoidance of unnecessary polytherapy, knowledge of the interaction potential of individual agents and careful individualisation of dosage based on close evaluation of clinical response are essential to minimise potentially adverse drug interactions among patients receiving antidepressant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackwell B. Newer antidepressant drugs. In: Meltzer HY, editor. Psychopharmacology: the third generation of progress. New York: Raven Press, 1987: 1041–9

    Google Scholar 

  2. Feighner JP, Boyer WF. Selective serotonin re-uptake inhibitors. Chichester: John Wiley & Sons, 1991

    Google Scholar 

  3. Rudorfer MV, Potter WZ. Antidepressants: a comparative review of the clinical pharmacology and therapeutic use of the ‘newer’ versus the ‘older’ drugs. Drugs 1989; 37: 713–38

    CAS  PubMed  Google Scholar 

  4. Blackwell B. Antidepressant drugs. In: Dukes MNG, editor. Meyler’s side effects of drugs. 10th ed. Amsterdam: Elsevier, 1984: 24–61

    Google Scholar 

  5. Baldessarini RJ. Chemotherapy in psychiatry: principles and practice. 2nd ed. Cambridge: Harvard University Press, 1985

    Google Scholar 

  6. Hansten PD. Drug interactions. 5th ed. Philadelphia: Lea & Febiger, 1985

    Google Scholar 

  7. Ciraulo DA, Creelman W, Shader RI. Antidepressant drug-drug interactions. In: Ciraulo DA, Shader RI, Greenblatt DJ, et al., editors. Drug interactions in psychiatry. Baltimore: Williams &Wilkins, 1989: 21–86

    Google Scholar 

  8. Ciraulo DA, Shader RI. Fluoxetine drug-drug-interactions. I. Antidepressants and antipsychotics. J Clin Psychopharmacol 1990; 10: 48–50

    CAS  PubMed  Google Scholar 

  9. Blackwell B. Hypertensive crisis due to monoamine oxidase inhibitors. Lancet 1963; 2: 849–51

    CAS  PubMed  Google Scholar 

  10. Blackwell B, Marley E. Interactions of cheese and its constituents with monoamine oxidase inhibitors. Br J Pharmacol Chemother 1966; 26: 120–41

    CAS  PubMed  Google Scholar 

  11. Blackwell B, Marley E, Price J, et al. Hypertensive interactions between monoamine oxidase inhibitors and foodstuffs. Br J Psychiatry 1967; 113: 349–65

    CAS  PubMed  Google Scholar 

  12. Brown C, Taniguchi G, Yip K. The monoamine oxidase inhibitor-tyramine interaction. J Clin Pharmacol 1989; 29: 529–32

    CAS  PubMed  Google Scholar 

  13. Pare CMB. The present status of monoamine oxidase inhibitors. Br J Psychiatry 1985; 146: 576–84

    CAS  PubMed  Google Scholar 

  14. Linnoila M, Mattila MJ, Kitchell BS. Drug interactions with alcohol. Drugs 1979; 18: 299–311

    CAS  PubMed  Google Scholar 

  15. Seppala T, Linnoila M, Elonen E, et al. Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving. Clin Pharmacol Ther 1975; 17: 515–22

    CAS  PubMed  Google Scholar 

  16. Seppala T. Psychomotor skills during acute and two-week treatment with mianserin and amitriptyline, and their combined effects with alcohol. Ann Clin Res 1977; 9: 66–72

    CAS  PubMed  Google Scholar 

  17. Tartara A, Formigli L, Crema F, et al. Alcohol interactions with typical and atypical antidepressants. Neurobehav Toxicol Pharmacol 1985; 7: 139–41

    CAS  Google Scholar 

  18. Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers. Clin Pharmacol Ther 1988; 43: 509–18

    CAS  PubMed  Google Scholar 

  19. Dorian P, Sellers EM, Reed KL, et al. Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction. Eur J Clin Pharmacol 1983; 25: 325–31

    CAS  PubMed  Google Scholar 

  20. John VA, Luscombe DK, Kemp H. Effects of age, cigarette smoking and the oral contraceptive on the pharmacokinetics of clomipramine and its desmethyl metabolite during chronic dosing. J Int Med Res 1980; 8: 88–95

    PubMed  Google Scholar 

  21. Linnoila M, George L, Guthrie S, et al. Effect of alcohol consumption and cigarette smoking on antidepressant levels of depressed patients. Am J Psychiatry 1981; 138: 841–2

    CAS  PubMed  Google Scholar 

  22. Ziegler VE, Biggs JT. Tricyclic plasma levels — effect of age, race, sex and smoking. JAMA 1977; 238: 2167–9

    CAS  PubMed  Google Scholar 

  23. Perry PJ, Browne JL, Prince RA, et al. Effects of smoking on nortriptyline plasma concentrations in depressed patients. Ther Drug Monit 1986; 8: 279–84

    CAS  PubMed  Google Scholar 

  24. Burrows GD, Davis B. Antidepressants and barbiturates [letter]. BMJ 1971; 4: 113

    CAS  PubMed  Google Scholar 

  25. Ballinger BR, Presly A, Reid AH, et al. The effect of hypnotics on imipramine treatment. Psychopharmacologia 1974; 39: 267–74

    CAS  PubMed  Google Scholar 

  26. Braithwaite RA, Flanagan RA, Richens A. Steady-state plasma nortriptyline concentrations in epileptic patients. Br J Clin Pharmacol 1975; 2: 469–71

    CAS  PubMed  Google Scholar 

  27. Hewick DS, Sparks RG, Stevenson IH, et al. Induction of imipramine metabolism following barbiturate administration [abstract]. Br J Clin Pharmacol 1977; 4: 339

    Google Scholar 

  28. Leinonen E, Lillsunde P, Laukkanen V, et al. Effects of carbamazepine on serum antidepressant concentrations in psychiatric patients. J Clin Psychopharmacol 1991; 11: 313–8

    CAS  PubMed  Google Scholar 

  29. Spina E, Avenoso A, Campo GM, et al. Inducing effect of carbamazepine on CYP2D6-mediated 2-hydroxylation of desipramine. Psychopharmacology. In press

  30. Nawishy S, Hathaway N, Turner P. Interaction of anticonvulsant drugs with mianserin and nomifensine. Lancet 1981; 2: 870–1

    Google Scholar 

  31. Greb WH, Buscher G, Dierdorf H-D. The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine. Acta Psychiatr Scand 1989; 80 Suppl. 350: 95–8

    Google Scholar 

  32. Mikkelsen M, Andersen BB, Dam M, et al. Paroxetine and antiepileptic drugs: no interaction [abstract]. Psychopharmacology 1991; 103: B13

    Google Scholar 

  33. Pearson HJ. Interaction of fluoxetine with carbamazepine [letter]. J Clin Psychiatry 1990; 51: 126

    CAS  PubMed  Google Scholar 

  34. Fritze J, Unsorg B, Lanczik M. Interaction between carbamazepine and fluvoxamine. Acta Psychiatr Scand 1991; 84: 583–4

    CAS  PubMed  Google Scholar 

  35. Bonnet P, Vandel S, Nezelof S, et al. Carbamazepine, fluvoxamine. Is there a pharmacokinetic interaction? [letter]. Therapie 1992; 47: 165

    CAS  PubMed  Google Scholar 

  36. Martinelli V, Bocchetta A, Palmas AM, et al. An interaction between carbamazepine and fluvoxamine. Br J Clin Pharmacol 1993; 36: 615–6

    CAS  PubMed  Google Scholar 

  37. Pisani F, Fazio A, Oteri G, et al. Carbamazepine-viloxazine interaction in patients with epilepsy. J Neurol Neurosurg Psychiatry 1986; 49: 1142–5

    CAS  PubMed  Google Scholar 

  38. Pisani F, Narbone MC, Fazio A, et al. Increased serum carbamazepine levels by viloxazine in epileptic patients. Epilepsia 1984; 25: 482–5

    CAS  PubMed  Google Scholar 

  39. Perucca E, Richens A. Interaction between phenytoin and imipramine. Br J Clin Pharmacol 1977; 4: 485–6

    CAS  PubMed  Google Scholar 

  40. Pisani F, Fazio A, Artesi C, et al. Elevation of plasma phenytoin by viloxazine in epileptic patients: a clinically significant drug interaction. J Neurol Neurosurg Psychiatry 1992; 55: 126–7

    CAS  PubMed  Google Scholar 

  41. Lemberger L, Rowe H, Bosomworth JC, et al. The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam. Clin Pharmacol Ther 1988; 43: 412–9

    CAS  PubMed  Google Scholar 

  42. Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52: 479–86

    CAS  PubMed  Google Scholar 

  43. Fleishaker JC, Hulst LK. Effect of fluvoxamine on the pharmacokinetics and pharmacodynamics of alprazolam in healthy volunteers [abstract]. Pharm Res 1992; 9 Suppl.: S292

    Google Scholar 

  44. Van Harten J, Holland RL, Wesnes K. Influence of multipledose administration of fluvoxamine on the pharmacokinetics of benzodiazepines bromazepam and lorazepam: a randomised, cross-over study [abstract]. Eur Neuropsychopharmacol 1992; 2: 381

    Google Scholar 

  45. Warrington SJ. Clinical implications of the pharmacology of sertraline. Int Clin Psychopharmacol 1991; 6 Suppl. 2: 11–21

    PubMed  Google Scholar 

  46. Perucca E, Gatti G, Cipolla G, et al. Inhibition of diazepam metabolism by fluvoxamine: a pharmacokinetic study in normal volunteers. Clin Pharmacol Ther. In press

  47. Gram LF, Fredricsson-Overo K. Drug interaction: inhibitory effect of neuroleptics on metabolism of tricyclic antidepressants in man. BMJ 1972; 1: 463–5

    CAS  PubMed  Google Scholar 

  48. Gram LF. Effect of perphenazine on imipramine metabolism in man. Psychopharmacol Commun 1975; 1: 165–75

    CAS  PubMed  Google Scholar 

  49. Nelson JC, Jatlow PI. Neuroleptic effect on desipramine steadystate plasma concentrations. Am J Psychiatry 1980; 137: 1232–4

    CAS  PubMed  Google Scholar 

  50. Loga S, Curry S, Lader M. Interaction of chlorpromazine and nortriptyline in patients with schizophrenia. Clin Pharmacokinet 1981; 6: 454–62

    CAS  PubMed  Google Scholar 

  51. Linnoila M, George L, Guthrie S. Interaction between antidepressants and perphenazine in psychiatric patients. Am J Psychiatry 1982; 139: 1329–31

    CAS  PubMed  Google Scholar 

  52. Hirschowitz J, Bennett JA, Zemlan FP, et al. Thioridazine effect on desipramine plasma levels. J Clin Psychopharmacol 1983; 3: 376–8

    CAS  PubMed  Google Scholar 

  53. Heiman EM. Cardiac toxicity with thioridazine-tricyclic antidepressant combination [letter]. J Nerv Ment Dis 1977; 135: 139

    Google Scholar 

  54. Hartter S, Hiemke C. Determination of fluvoxamine in human plasma by HPLC-analysis including direct injection of plasma and column switching [abstract]. Pharmacopsychiatry 1992; 25: 103

    Google Scholar 

  55. Oyehaugh E, Eide G, Salvesen B. Effect of phenothiazines on citalopram steady-state kinetics in psychiatric patients. Nor Pharma Acta 1984; 46: 37–46

    Google Scholar 

  56. Tate JL. Extrapyramidal symptoms in a patient taking haloperidol and fluoxetine. Am J Psychiatry 1989; 146: 399–400

    CAS  PubMed  Google Scholar 

  57. Bouchard RH, Pourcher E, Vincent P. Fluoxetine and extrapyramidal side effects. Am J Psychiatry 1989; 146: 1352–3

    Google Scholar 

  58. Brod TM. Fluoxetine and extrapyramidal side effects [letter]. Am J Psychiatry 1989; 146: 1353

    Google Scholar 

  59. Lock JD, Gwirtsman HE, Targ EF. Possible adverse drug interactions between fluoxetine and other psychotropics. J Clin Psychiatry 1990; 10: 383–4

    CAS  Google Scholar 

  60. Goff DC, Baldessarini RJ. Drug interactions with antipsychotic agents. J Clin Psychopharmacol 1993; 13: 57–67

    CAS  PubMed  Google Scholar 

  61. Centorrino F, Baldessarini RJ, Kondo J, et al. Serum concentrations of clozapine and its metabolites: effects of cotreatment with valproate or fluoxetine. Am J Psychiatry 1994; 151: 123–5

    CAS  PubMed  Google Scholar 

  62. Stack CG, Rogers P, Linter SPK. Monoamine oxidase inhibitors and anaesthesia. A review. Br J Anaesth 1988; 60: 222–7

    CAS  PubMed  Google Scholar 

  63. Hansen TE, Dieter K, Keepers GA. Interaction of fluoxetine with pentazocine. Am J Psychiatry 1990; 147: 949–50

    CAS  PubMed  Google Scholar 

  64. Bodkin JA, Teicher MH. Fluoxetine may antagonize the anxiolytic action of buspirone [letter]. J Clin Psychopharmacol 1989; 9: 150

    CAS  PubMed  Google Scholar 

  65. Sjoqvist F. Toxic interactions between monoamine oxidase inhibitors (MAOI) and other drugs. In: Monoamine oxidase inhibitors. Proceedings of the Third International Pharmacological Congress; 1966 July 24–30: San Paulo. Oxford: Pergamon Press, 1967: 61–74

    Google Scholar 

  66. Wharton RN, Perel JM, Dayton PG, et al. A potential use for interaction of methylphenidate with tricyclic antidepressants. Am J Psychiatry 1971; 127: 1619–25

    CAS  PubMed  Google Scholar 

  67. Messiha FS, Morgan JP. Imipramine-mediated effects on levodopa metabolism in man. Biochem Pharmacol 1974; 23: 1503–7

    CAS  PubMed  Google Scholar 

  68. Goetz CG, Tanner CM, Klawans HL. Bupropion in Parkinson’s disease. Neurology 1984; 34: 1092–4

    CAS  PubMed  Google Scholar 

  69. Hadley A, Cason MP. Mania resulting from lithium-fluoxetine combination. Am J Psychiatry 1989; 146: 1637–8

    CAS  PubMed  Google Scholar 

  70. Noveske FG, Hahn KR, Flynn RJ. Possible toxicity of combined fluoxetine and lithium [letter]. Am J Psychiatry 1989; 146: 1515

    CAS  PubMed  Google Scholar 

  71. Salama AA, Shafely M. A case of severe lithium toxicity induced by combined fluoxetine and lithium carbonate [letter]. Am J Psychiatry 1989; 145: 1478

    Google Scholar 

  72. Evans M, Marwick P. Fluvoxamine and lithium: an unusual interaction [letter]. Br J Psychiatry 1990; 156: 286

    CAS  PubMed  Google Scholar 

  73. Levinson ML, Lipsy RJ, Fuller DK. Adverse effects and drug interactions associated with fluoxetine therapy. DICP: Ann Pharmacother 1991; 25: 657–61

    CAS  Google Scholar 

  74. Hawley CJ, Roberts AG, Baldwin DS. Tolerability of combined treatment with lithium and fluoxetine: 14 cases treated under open conditions. Int Clin Psychopharmacol 1994; 9: 31–3

    CAS  PubMed  Google Scholar 

  75. Dufresne RL, Weber SS, Becker RE. Bupropion hydrochloride. Drug Int Clin Pharm 1984; 18: 957–64

    CAS  Google Scholar 

  76. Guy Edwards J. Selective serotonin reuptake inhibitors. BMJ 1992; 304: 1655–8

    Google Scholar 

  77. Brotman AW, Rosenbaum JF. MAOIs plus tryptophan: a cause of the serotonin syndrome?. Biol Ther Psychiatry 1984; 7: 45–6

    Google Scholar 

  78. Steiner W, Fontaine R. Toxic reaction following the combined administration of fluoxetine and L-tryptophan: five case reports. Biol Psychiatry 1986; 21: 1067–71

    CAS  PubMed  Google Scholar 

  79. Svedmyr N. The influence of a tricyclic antidepressant agent (protriptyline) on some of the circulatory effects of noradrenaline and adrenaline in man. Life Sci 1968; 7: 77–84

    CAS  PubMed  Google Scholar 

  80. Boakes AJ, Lawrence DR, Teoh PC, et al. Interaction between sympathomimetic amines and antidepressant agents in man. BMJ 1973; 1: 311–5

    CAS  PubMed  Google Scholar 

  81. Boakes AJ, Lawrence DR, Level KW, et al. Adverse reactions to local anaesthetic/vasoconstrictor preparations. Br Dent J 1972; 133: 137–40

    CAS  PubMed  Google Scholar 

  82. Elis J, Lawrence DR, Mattie H, et al. Modification by monoamine oxidase inhibitors of the effect of some sympathomimetics on blood pressure. BMJ 1967; 2: 75–8

    CAS  PubMed  Google Scholar 

  83. Mitchell JR, Cavanaugh JH, Arias L, et al. Guanethidine and related agents: III. Antagonism by drugs which inhibit the norepinephrine pump in man. J Clin Invest 1970; 49: 1596–604

    CAS  PubMed  Google Scholar 

  84. Leishmann AWD, Matthews HL, Smith AJ. Antagonism of guanethidine by imipramine [letter]. Lancet 1963; 1: 112

    Google Scholar 

  85. Mitchell JR, Arias L, Oates JR. Antagonism of hypotensive action of guanethidine sulfate by desipramine hydrochloride. JAMA 1967; 202: 973–5

    CAS  PubMed  Google Scholar 

  86. Skinner C, Coule DC, Johnston AW. Antagonism of the hypotensive action of bethanidine and debrisoquine by tricyclic antidepressants. Lancet 1969; 2: 564–6

    CAS  PubMed  Google Scholar 

  87. Briant RH, George CF. The assessment of potential drug interactions with a new tricyclic antidepressant drug. Br J Clin Pharmacol 1974; 1: 113–8

    CAS  PubMed  Google Scholar 

  88. Van Zweiten PA. Inhibition of the central hypotensive effect of clonidine by trazodone, a novel antidepressant. Pharmacology 1977; 15: 331–6

    Google Scholar 

  89. Briant RH, Reid JL, Dollery CT. Interaction between clonidine and desipramine in man. BMJ 1973; 1: 522–3

    CAS  PubMed  Google Scholar 

  90. Van Spanning HW, Van Zwieten PA. The interference of tricyclic antidepressants with the central hypotensive effect of clonidine. Eur J Pharmacol 1973; 24: 402–4

    PubMed  Google Scholar 

  91. White AG. Methyldopa and amitriptyline [letter]. Lancet 1965; 1: 441

    Google Scholar 

  92. Van Spanning HW, Van Zwieten PA. The interaction between alpha methyldopa and tricyclic antidepressants. Int J Clin Pharmacol 1975; 11: 65–7

    Google Scholar 

  93. Vesell ES, Passananti T, Greene FE. Impairment of drug metabolism in man by allopurinol and nortriptyline. N Engl J Med 1976; 283: 1484–8

    Google Scholar 

  94. Benfield P, Ward A. Fluvoxamine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1986; 32: 313–34

    CAS  PubMed  Google Scholar 

  95. Van Harten J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin Pharmacokinet 1993; 24: 203–20

    PubMed  Google Scholar 

  96. Wilner KD, Lazar JD, Apseloff G, et al. The effects of sertraline on the pharmacodynamics of warfarin in healthy volunteers [abstract]. Biol Psychiatry 1991; 29: 354S

    Google Scholar 

  97. Ayesh R, Dawling S, Widdop B, et al. Influence of quinidine on the pharmacokinetics of nortriptyline and desipramine. Br J Clin Pharmacol 1988; 25: 140–1

    Google Scholar 

  98. Steiner E, Dumont E, Spina E, et al. Inhibition of desipramine 2-hydroxylation by quinidine and quinine in rapid and slow hydroxylators. Clin Pharmacol Ther 1988; 44: 431–5

    CAS  PubMed  Google Scholar 

  99. Bannister SJ, Houser VP, Hulse JD, et al. Evaluation of the potential for interactions of paroxetine with diazepam, cimetidine, warfarin, and digoxin. Acta Psychiatr Scand 1989; 80 Suppl. 350: 102–6

    Google Scholar 

  100. Warnes H, Lehman HE, Ban TA. Adynamic ileus during psychoactive medication: a report of three fatal and five severe cases. Can Med Assoc J 1967; 96: 1112–3

    CAS  PubMed  Google Scholar 

  101. Alvan G. Effect of activated charcoal on plasma levels of nortriptyline after single doses in man. Eur J Clin Pharmacol 1973; 5: 236–8

    CAS  Google Scholar 

  102. Greb WH, Buscher G, Dierdorf H-D, et al. Ability of charcoal to prevent absorption of paroxetine. Acta Psychiatr Scand 1989; 80 Suppl. 350: 156–7

    Google Scholar 

  103. Spina E, Avenoso A, Campo GM, et al. Decreased plasma concentrations of imipramine and desipramine following cholestyramine intake in depressed patients. Ther Drug Monit 1994; 16: 432–4

    CAS  PubMed  Google Scholar 

  104. Miller DD, Macklin M. Cimetidine-imipramine interaction: a case report. Am J Psychiatry 1983; 140: 351–2

    CAS  PubMed  Google Scholar 

  105. Amsterdam JD, Brunswick DJ, Potter L, et al. Cimetidineinduced alterations in desipramine plasma concentrations. Psychopharmacology (Berl) 1984; 83: 373–5

    CAS  Google Scholar 

  106. Abernethy DR, Greenblatt DJ, Shader RI. Imipramine-cimetidine interaction: impairment of clearance and enhanced absolute bioavailability. J Pharmacol Exp Ther 1984; 229: 702–5

    CAS  PubMed  Google Scholar 

  107. Schoerlin MP, Mayerson M, Hoevels B, et al. Cimetidine alters the disposition kinetics of the monoamine oxidase inhibitor moclobemide. Clin Pharmacol Ther 1991; 49: 32–8

    CAS  PubMed  Google Scholar 

  108. Bertschy G, Baumann P, Eap CB, et al. Probable metabolic interaction between methadone and fluvoxamine in addict patients. Ther Drug Monit 1994; 16: 42–5

    CAS  PubMed  Google Scholar 

  109. Diot P, Jonville AP, Gerard F, et al. Possible interaction entre theophylline et fluvoxamine. Therapie 1991; 46: 169–71

    Google Scholar 

  110. Sperber AD. Toxic interaction between fluvoxamine and sustained release theophylline in an 11-year old boy. Drug Saf 1991; 6: 460–2

    CAS  PubMed  Google Scholar 

  111. Thomson AH, McGovern EM, Bennie P, et al. Interaction between fluvoxamine and theophylline [letter]. Pharm J 1992; 249: 137

    Google Scholar 

  112. Dahl ML, Bertilsson L. Genetically variable metabolism of antidepressants and neuroleptic drugs. Pharmacogenetics 1993; 3: 61–70

    CAS  PubMed  Google Scholar 

  113. Spina E, Caputi AP. Pharmacogenetic aspects in the metabolism of psychotropic drugs: pharmacokinetic and clinical implications. Pharmacol Res 1994; 29: 121–37

    CAS  PubMed  Google Scholar 

  114. Brosen K, Gram L. Clinical significance of the sparteine/debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 1989; 36: 537–47

    CAS  PubMed  Google Scholar 

  115. Eichelbaum M, Gross AS. The genetic polymorphism of debrisoquine/sparteine metabolism. Clinical aspects. Pharmacol Ther 1990; 46: 377–94

    CAS  PubMed  Google Scholar 

  116. Altamura AC, Moro AR, Percudani M. Clinical pharmacokinetics of fluoxetine. Clin Pharmacokinet 1994; 26: 201–14

    CAS  PubMed  Google Scholar 

  117. Crewe HK, Lennard MS, Tucker GT, et al. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 1992; 34: 262–5

    CAS  PubMed  Google Scholar 

  118. Otton SV, Dafang W, Joffe RT, et al. Inhibition by fluoxetine of cytochrome P4502D6 activity. Clin Pharmacol Ther 1993; 53: 401–9

    CAS  PubMed  Google Scholar 

  119. Brosen K, Skielbo E, Rasmussen BB, et al. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993; 45: 1211–4

    CAS  PubMed  Google Scholar 

  120. Perucca E, Spina E, Gatti G. Clinical pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1994; 27: 175–90

    CAS  PubMed  Google Scholar 

  121. Pisani F, Fazio A, Spina E, et al. Pharmacokinetics of the antidepressant drug viloxazine in normal subjects and in epileptic patients receiving chronic anticonvulsant treatment. Psychopharmacology 1986; 90: 295–8

    CAS  PubMed  Google Scholar 

  122. Brosen K, Kragh-Sorensen P. Concomitant intake of nortriptyline and carbamazepine. Ther Drug Monit 1993; 15: 258–60

    CAS  PubMed  Google Scholar 

  123. Spina E, Koike Y. Differential effects of cimetidine and ranitidine on imipramine demethylation and desmethylimipramine hydroxylation by human liver microsomes. Eur J Clin Pharmacol 1986; 30: 239–42

    CAS  PubMed  Google Scholar 

  124. Grimsley SR, Jann MW, Carter G, et al. Increased carbamazepine plasma concentrations after fluoxetine coadministration. Clin Pharmacol Ther 1991; 50: 10–5

    CAS  PubMed  Google Scholar 

  125. Spina E, Avenoso A, Pollicino AM, et al. Carbamazepine coadministration with fluoxetine or fluvoxamine. Ther Drug Monit 1993; 15: 247–50

    CAS  PubMed  Google Scholar 

  126. Pisani F, Fazio A, Oteri G, et al. Effect of the antidepressant drug viloxazine on the plasma levels of oxcarbazepine and its two major metabolites in patients with epilepsy. J Neurol Neurosurg Psychiatry. In press

  127. Silverman G, Braithwaite R. Benzodiazepines and tricyclic antidepressant plasma levels. BMJ 1973; 2: 18–20

    Google Scholar 

  128. Otani K, Nordin C, Bertilsson L. No interaction of diazepam on amitriptyline disposition in depressed patients. Ther Drug Monit 1987; 9: 120–2

    CAS  PubMed  Google Scholar 

  129. Rowe H, Carmichael R, Lemberger L. The effect of fluoxetine on warfarin metabolism in the rat and in man. Life Sci 1978; 23: 807–12

    CAS  PubMed  Google Scholar 

  130. Michot F, Glous L, Jack DB, et al. The anticoagulant action of sintrom and the blood concentration of Ludiomil in simultaneous administration. Med Klin 1975; 70: 626–8

    CAS  PubMed  Google Scholar 

  131. Kopera H, Schenk H, Stulemeijer S. Phenprocoumon requirement, whole blood coagulation time, bleeding time and plasma gamma-GT in patients receiving the tetracyclic antidepressant mianserin. Eur J Clin Pharmacol 1978; 13: 351–6

    CAS  PubMed  Google Scholar 

  132. Walley T, Pirmohamed M, Proudlove C, et al. Interaction of metoprolol and fluoxetine. Lancet 1993; 341: 967–8

    CAS  PubMed  Google Scholar 

  133. Drake WM, Gordon GD. Heart block in a patient on propranolol and fluoxetine. Lancet 1994; 343: 425–6

    CAS  PubMed  Google Scholar 

  134. Fitton A, Faulds D, Goa KL. Moclobemide. A review of its pharmacological properties and therapeutic use in depressive illness. Drugs 1992; 43: 561–96

    CAS  PubMed  Google Scholar 

  135. Berlin I, Zimmer R, Cournot A, et al. Determination and comparison of the pressor effect of tyramine during long-term moclobemide and tranylcypromine treatment in healthy volunteers. Clin Pharmacol Ther 1989; 46: 344–51

    CAS  PubMed  Google Scholar 

  136. Brownlee G, Williams GW. Potentiation of amphetamine and pethidine by monoamine oxidase inhibitors [letter]. Lancet 1963; 1: 669

    CAS  PubMed  Google Scholar 

  137. Ghose K. Studies on the interaction between mianserin and noradrenaline in patients suffering from depressive illness. Br J Clin Pharmacol 1977; 4: 712–4

    Google Scholar 

  138. Lemberger L, Rowe H, Bergstrom RF, et al. Effect of fluoxetine on psychomotor performance, psychologic response, and kinetics of ethanol. Clin Pharmacol Ther 1985; 37: 658–64

    CAS  PubMed  Google Scholar 

  139. Van Harten J, Stevens LA, Raghoebar M, et al. Fluvoxamine does not interact with alcohol or potentiate alcohol-related impairment of cognitive function. Clin Pharmacol Ther 1992; 52: 427–35

    PubMed  Google Scholar 

  140. Hindmarch I, Harrison C. The effects of paroxetine and other antidepressants in combination with alcohol in psychomotor activity related to car driving. Human Psychopharmacol 1988; 3: 13–20

    Google Scholar 

  141. Wilson WH, Petrie WM, Ban TA. Effects of viloxazine with and without alcohol on performance tests related to driving in normal volunteers. Drug Dev Res 1981; 1: 223–8

    CAS  Google Scholar 

  142. Peck AW. Anxiety control without sedation in depressed patients [letter]. Clin Courier 1983; 1: 6

    Google Scholar 

  143. Evans-Prosser CDG. The use of pethidine and morphine in the presence of monoamine oxidase inhibitor. Br J Anaesthesiol 1968; 40: 279–82

    CAS  Google Scholar 

  144. Hill S, Yau K, Whitwam J. MAOIs to RIMAs in anaesthesia —a literature review. Psychopharmacology 1992; 106 Suppl.: S43–5

    CAS  PubMed  Google Scholar 

  145. De Montigny C, Cournoyer G, Morissette R, et al. Lithium carbonate addition in tricyclic antidepressant-resistant unipolar depression. Arch Gen Psychiatry 1983; 40: 1327–34

    PubMed  Google Scholar 

  146. Pope HG, McElroy SL, Nixon RA. Possible synergism between fluoxetine and lithium in refractory depression. Am J Psychiatry 1988; 145: 1292–4

    PubMed  Google Scholar 

  147. De Montigny C. Lithium addition in treatment-resistant depression. Int Clin Psychopharmacol 1994; 9 Suppl. 2: 31–5

    PubMed  Google Scholar 

  148. Hendrickx B, Floris M. A controlled pilot study of the combination of fluvoxamine and lithium. Curr Ther Res 1991; 49: 106–10

    Google Scholar 

  149. Burgess CD, Turner P, Wadsworth J. Cardiovascular responses to mianserin: a comparison with tricyclic antidepressants. Br J Clin Pharmacol 1978; 5: 21S–8S

    PubMed  Google Scholar 

  150. Gundert-Remy V, Amann E, Hildebrandt R, et al. Lack of interaction between the tetracyclic antidepressant maprotiline and the centrally acting antihypertensive drug clonidine. Eur J Clin Pharmacol 1983; 25: 595–9

    CAS  PubMed  Google Scholar 

  151. Elliott HL, McLean K, Sumner DJ, et al. Absence of an effect of mianserin on the actions of clonidine or methyldopa in hypertensive patients. Eur J Clin Pharmacol 1983; 24: 15–9

    CAS  PubMed  Google Scholar 

  152. Cubeddu LX, Cloutier G, Gross K. Bupropion does not antagonize cardiovascular actions of clonidine in normal subjects and spontaneously hypertensive rats. Clin Pharmacol Ther 1984; 35: 576–84

    CAS  PubMed  Google Scholar 

  153. Charney DS, Heninger GR, Sternberg DE. The effect of mianserin on alpha-2 adrenergic function in depressed patients. Br J Psychiatry 1984; 144: 407–16

    CAS  PubMed  Google Scholar 

  154. Vaughan DA. Interaction of fluoxetine with tricyclic antidepressants [letter]. Am J Psychiatry 1988; 145: 1478

    CAS  PubMed  Google Scholar 

  155. Bell IR, Cole JO. Fluoxetine induced elevation of desipramine level and exacerbation of geriatric nonpsychotic depression. J Clin Psychopharmacol 1988; 8: 447–8

    CAS  PubMed  Google Scholar 

  156. Aranow RB, Hudson JI, Pope HG, et al. Elevated antidepressant plasma levels after addition of fluoxetine. Am J Psychiatry 1989; 146: 911–3

    CAS  PubMed  Google Scholar 

  157. Westermeyer J. Fluoxetine-induced tricyclic toxicity: extent and duration. J Clin Pharmacol 1991; 31: 388–92

    CAS  PubMed  Google Scholar 

  158. Bertschy G, Vandel S, Vandel B, et al. Fluvoxamine-tricyclic antidepressant interaction. An accidental finding. Eur J Clin Pharmacol 1991; 40: 119–20

    CAS  PubMed  Google Scholar 

  159. Spina E, Campo GM, Avenoso A, et al. Interaction between fluvoxamine and imipramine/desipramine in four patients. Ther Drug Monit 1992; 14: 194–6

    CAS  PubMed  Google Scholar 

  160. Hartter S, Wetzel H, Hammes E, et al. Inhibition of antidepressant demethylation and hydroxylation by fluvoxamine in depressed patients. Psychopharmacology 1993; 110: 303–8

    Google Scholar 

  161. Spina E, Pollicino AM, Avenoso A, et al. Fluvoxamine-induced alterations in plasma concentrations of imipramine and desipramine in depressed patients. Int J Clin Pharm Res 1993; 13: 167–71

    CAS  Google Scholar 

  162. Brosen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55

    CAS  PubMed  Google Scholar 

  163. Brachfeldt J. Imipramine-tranylcypromine incompatibility, near fatal toxic reaction. JAMA 1963; 186: 1172

    Google Scholar 

  164. Sternbach H. Danger of MAOI therapy after fluoxetine withdrawal. Lancet 1988; 2: 850–1

    CAS  PubMed  Google Scholar 

  165. Graham PM, Ilett KF. Danger of MAOI therapy after fluoxetine withdrawal. Lancet 1988; 2: 1255–6

    CAS  PubMed  Google Scholar 

  166. Feighner JP, Boyer WF, Tyler DL. Adverse consequences of fluoxetine-MAOI combination therapy. J Clin Psychiatry 1990; 51: 222–5

    CAS  PubMed  Google Scholar 

  167. Bhatara V, Bendettini F. A possible interaction between sertraline and tranylcypromine. Clin Pharm 1993; 12: 222–5

    CAS  PubMed  Google Scholar 

  168. Committee on Safety of Medicines (UK). Fluvoxamine and fluoxetine-interaction with monoamine oxidase inhibitors, lithium, and tryptophan. Curr Probi 1989; 26: 61

    Google Scholar 

  169. Sternbach H. The serotonin syndrome. Am J Psychiatry 1991; 148: 705–13

    CAS  PubMed  Google Scholar 

  170. Lejoyeux M, Ades J, Rouillon F. Serotonin syndrome: incidence, symptoms and treatment. CNS Drugs 1994; 2: 132–43

    Google Scholar 

  171. Kline SS, Mauro LS, Scala-Barnett DM, et al. Serotonin syndrome versus neuroleptic malignant syndrome as a cause of death. Clin Pharmacol 1989; 8: 510–4

    CAS  Google Scholar 

  172. Amrein R, Lorscheid T, Stabl M, et al. Interactions of moclobemide with concomitantly administered medication: evidence from pharmacological and clinical studies. Psycho-pharmacology 1992; 106 Suppl.: S24–31

    CAS  Google Scholar 

  173. Neuvonen PJ, Pohjola-Sintonen S, Tacke U, et al. Five fatal cases of serotonin syndrome after moclobemide-citalopram or moclobemide-clomipramine overdoses [letter]. Lancet 1993; 342: 1419

    CAS  PubMed  Google Scholar 

  174. Spigset O, Miorndal T. Serotonin syndrome caused by a moclobemide-clomipramine interaction [letter]. BMJ 1993; 306: 248

    CAS  PubMed  Google Scholar 

  175. Nelson JC, Mazure CM, Bowers MB, et al. A preliminary, open study of the combination of fluoxetine and desipramine for rapid treatment of major depression. Arch Gen Psychiatry 1991; 48: 303–7

    CAS  PubMed  Google Scholar 

  176. Preskorn SH, Alderman J, Chung M, et al. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 1994; 14: 90–8

    CAS  PubMed  Google Scholar 

  177. Bergstrom RF, Peyton AL, Lemberger L. Quantification and mechanism of fluoxetine and tricyclic antidepressant interaction. Clin Pharmacol Ther 1992; 51: 239–48

    CAS  PubMed  Google Scholar 

  178. Skielbo E, Brosen K. Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol 1992; 34: 256–61

    Google Scholar 

  179. Spina E, Pollicino AM, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 1993; 15: 243–6

    CAS  PubMed  Google Scholar 

  180. Lemoine A, Gautier JC, Azoulay D, et al. The major pathway of imipramine metabolism is catalyzed by cytochromes P-4501A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32

    CAS  PubMed  Google Scholar 

  181. Spiker DG, Pugh DD. Combining tricyclic and monoamine oxidase inhibitor antidepressants. Arch Gen Psychiatry 1976; 33: 828–30

    CAS  PubMed  Google Scholar 

  182. White KL, Simpson G. Combined MAOI-tricyclic antidepressant treatment: a re-evaluation. J Clin Psychopharmacol 1981; 1: 264–82

    CAS  PubMed  Google Scholar 

  183. Lader M. Combined use of tricyclic antidepressant and monoamine oxidase inhibitors. J Clin Psychiatry 1983; 44(Section 2): 20–4

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spina, E., Perucca, E. Newer and Older Antidepressants. CNS Drugs 2, 479–497 (1994). https://doi.org/10.2165/00023210-199402060-00008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199402060-00008

Keywords

Navigation