Skip to main content
Log in

Clinical and Economic Factors Important to Anaesthetic Choice for Day-Case Surgery

  • Review Article
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

Clinical and economic factors that are important to consider when selecting anaesthesia for day-case surgery can differ from those for inpatient anaesthesia. Patients undergoing day-case surgery tend to be healthier and have shorter durations of surgery. They expect less anxiety before surgery, amnesia for the surgical experience, a rapid return to normal (normal mentation with minimal pain and nausea) after surgery, and lower expenses. However, the latter 2 expectations can conflict; older generic drugs have lower acquisition costs but often impose longer recovery times. Longer recovery periods can increase costs by prolonging the time to discharge from labour-intensive areas such as the operating suite or the postanaesthesia recovery unit.

The challenge for today’s anaesthetist is to use newer drugs judiciously to minimise their expense without compromising the rate or quality of recovery. Several approaches can secure these aims. Most apply the least anaesthetic needed. ‘Least anaesthetic’may mean the particular form of anaesthetic (e.g. local infiltration with monitored anaesthesia care versus a general anaesthetic), or may mean the delivery of the smallest effective dose, perhaps guided by anaesthetic monitors such as end-tidal analysers or the bispectral index.

For patients requiring general anaesthesia, a combination of several drugs usually secures the closest approach to the ideal. Drug combinations used usually include a short-acting preoperative anxiolytic (e.g. midazolam), intravenous propofol (a short-acting potent anxiolytic and amnestic agent) for induction of anaesthesia (and sometimes for maintenance) and primary maintenance of anaesthesia with inhaled nitrous oxide combined with a poorly soluble (low solubility produces rapid recovery; the least soluble is desflurane) potent inhaled anaesthetic delivered at a low inflow rate (to minimise cost). Although old, nitrous oxide is inexpensive and has favourable pharmacokinetic and cardiovascular advantages; however, it is limited in its anaesthetic/amnestic potency, and has the capacity to increase nausea.

In children, induction of anaesthesia is often accomplished with sevoflurane rather than desflurane; although sevoflurane is modestly more soluble than desflurane, it is nonpungent whereas desflurane is pungent. Moderate- or shortacting opioids (fentanyl is popular) or nonsteroidal anti-inflammatory agents (especially ketorolac), or local anaesthetics are added to secure analgesia during and after surgery. Similarly, when needed,moderate- or short-acting muscle relaxants are selected. Before the end of anaesthesia, an intravenous antiemetic may be given. With this drug combination, patients usually awaken within minutes after anaesthesia and can often move themselves to the vehicle for transport to the recovery unit. These combinations of anaesthetics and techniques minimise use of expensive drugs while expediting recovery (again minimising cost) with minimal or no compromise in the quality of recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hospital Research Associates Anaesthesia Audit (Syndicated Study). Fairfield (NJ): Hospital Research Associates

  2. Kain ZN, Caramico LA, Mayes LC, et al. Preoperative preparation programs in children: a comparative examination. Anesth Analg 1998; 87: 1249–55

    PubMed  CAS  Google Scholar 

  3. Trieshmann Jr HW. Knee arthroscopy: a cost analysis of general and local anesthesia. Arthroscopy 1996; 12: 60–3

    Article  PubMed  Google Scholar 

  4. Chilvers CR, Kinahan A, Vaghadia H, et al. Pharmacoeconomics of intravenous regional anaesthesia vs general anaesthesia for outpatient hand surgery. Can J Anaesth 1997; 44: 1152–6

    Article  PubMed  CAS  Google Scholar 

  5. Patel N, Smith C, Pinchak AC, et al. Desflurane is not associated with faster operating room exit times in outpatients. J Clin Anesth 1996; 8: 130–5

    Article  PubMed  CAS  Google Scholar 

  6. Dahl V, Gierloff C, Omland E, et al. Spinal, epidural or propofol anaesthesia for out-patient knee arthroscopy? Acta Anaesthesiol Scand 197; 41: 1341–5

    Article  Google Scholar 

  7. Eger II EL. Economic analysis and pharmaceutical policy: a consideration of the economics of the use of desflurane. Anaesthesia 1995; 50: S45-S8

    Article  PubMed  Google Scholar 

  8. Wagner BK, O’Hara DA. Pharmacoeconomic analysis of sevoflurane versus isoflurane anesthesia in elective ambulatory surgery. Pharmacotherapy 1997; 17: 1006–10

    PubMed  CAS  Google Scholar 

  9. Macario A, Vitez TS, Dunn B, et al. Where are the costs in perioperative care? Analysis of hospital costs and charges for inpatient surgical care. Anesthesiology 1995; 83: 1138–44

    Article  PubMed  CAS  Google Scholar 

  10. Lubarsky DA, Glass PS, Ginsberg B, et al. The successful implementation of pharmaceutical practice guidelines: analysis of associated outcomes and cost savings. SWiPE Group. Systematic withdrawal of perioperative expenses. Anesthesiology 1997; 86: 1145–60

    Article  PubMed  CAS  Google Scholar 

  11. IMS Datasource. The IMS Provider Perspective® among non- Federal hospitals. Plymouth Meeting (PA): IMS Health

  12. Physician’s desk reference. Montvale (NJ):Medical Economics Company Inc., 1999

  13. Watcha MF, White PF. Economics of anaesthetic practice. Anesthesiology 1997; 86: 1170–96

    Article  PubMed  CAS  Google Scholar 

  14. Langbein T, Sonntag H, Trapp D, et al. Volatile anaesthetics and the atmosphere: atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane. Br J Anaesth 1999; 82: 66–73

    Article  PubMed  CAS  Google Scholar 

  15. Melvin MA, Johnson BH, Quasha AL et al. II: Induction of anesthesia with midazolam decreases halothane MAC in humans. Anesthesiology 1982; 57: 238–41

    Article  PubMed  CAS  Google Scholar 

  16. Katoh T, Kobayashi S, Suzuki A, et al. The effect of fentanyl on sevoflurane requirements for somatic and sympathetic responses to surgical incision. Anesthesiology 1999; 90: 398–405

    Article  PubMed  CAS  Google Scholar 

  17. Chortkoff BS, Gonsowski CT, Bennett HL, et al. Subanesthetic concentrations of desflurane and propofol suppress recall of emotionally charged information. Anesth Analg 1995; 81: 728–36

    PubMed  CAS  Google Scholar 

  18. Watcha MF, Simeon RM, White PF, et al. Effect of propofol on the incidence of posoperative vomiting after strabismus surgery in pediatric outpatients. Anesthesiology 1991; 75: 204–9

    Article  PubMed  CAS  Google Scholar 

  19. Dose VA, Shafer A, White PF. Propofol-nitrous oxide versus thiopental-isoflurane-nitrous oxide for genral anesthesia. Anesthesiology 1988; 69: 63–71

    Article  Google Scholar 

  20. Fredman B, Nathanson MH, Smith I, et al. Sevoflurane for outpatient anesthesia: a comparison with propofol. Anesth Analg 1995; 81: 823–8

    PubMed  CAS  Google Scholar 

  21. Langley MS, Heel RC. Propofol: a review of its pharmacodynamic and pharmacokinetic properties and use as an intravenous anesthetic. Drugs 1988; 35: 344–72

    Google Scholar 

  22. Walpole R, Logan M. Effect of sevoflurane concentration on inhalation induction anaesthesia in the elderly. Br J Anaesth 1999; 82: 20–4

    Article  PubMed  CAS  Google Scholar 

  23. Jellis WS, Lien CA, Fontenot HJ, et al. The comparative effects of sevoflurane versus propofol in the induction and maintenance of anaesthesia in adult patients. Anesth Analg 1996; 82: 479–85

    Google Scholar 

  24. Thwaites A, Edmends S, Smith I. Inhalation induction of sevoflurane: a double-blind comparison with propofol. Br J Anaesth 1997; 78: 356–61

    Article  PubMed  CAS  Google Scholar 

  25. Lien CA, Hemmings HC, Belmont MR, et al. A comparison: the efficacy of sevoflurane-nitrous or propofol-nitrous oxide for the induction and maintenance of general anaesthesia. J Clin Anesth 1996; 8: 639–43

    Article  PubMed  CAS  Google Scholar 

  26. Glass PSA, Hardman D, Kamiyama Y, et al. Preliminary pharmacokinetics and pharmacodynamics of ultra-short-acting opioid: remifentanil (GI87084B). Anesth Analg 1993; 77: 1031–40

    Article  PubMed  CAS  Google Scholar 

  27. Davis PJ, Lerman J, Suresh S, et al. A randomized multicenter study of remifentanil compared with alfentanil, isoflurane, or propofol in anesthetized pediatric patients undergoing elective strabismus surgery. Anesth Analg 1997; 84: 982–9

    PubMed  CAS  Google Scholar 

  28. Levy JH, Brister NW, Shearing A, et al. Wheal and flare responses to opioids in humans. Anaesthesiology 1989; 70: 756–60

    Article  CAS  Google Scholar 

  29. Eger II EL, Kraft ID, Keasling HH. A comparison of atropine, scopolamine, plus pentobarbital, meperidine, or morphine as pediatric preanesthetic medication. Anesthesiology 1961; 22: 962–9

    Article  PubMed  Google Scholar 

  30. Savarese JJ, Miller RD, Lien CA, et al. Pharmacology of muscle relaxants and their antagonists. In: Miller RD, editor. Anesthesia. 4th ed. New York: Churchill Livingstone, 1994: 417–87

    Google Scholar 

  31. Tang J, Joshi GP, White PF. Comparison of rocuronium and mivacurium to succinylcholine during outpatient laparoscopic surgery. Anesth Analg 1996; 82: 994–8

    PubMed  CAS  Google Scholar 

  32. Plaud B, Debaene B, Lequeau F, et al. Mivacurium neuromuscular block at the adductor muscles of larynx and adductor pollicis in humans. Anaesthesiology 1996; 85: 77–81

    Article  CAS  Google Scholar 

  33. Ballantyne JC, Chang Y. The impact of choice of muscle relaxant on postoperative recovery time: a retrospective study. Anesth Analg 1997; 85: 476–82

    PubMed  CAS  Google Scholar 

  34. Eger II EL. Partition coefficients of I-653 in human blood, saline, and olive oil. Anesth Analg 1987; 66: 971–3

    PubMed  CAS  Google Scholar 

  35. Strum DP, Eger II EL. Partition coefficients for sevoflurane in human blood, saline, and olive oil. Anesth Analg 1987; 66: 654–6

    PubMed  CAS  Google Scholar 

  36. Eger RR, Eger II EL. Effect of temperature and age on the solubility of enflurane, halothane, isoflurane and methoxyflurane in human blood. Anesth Analg 1985; 64: 640–2

    Article  PubMed  CAS  Google Scholar 

  37. Yasuda N, Targ AG, Eger II EL. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg 1989; 69: 370–3

    Article  PubMed  CAS  Google Scholar 

  38. Eger II EL. Pharmacoeconomics. In: Eger II EL, editor. Nitrous oxide/N2O. New York: Elsevier, 1985: 81–107

    Google Scholar 

  39. Hornbein TF, Eger II EL, Winter PM, et al. The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 1982; 61: 553–6

    Article  PubMed  CAS  Google Scholar 

  40. Rampil IJ, Lockhart S, Zwass M, et al. Clinical characteristics in desflurane in surgical patients: minimum alveolar concentration. Anesthesiology 1991; 74: 429–33

    Article  PubMed  CAS  Google Scholar 

  41. Scheller MS, Partridge BL, Saidman LJ. MAC of sevoflurane in humans and the New Zealand white rabbit. Can Anaesth Soc J 1988; 35: 153–6

    Article  CAS  Google Scholar 

  42. Stevens WC, Dolan WM, Gibbons RT, et al. Minimum alveolar concentrations (MAC) of isoflurane with and without nitrous oxide in patients of various ages. Anesthesiology 1975; 42: 197–200

    Article  PubMed  CAS  Google Scholar 

  43. Saidman LJ, Eger II EL. Effect of nitrous oxide and of narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 1964; 25: 302–6

    Article  PubMed  CAS  Google Scholar 

  44. Jong RH, Eger II E. MAC expanded: AD50 and Ad95 values of common inhalation of anesthetics in man. Anesthesiology 1975; 42: 384–9

    Article  PubMed  Google Scholar 

  45. Holaday DA, Smith FR. Clinical characteristics and biotransformation of sevoflurane in health human volunteers. Anesthesiology 1981; 54: 100–6

    Article  PubMed  CAS  Google Scholar 

  46. O’Brien K, Kumar R, Morton NS. Sevoflurane compared with halothane for tracheal intubation in children. Br J Anaesth 1998; 80: 452–5

    Article  PubMed  Google Scholar 

  47. Walker SM, Haugen RD, Richards A. A comparison of sevoflurane with halothane for paediatric day case surgery. Anaesth Intensive Care 1997; 25: 643–9

    PubMed  CAS  Google Scholar 

  48. Paris ST, Cafferkey M, Tarling P, et al. Comparison of sevoflurane and halothane for outpatient dental anaesthesia in children. Br J anaesth 1997; 79: 280–4

    Article  PubMed  CAS  Google Scholar 

  49. Yuino M, Kimura H. Vital capacity of rapid inhalation induction technique: comparison of sevoflurane and halothane. Can J Anaesth 1993; 40: 440–3

    Article  Google Scholar 

  50. Inomata S, Yamashita S, Toyooka H, et al. Anaesthetic induction time for tracheal intubation using sevoflurane or halothane in children. Anaesthesia 1998; 53: 440–5

    Article  PubMed  CAS  Google Scholar 

  51. Sarner JB, Levine M, Davis PJ, et al. Clinical characteristics of sevoflurane in children. Acomparison with halothane. Anesthesiology 1995; 82: 38–46

    Article  PubMed  CAS  Google Scholar 

  52. Bacher A, Burton AW, Uchida T, et al. Sevoflurane or halothane anesthesia: can we tell the difference? Anesth Analg 1997; 85: 1203–6

    PubMed  CAS  Google Scholar 

  53. Watanabe K, Hatakenaka S, Ikemune K, et al. A case of suspected liver dysfunction induced by sevoflurane anesthesia. Masui 1993; 42: 902–5

    PubMed  CAS  Google Scholar 

  54. Shichinohe Y, Masuda Y, Takahashi H, et al. A case of postoperative hepatic injury after sevoflurane anaesthesia. Masui 1992; 41: 1802–5

    PubMed  CAS  Google Scholar 

  55. Ogaea M, Doi K, Mitsufuji T, et al. Drug induced hepatitis following sevoflurane anesthesia in a child. Masui 1991; 40: 154205

    Google Scholar 

  56. Enokibori M, Miyazaki Y, Hirota K, et al. A case of postoperative fulminant hepatitis after sevoflurane anaesthesia. Jpn J Anesth 1992; 41: S94

    Google Scholar 

  57. Omori H, Seki S, Kanaya N, et al. Acase of postoperative liver damage after isoflurane anesthesia followed by sevoflurane anesthesia. J Jpn Soc Clin Anesth 1994; 14: 68–71

    Article  Google Scholar 

  58. Ray DC, Drummond GB. Halothane hepatitis. Br J Anaesth 1991; 67: 84–99

    Article  PubMed  CAS  Google Scholar 

  59. Lindekaer Al, Skielboe M, Guldager H, et al. The influence of nitrous oxide on propofol dosage and recovery after total intravenous anaesthesia for day-case surgery. Anaesthesia 1995; 50: 397–9

    Article  Google Scholar 

  60. Glass PSA, Shafter SL, Jacobs JR, et al. Intravenous drug delivery systems. In: Miller RD, editor. Anesthesia. 4th ed. New York: Churchill Livingstone, 1994: 389–416

    Google Scholar 

  61. Song D, Joshi GP, White PF. Titration of volatile anesthetics using bispectral index facilitates recovery after ambulatory anesthesia. Anesthesiology 1997; 87: 842–8

    Article  PubMed  CAS  Google Scholar 

  62. Song D, van Vlymen J, White PF. Is the bispectral index useful in predicting fast-track eligibility ambulatory anesthesia with propofol and desflurane? Anesth Analg 1998; 87: 1245–8

    PubMed  CAS  Google Scholar 

  63. Gan TJ, Glass PS, Windsor A, et al. Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil, and nitrous oxide anesthesia. BIS Utility Study Group. Anesthesiology 1997; 87: 808–15

    Article  PubMed  CAS  Google Scholar 

  64. Kearse Jr LA, Rosow C, Zaslavsky A, et al. Bispectral analysis of the electroencephalogram predicts conscious processing of information during propofol sedation and hypnosis. Anesthesiology 1998; 88: 25–34

    Article  PubMed  CAS  Google Scholar 

  65. Lubke GH, Kerssens C, Phaf H, et al. Dependence of explicit and implicit memory on hypnotic state in trauma patients. Anesthesiology 1999; 90: 670–80

    Article  PubMed  CAS  Google Scholar 

  66. Raeder JC, Mjaland O, Aasbo V, et al. Desflurane versus propofol maintenance for outpatient laparoscopic cholecystectomy. Anaesthesiol Scand 1998; 42: 106–10

    Article  CAS  Google Scholar 

  67. Avramov MN, Griffin JD, White PF. The effect of fresh gas flow and anesthetic technique on the ability to control acute hemodynamic responses during surgery. Anesth Analg 1998; 87: 666–70

    PubMed  CAS  Google Scholar 

  68. Avramov MN, Griffin JD, White PF. The effect of fresh gas flow and anesthetic technique on the ability to control acute hemodynamic responses during surgery. Anesth Analg 1998; 87: 666–70

    PubMed  CAS  Google Scholar 

  69. Severinghaus JW. Role of lung factors. In: Papper E, Kitz R, editors. Uptake and distribution of anesthetic agents. New York: McGraw-Hill, 1963: 59–71

    Google Scholar 

  70. Stoelting RK, Longnecker DE, Eger II EL. Minimal alveolar concentrations on awakening from methoxyflurane, ahlothane, ether and fluroxene in man: MAC awake. Anesthesiology 1970; 33: 5–9

    Article  PubMed  CAS  Google Scholar 

  71. Dwyer R, Bennett HL, Eger II EL. Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology 1992; 77: 888–98

    Article  PubMed  CAS  Google Scholar 

  72. Katoh T, Suguro Y, Ikeda T, et al. Influence of age on awakening concentrations of sevoflurane and isoflurane. Anesth Analg 1993; 76: 348–52

    PubMed  CAS  Google Scholar 

  73. Chortkoff BS, Eger II EL, Crankshaw DP, et al. Concentrations of desflurane and propofol that suppress response to command in humans. Anesth Analg 1995; 81: 737–43

    PubMed  CAS  Google Scholar 

  74. Katoh T, Suguro Y, Nakahima R, et al. Blood concentration of sevoflurane and isoflurane on recovery from anaesthesia. Br J Anaesth 1992; 69: 259–62

    Article  PubMed  CAS  Google Scholar 

  75. Smith I, Ding Y, White PF. Comparison of induction, maintenance, and recovery characteristics of sevoflurane-N2O and propofol-sevoflurane-N2O with propofol-isoflurane-N2O anesthesia. Anesth Analg 1992; 74: 253–9

    Article  PubMed  CAS  Google Scholar 

  76. Frink Jr EJ, Malan TP, Atlas M, et al. Clinical comparison of sevoflurane and isoflurane in healthy patients. Anesth Analg 1992; 74: 241–5

    Article  PubMed  Google Scholar 

  77. Ebert TJ, Robinson BJ, Uhrich TD, et al. Recovery from sevoflurane anesthesia. A comparison to isoflurane and propofol anesthesia. Anesthesiology 1998; 89: 1524–31

    Article  PubMed  CAS  Google Scholar 

  78. Gupta A, Kullander M, Ekberg K, et al. Anaesthesia for day-care arthroscopy. A comparison between desflurane and isoflurane. Anaesthesia 1996; 51: 56–62

    Article  PubMed  CAS  Google Scholar 

  79. Ashworth J, Smith I. Comparison of desflurane with isoflurane or propofol spontaneously breathing ambulatory patients. Anesth Analg 1998; 87: 312–8

    PubMed  CAS  Google Scholar 

  80. Rieker LB, Rieker MP. A comparison of the recovery times of desflurane and isoflurane in outpatient anesthesia. AANA J 1998; 66: 183–6

    PubMed  CAS  Google Scholar 

  81. Jakobsson J, Rane K, Ryberg G. Anaesthesia during laparoscopic gynaecological surgery: a comparison between desflurane and isoflurane. Eur J Anaesthesiol 1997; 14: 148–52

    Article  PubMed  CAS  Google Scholar 

  82. Wilhelm W, Kuster M, Larsen B, et al Deslurane and isoflurane. A comparison of recovery and circulatory parameters in surgical interventions. Anaesthesist 1996; 45: 37–46

    Article  PubMed  CAS  Google Scholar 

  83. Bennett JA, Lingaraju N, Horrow JC, et al. Elderly patients recover more rapidly from desflurane than from isoflurane anesthesia. J Clin Anesth 1992; 4: 378–81

    Article  PubMed  CAS  Google Scholar 

  84. Davis P, Cohen I, McCowan F, et al. Recovery characteristics of desflurane vs. halothane for maintenance of anesthesia in pediatric ambulatory patients. Anesthesiology 1994; 80: 298–302

    Article  PubMed  CAS  Google Scholar 

  85. Loan PB, Mirakhur RK, Paxton LD, et al. Comparison of desflurane and isoflurane in anaesthesia for dental surgery. Br J Anaesth 1995; 75: 289–92

    Article  PubMed  CAS  Google Scholar 

  86. Alonso CA, Rodriguez FJR, Pacheco JA, et al. Comparative study of recovery times and psychomotor function after anesthesia with desflurane or isoflurane. Rev Esp Anestesiol Reanim 1998: 45: 184–8

    Google Scholar 

  87. Motsch J, Epple J, Fresenius M, et al. Desflurane versus isoflurane in geriatric patients. A comparison of psychomotor and postoperative well-being following abdominal surgical procedures. Anaesthesiol Intensivmed Notfallmed Schmerzther 1998; 33: 313–20

    Article  CAS  Google Scholar 

  88. Loscar M, Allhoff T, Ott E, et al. Awakening from anesthesia and recovery of cognitive function after desflurane or isoflurane. Anaesthesist 1996; 45: 140–5

    Article  PubMed  CAS  Google Scholar 

  89. Beaussier M, Deriaz H, Abdelhim Z, et al. Comparative effects of desflurane and isoflurane on recovery after long lasting anaesthesia. Can J Anaesth 1998; 45: 429–34

    Article  PubMed  CAS  Google Scholar 

  90. Philip BK, Kallar SK, Bogetz MS, et al. SMAG: a multicenter comparison of maintenance and recovery with sevoflurane or isoflurane for adult ambulatory anesthesia. Anesth Analg 1996; 83: 314–9

    PubMed  CAS  Google Scholar 

  91. Schulz J, Bischoff P, Szafarczyk W, et al. Comparison of sevoflurane and isoflurane in ambulatory surgery. Results of a multicenter study. Anaesthesist 1996; 45: S63-S70

    Google Scholar 

  92. Eriksson H, Haasio J, Korttila K. Recovery from sevoflurane and isoflurane anaesthesia after outpatient gynaecological laparoscopy. Acta Anaesthesiol Scand 1995; 39: 377–80

    Article  PubMed  CAS  Google Scholar 

  93. Eger II EL, Bowland T, Lonescu P, et al. Recovery and kinetic characteristics of desflurane and sevoflurane in volunteers after 8-hour exposure, including kinetics of degradation products. Anesthesiology 1997; 87: 517–26

    Article  PubMed  CAS  Google Scholar 

  94. Eger II EL, Gong D, Koblin DD, et al. Effect of anesthetic duration on kinetic and recovery characteristics of desflurane vs. sevoflurane (plus compound A) in volunteers. Anesth Analg 1998; 86: 414–21

    PubMed  CAS  Google Scholar 

  95. Song D, Whitten CW, White PF, et al. Antiemetic activity of propofol after sevoflurane and desflurane anesthesia for outpatient laparoscopic cholecystectomy. Anesthesiology 1998; 89: 838–43

    Article  PubMed  CAS  Google Scholar 

  96. Naidu-Sjosvard K, Sjoberg F, Gupta A. Anaesthesia for videoarthroscopy of the knee. A comparison of maintenance and recovery profiles. Anesth Analg 1995; 81: 1186–90

    Google Scholar 

  97. Nanthanson MH, Fredman B, Smith I, et al. Sevoflurane versus desflurane for outpatient anesthesia: a comparison of maintenance and recovery profiles. Anesth Analg 1995; 81: 1186–90

    Google Scholar 

  98. Tarazi EM, Philip BK. Acomparison of recovery after sevoflurane or desflurane in ambulatory anesthesia. J Clin Anesth 1998; 10: 272–7

    Article  PubMed  CAS  Google Scholar 

  99. Song D, Joshi GP, White PF. Fast-track eligibility after ambulatory anesthesia: a comparison of desflurane, sevoflurane, and propofol. Anesth Analg 1998; 86: 267–73

    PubMed  CAS  Google Scholar 

  100. Naito Y, Tamai S, Shingu K, et al. Comparison between sevoflurane and halothane for paediatric ambulatory anesthesia. Br J Anaesth 1991; 67: 387–9

    Article  PubMed  CAS  Google Scholar 

  101. Meretoja OA, Taivainen T, Raiha L, et al. Sevoflurane-nitrous oxide or halothane-nitrous oxide for paediatric bronchoscopy and gastroscopy. Anaesthesia 1996; 76: 767–71

    Article  CAS  Google Scholar 

  102. Sury MR, Black A, Hemington L, et al. A comparison of the recovery characteristics of sevoflurane and halothane in children. Anaesthesia 1996; 51: 543–6

    Article  PubMed  CAS  Google Scholar 

  103. Piat V, Dubois M-C, Johanet S, et al. Induction and recovery characteristics and hemodynamic responses to sevoflurane and halothane in children. Anesth Analg 1994; 79: 840–4

    Article  PubMed  CAS  Google Scholar 

  104. Welborn LG, Hannallah RS, Norden JM, et al. Comparison of emergence and recovery characteristics of sevoflurane, desflurane and halothane in pediatric ambulatory patients. Anesth Analg 1996; 83: 917–20

    PubMed  CAS  Google Scholar 

  105. Lerman J, Davis PJ, Welborn L, et al. Induction, recovery, and safety characteristics of sevoflurane in children undergoing ambulatory surgery. Anesthesiology 1996; 84: 1332–40

    Article  PubMed  CAS  Google Scholar 

  106. Ariffin SA, Whyte JA, Malins AF, et al. Comparison of induction and recovery between sevoflurane and halothane supplementation of anaesthesia in children undergoing outpatient dental extractions. Br J Anaesth 1997; 78: 157–9

    Article  PubMed  CAS  Google Scholar 

  107. Greendspun JC, Hannallah RS, Welborn LG, et al. Comparison of sevoflurane and halothane anesthesia in children undergoing outpatient ear, nose, and throat surgery. J Clin Anesth 1995; 7: 398–402

    Article  Google Scholar 

  108. Hargasser S, Hipp R, Breinbauer B, et al. A lower solubility recommends the use of desflurane more than isoflurane, halothane, and enflurane under low-flow conditions. J Clin Anesth 1995; 7: 49–53

    Article  PubMed  CAS  Google Scholar 

  109. Baum J, Berghoff M, Stanke HG, et al. Low-flow anesthesia with desflurane. Anaesthesist 1997; 46: 287–93

    Article  PubMed  CAS  Google Scholar 

  110. Nel MR, Ooi R, Lee DJ, et al. New agents, the circle system and short procedures. Anaesthesia 1997; 46: 287–93

    Article  Google Scholar 

  111. Wallin RF, Regan BM, Napoli MD, et al. Sevoflurane: a new inhalation anesthetic agent. Anesth Analg 1975; 54: 758–65

    Article  PubMed  CAS  Google Scholar 

  112. Keller KA, Callan C, Prokocimer P, et al. Inhalation toxicity study of a haloalkene degradant of sevoflurane, compound A (PIFE), in Sprague-Dawley rats. Anesthesiology 1995; 83: 1220–323

    Article  PubMed  CAS  Google Scholar 

  113. Eger II EL, Koblin DD, Bowland T, et al. Nephrotoxicity of sevoflurane vs. desflurane anesthesia in volunteers. Anesth Analg 1997; 84: 160–8

    PubMed  CAS  Google Scholar 

  114. Alhashemi JA, Miller Dr, O’Brien HV, et al. Cost-effectiveness of inhalational, balanced and total intravenous anaesthesia for ambulatory knee surgery. Can J Anaesth 1997; 44: 118–25

    Article  PubMed  CAS  Google Scholar 

  115. Kurpiers EM, Scharine J, Lovell SL. Cost-effective anesthesia: desflurane versus propofol in outpatient surgery. AANA J 1996; 64: 69–75

    PubMed  CAS  Google Scholar 

  116. Boldt J, Jaun N, Kumle B, et al. Economic considerations of the use of new anesthetics: a comparison of propofol, sevoflurane, desflurane, and isoflurane. Anesth Analg 1998; 86: 504–9

    PubMed  CAS  Google Scholar 

  117. Rosenberg MK, Bridge P, Brown M. Cost comparison: a desflurane- versus a propofol-based general anaesthetic technique. Anesth Analg 1994; 79: 852–5

    PubMed  CAS  Google Scholar 

  118. Weiskopf RB, Eger II EL. Comparing the costs of inhaled anesthetics. Anesthesiology 1993; 79: 1413–8

    Article  PubMed  CAS  Google Scholar 

  119. Wulf H, Ledowski T, Linstedt U, et al. Neuromuscular blocking effects of rocuronium during desflurane, isoflurane, and sevoflurane anaesthesia. Can J Anaesth 1998; 45: 526–32

    Article  PubMed  CAS  Google Scholar 

  120. Taivainen T, Meretoja OA. The neuromuscular blocking effects of vecuronium during sevoflurane, halothane and balanced anaesthesia in children. Anaesthesia 1995; 50: 1046–9

    Article  PubMed  CAS  Google Scholar 

  121. Viitanen H, Annila P, Rorarius M, et al. Recovery after halothane anaesthesia induced with thiopental, propofol-alfentanil or halothane for day-case adenoidectomy in small children. Br J Anaesth 1998; 81: 960–2

    Article  PubMed  CAS  Google Scholar 

  122. Kern C, Weber A, Aurilio C, et al. Patient evaluation and comparison of the recovery profile between propofol and thiopentone as induction agents in day surgery. Anaesth Intensive Care 1998; 26: 156–61

    PubMed  CAS  Google Scholar 

  123. Cahalan M, Lurz F, Eger II EL, et al. Narcotics decrease heart rate inhalational anesthesia. Anesth Analg 1987; 66: 166–70

    Article  PubMed  CAS  Google Scholar 

  124. Kelly RE, Hartman GS, Embree PB, et al. Inhaled induction and emergence from desflurane anesthesia in the ambulatory surgical patient: the effect of premedication. Anesth Analg 1993; 77: 540–3

    Article  PubMed  CAS  Google Scholar 

  125. Grief R, Saciny S, Rapf B, et al. Does supplemental perioperative oxygen reduce the incidence of postoperative nausea and vomiting [abstract]? Anesthesiology 1998; 89: A1201

    Article  Google Scholar 

  126. Hayashi Y, Sumikawa K, Tashiro C, et al. Arrhythmogenic threshold of epinephrine during sevoflurane, enflurane, and isoflurane anesthesia in dogs. Anesthesiology 1998; 69: 145–7

    Article  Google Scholar 

  127. Joas T, StevensW. Comparison of the arrhythmic doses of epinephrine during Forane, halothane, and fluroxene anesthesia in dogs. Anesthesiology 1971; 35: 48–53

    Article  PubMed  CAS  Google Scholar 

  128. Johnston R, Eger II EL, Wilson C. Comparative interaction of epinephrine with enflurane, isoflurane and halothane in man. Anesth Analg 1976; 55: 709–12

    Article  PubMed  CAS  Google Scholar 

  129. Moore M, Weiskopf RB, Eger II EL. Arrhythmogenic doses of epinephrine are similar during desflurane or isoflurane anesthesia in humans. Anesthesiology 1993; 79: 943–7

    Article  PubMed  CAS  Google Scholar 

  130. Eger II EL, Smuckler EA, Ferrell LD, et al. Is enflurane hepatotoxic? Anesth Analg 1986; 65: 21–30

    Article  PubMed  Google Scholar 

  131. Stoelting RK, Blitt CD, Cohen PJ, et al. Hepatic dysfunction after isoflurane anesthesia. Anesth Analg 1987; 66: 147–53

    Article  PubMed  CAS  Google Scholar 

  132. Sutton TS, Koblin DD, Gruenke LD, et al Fluoride metabolites following prolonged exposure of volunteers and patients to desflurane. Anesth Analg 1991; 73: 180–5

    Article  PubMed  CAS  Google Scholar 

  133. Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology 1993; 79: 444–53

    Article  PubMed  CAS  Google Scholar 

  134. Weiskopf RB, Moore M, Eger II EL, et al. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology 1994; 80: 1035–45

    Article  PubMed  CAS  Google Scholar 

  135. Moore MA, Weiskopf RB, Eger II EL, et al. Small increases in desflurane concentration above 5–6% can cause cardiovascular stimulation. Anesthesiology 1993; 79: A115

    Article  Google Scholar 

  136. Ebert TJ, Muzi M, Lopatka CW. Neurocirculatory responses to sevoflurane in humans. Anesthesiology 1995; 83: 88–95

    Article  PubMed  CAS  Google Scholar 

  137. Aono J, Ueda W, Mamiya K, et al. Greater incidence of delirium during recovery from sevoflurane anesthesia in preschool boys. Anesthesiology 1997; 87: 1298–300

    Article  PubMed  CAS  Google Scholar 

  138. Cohen IT, Hannallah R, Hummer K. The minimal effective dose of fentanyl to prevent emergence agitation following desflurane anesthesia in children [abstract]. Anesth Analg 1999; 88: S292

    Article  Google Scholar 

  139. Davis PJ, Greenberg JA, Gendelman M, et al. Recovery characteristics of sevoflurane and halothane in preschool-aged children undergoing bilateral myringotomy and pressure equalization tube insertion. Anesth Analg 1999; 88: 34–8

    PubMed  CAS  Google Scholar 

  140. Raeder J, Gupta A, Pedersen FM. Recovery characteristics of sevoflurane- or propofol-based anaesthesia for day-care surgery. Acta Anaesthesiol Scand 1997; 41: 988–94

    Article  PubMed  CAS  Google Scholar 

  141. Veber B, Gachot B, Bedos JP, et al. Severe sepsis after intravenous injection of contaminated propofol [letter]. Anesthesiology 1994; 80: 712

    Article  PubMed  CAS  Google Scholar 

  142. Grundmann U, Risch A, Kleinschmidt S, et al. Remifentanilpropofol anesthesia in vertebral disc operations: a comparison with desflurane-N2O inhalation anesthesia. Effect on hemodynamics and recovery. Anaesthesist 1998; 47: 102–10

    Article  PubMed  CAS  Google Scholar 

  143. Wrigley SR, Fairfield JE, Jones RM, et al. Induction and recovery characteristics of desflurane in day case patients: a comparison with propofol. Anaesthesia 1991; 46: 615–22

    Article  PubMed  CAS  Google Scholar 

  144. Graham SG, Aitkenhead AR. A comparison between propofol and desflurane anaesthesia for minor gynaecological laparoscopic surgery. Anaesthesia 1993; 48: 471–5

    Article  PubMed  CAS  Google Scholar 

  145. Motsch J, Wandel C, Neff S, et al. A comparative study of the use of sevoflurane and propofol in ambulatory surgery. Anaesthesist 1996; 45: S57-S62

    Google Scholar 

  146. Wandel C, Neff S, Bohrer H, et al. Recovery characteristics following anaesthesia with sevoflurane or propofol in adults undergoing out-patient surgery. Eur J Clin Pharmacol 1995; 48: 186–8

    Article  Google Scholar 

  147. Munte S, Kobbe I, Demertzis A, et al. Increased reading speed for stories presented during general anesthesia. Anesthesiology 1999; 90: 662–9

    Article  PubMed  CAS  Google Scholar 

  148. Smith SM, Brown HO, Toman JEP, et al. Lack of cerebral effects of d-tubocurarine. Anesthesiology 1947; 8: 1–14

    Article  PubMed  CAS  Google Scholar 

  149. Dwyer R, Bennett HL, Eger II EL, et al. Isoflurane anesthesia prevents unconscious learning. Anesth Analg 1992; 75: 107–12

    Article  PubMed  CAS  Google Scholar 

  150. Gonsowski CT, Chortkoff BS, Eger II EL, et al. Subanesthetic concentrations of desflurane and isoflurane suppress explicit and implicit learning. Anesth Analg 1995; 80: 568–72

    PubMed  CAS  Google Scholar 

  151. Scuderi PE, James RL, Harris L, et al. Antiemetic prophylaxis does not improve outcomes after outpatient surgery when compared to symptomatic treatment. Anesthesiology 1999; 90: 360–71

    Article  PubMed  CAS  Google Scholar 

  152. Tang J, Watcha MF, White PF. A comparison of costs and efficacy of ondansetron and droperidol as prophylactic antiemetic therapy for elective outpatient gynecologic procedures. Anesth Analg 1996; 83: 304–13

    PubMed  CAS  Google Scholar 

  153. McKenzie R, Tantissira B, Karambelkar DJ, et al. Comparison of ondansetron with ondansetron plus dexamethasone in the prevention of postoperative nausea and vomiting. Anesth Analg 1994; 79: 961–4

    Article  PubMed  CAS  Google Scholar 

  154. Lubarsky DA. Fast track in the post-anesthesia care unit: unlimited possibilities? J Clin Anesth 1996; 8: 70S-2S

    Article  Google Scholar 

  155. Marshall SI, Chung F. Discharge criteria and complications after ambulatory surgery. Anesth Analg 1999; 88: 508–17

    PubMed  CAS  Google Scholar 

  156. Neumann MA, Weiskopf RB, Gong DH, et al. Changing from isoflurane to desflurane towards the end of anesthesia does not accelerate recovery in humans. Anesthesiology 1998; 88: 914–21

    Article  PubMed  CAS  Google Scholar 

  157. Sa Rego MM, Watcha MG, White PF. The changing role of monitored anesthesia care in the ambulatory setting. Anesth Analg 1997; 85: 1020–36

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Eger is a paid consultant to Baxter, PPI, the manufacturer of desflurane. Dr White is a paid consultant to Abbott Laboratories, Baxter, PPD, Organon and Zeneca. Dr Bogetz is a paid consultant to LMA North America.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eger, E.I., White, P.F. & Bogetz, M.S. Clinical and Economic Factors Important to Anaesthetic Choice for Day-Case Surgery. Pharmacoeconomics 17, 245–262 (2000). https://doi.org/10.2165/00019053-200017030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00019053-200017030-00003

Keywords

Navigation