Skip to main content

Advertisement

Log in

Cost-Effective Treatment of Lower Respiratory Tract Infections

  • Review Article
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Summary

Pneumonia is one of the most frequent causes of hospitalisation, accounting for many deaths each year. Elderly patients, especially those in extended care facilities, are at particular risk for pneumonia and have a higher mortality rate than younger patients. The cost of treating patients with lower respiratory tract infections (LRTIs) is staggering, especially for patients who require hospitalisation. Less extensive diagnostic testing may be utilised in the future to minimise the cost of LRTIs, although this in turn might compromise our knowledge of the pathogens involved and their resistance patterns.

Currently, the prevalence of various pathogens is known, and varies on the basis of underlying risk factors such as age, structural or functional lung disease, mental status, immune system function and geographical region. However, resistance patterns of commonly implicated pathogens are ever-changing. For example, Streptococcus pneumoniae, which is the most frequent cause of community-acquired pneumonia, has become resistant to benzylpenicillin (penicillin G) in recent years. This is especially disturbing because cross-resistance with other classes of antibiotics frequently occurs.

Many antibiotics have been used in the treatment of LRTIs. Cephalosporins are popular because of their broad spectrum of activity and excellent safety profiles. Penicillins have also been popular, although resistant strains of S. pneumoniae now pose a serious threat. The macrolides have recently enjoyed increased popularity because of their activity against atypical pathogens. Although the fluoroquinolones are second-line agents for community-acquired pneumonia, they have a place in the treatment of LRTIs encountered in the nursing home or hospital setting, and even have activity against atypical bacteria.

A variety of innovative programmes have been developed in recent years to control the cost of treating LRTIs. Although limited formulary choices have been used in the hospital setting for years, and are now becoming popular in managed care, there is no proof that this mechanism saves money when looking at the overall picture. A rational approach is to conduct a rigorous pharmacoeconomic evaluation of treatment options, thus identifying the therapies that provide the best value in each setting.

Equally important are various programmes that encourage the cost-conscious use of the antibiotics chosen. Some of the methods evaluated in the literature include: notifying prescribers of the true cost of treatment alternatives, notifying prescribers whether or not third-party coverage is available for the prescription, streamlining from combination therapy to a single agent, early switching from parenteral to oral therapy, initiating treatment with oral agents, administering parenteral antibiotics at home from the outset of therapy, and antibiotic streamlining programmes that are partnered with infectious disease physicians. For the most part, these programmes have not been rigorously evaluated.

Newer, more innovative ways to provide cost-conscious treatment of LRTIs will undoubtedly be developed. The basic premise for these programmes should be rigorous, well-designed pharmacoeconomic evaluations. Such studies will help ensure that all facets of therapy are evaluated and should prevent choices being made simply on the basis of the lowest acquisition cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Statistical Abstract of the United States, 104th edition. US Department of Commerce, Bureau of the Census. Washington: US Government Printing Office, 1984: 78–83

    Google Scholar 

  2. Anderson H, Esmail A, Hollowell J, et al. Epidemiologically based needs assessment: lower respiratory disease. District Health Authorities project research programme. Bristol: University of Bristol, Health Care Evaluation. Unit report commissioned by the National Health Service management executive, 1993 Mar: 6–12

  3. National Center for Health Statistics. Detailed diagnoses and procedures: national hospital discharge survey, 1990. Vital and Health Statistics Series 13, no. 113. Hyattsville (MD): National Center for Health Statistics, 1992

    Google Scholar 

  4. Saltiel E, Weingarten S. Drug treatment of pneumonia in the elderly. PharmacoEconomics 1993; 3(4): 268–75

    Article  PubMed  CAS  Google Scholar 

  5. El EW, Haponik EF. Pneumonia in the elderly. J Thorac Imaging 1991; 6(3): 45–61

    Article  Google Scholar 

  6. Dixon RE. Economic costs of respiratory tract infections in the United States. Am J Med 1985; 78 Suppl. 6B: 45–51

    Article  PubMed  CAS  Google Scholar 

  7. Graham NMH. Epidemiology and pharmacoeconomic issues relating to acute respiratory tract infections and acute uncomplicated infections of the urinary tract. PharmacoEconomics 1994; 5 Suppl. 2: 1–10

    Article  PubMed  CAS  Google Scholar 

  8. Williams DN. Reducing costs and hospital stay for pneumonia with home intravenous cefotaxime treatment: results with a computerized ambulatory drug delivery system. Am J Med 1994; 97 Suppl. 2A: 50–5

    Article  PubMed  CAS  Google Scholar 

  9. National Center for Health Statistics. Current estimates from the National Health Interview Survey, United States, 1981. Vital and Health Statistics Series 10, no. 141 (DHHS pub. no. PHS-83-1569). Washington, DC: US Government Printing Office, 1982 Oct

    Google Scholar 

  10. Garibaldi RA. Epidemiology of community-acquired respiratory tract infections in adults: incidence, etiology, and impact. Am J Med 1985; 78 Suppl. 6B: 32–7

    Article  PubMed  CAS  Google Scholar 

  11. Viadeck BC. Medicare hospital payment by diagnosis-related groups. Ann Intern Med 1984; 100: 576–91

    Google Scholar 

  12. Wenzel RP. Nosocomial infections, diagnosis-related groups, and study on the efficacy of nosocomial infection control: economic implications for hospitals under the prospective payment system. Am J Med 1985; 78 Suppl. 6B: 3–7

    Article  PubMed  CAS  Google Scholar 

  13. Boyce JM, Potter-Bynoe G, Dziobek L, et al. Nosocomial pneumonia in Medicare patients: hospital costs and reimbursement patterns under the prospective payment system. Arch Intern Med 1991; 151: 1109–14

    Article  PubMed  CAS  Google Scholar 

  14. Appropriate treatment of pneumonia in the elderly may reduce costs. Drugs Ther Perspect 1993; 2(4): 14–6

    Article  Google Scholar 

  15. Pennington JE. Treating respiratory infections in the era of cost control. Am Fam Physician 1986; 33(2): 153–60

    PubMed  CAS  Google Scholar 

  16. Eron JJ, Burkle W, Cohen MS. Managing pneumonia: defining the role of the new macrolide antibiotics. Hosp Formul 1994; 29: 122–36

    Google Scholar 

  17. Fang GD, Fine M, Orloff J, et al. New and emerging etiologies for community-acquired pneumonia with implications for therapy: a prospective multicentre study of 359 cases. Medicine 1990; 69: 307–16

    Article  PubMed  CAS  Google Scholar 

  18. Woodhead MA. Management of pneumonia. Respir Med 1992; 86: 459–69

    Article  PubMed  CAS  Google Scholar 

  19. Esposito A. Community-acquired lower respiratory tract infections: cost effective management. Hosp Ther 1989: 14: 67–75

    Google Scholar 

  20. Mylotte JM, Ksiazek S, Bentley DW. Rational approach to the antibiotic treatment of pneumonia in the elderly. Drugs Aging 1994; 4(1): 21–33

    Article  PubMed  CAS  Google Scholar 

  21. Grayston JT, Campbell LA, Kuo CC, et al. A new respiratory tract pathogen: Chlamydiapneumoniae strain TWAR. J Infect Dis 1990; 161 Suppl. 4: 618–25

    Article  PubMed  CAS  Google Scholar 

  22. Rodnick JE, Gude JK. Diagnosis and antibiotic treatment of community-acquired pneumonia. West J Med 1991; 154: 405–9

    PubMed  CAS  Google Scholar 

  23. Levy M, Dromer F, Brion N, et al. Community-acquired pneumonia: importance of initial noninvasive bacteriologic and radiographic investigations. Chest 1988; 92: 43–8

    Article  Google Scholar 

  24. Fine MJ, Orloff JJ, Arisumi D, et al. Prognosis of patients hospitalized with community-acquired pneumonia. Am J Med 1990; 88 Suppl. 5N: 1N–8N

    PubMed  CAS  Google Scholar 

  25. British Thoracic Society. Community-acquired pneumonia in adults in British hospitals in 1982–1983: a survey of aetiology, mortality, prognostic factors and outcome. Q J Med 1987; 62: 195–220

    Google Scholar 

  26. Marrie TJ, Durant H, Yates L. Community-acquired pneumonia requiring hospitalization: five-year prospective study. Rev Infect Dis 1989; 11: 586–99

    Article  PubMed  CAS  Google Scholar 

  27. American Thoracic Society. Guidelines for the initial management of adults with community-acquired pneumonia: diagnosis, assessment of severity, and initial antimicrobial therapy. Am Rev Respir Dis 1993; 148: 1418–26

    Google Scholar 

  28. Potter ME, Kaufmann AK, Plikaytis BD. Psittacosis in the United States, 1979. MMWR Surveill Summ 1983; 32 Suppl. 1: 27SS–31SS

    PubMed  CAS  Google Scholar 

  29. Marrie TJ, Grayston JT, Wang SP, et al. Pneumonia associated with the TWAR strain of Chlamydia. Ann Intern Med 1987; 106 Suppl. 4: 507–11

    PubMed  CAS  Google Scholar 

  30. Neu HC, Sabath LD. Criteria for selecting oral antibiotic therapy for community-acquired pneumonia. Infect Med 1993; 10 Suppl. D: 33–40

    Google Scholar 

  31. Doern GV. Branhamella catarrhalis: an emerging human pathogen. Diagn Microbiol Infect Dis 1986; 4: 191–201

    Article  PubMed  CAS  Google Scholar 

  32. Musher DM. Pneumococcal pneumonia including diagnosis and therapy of infection caused by penicillin-resistant strains. Infect Dis Clin North Am 1991; 5(3): 509–21

    PubMed  CAS  Google Scholar 

  33. Mendelman PM, Chaffin DO, Stull TL, et al. Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob Agents Chemother 1984; 26: 235–44

    Article  PubMed  CAS  Google Scholar 

  34. Woodhead M. Antibiotic resistance in community-acquired pneumonia. Br J Hosp Med 1992; 47(9): 684–7

    PubMed  CAS  Google Scholar 

  35. Powell M, Koutsia-Carouzou C, Voutsimas D, et al. Resistance of clinical isolates of Haemophilus influenzae in the United Kingdom. BMJ 1986; 295: 176–9

    Article  Google Scholar 

  36. Powell M. Chemotherapy for infections caused by Haemophilus influenzae: current problems and future prospects. J Antimicrob Chemother 1991; 27: 3–7

    Article  PubMed  CAS  Google Scholar 

  37. Jorgensen JH, Doern GV, Maher LA, et al. Antimicrobial resistance among respiratory isolates of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae in the United States. Antimicrob Agents Chemother 1990; 34(11): 2075–80

    Article  PubMed  CAS  Google Scholar 

  38. Hosker HS, Jones GM, Hawkey P. Management of community acquired lower respiratory tract infection. BMJ 1994; 308: 701–5

    Article  PubMed  CAS  Google Scholar 

  39. Khan FA, Basir R. Sequential intravenous-oral administration of ciprofloxacin versus ceftazidime in serious bacterial respiratory tract infections. Chest 1989; 96: 528–37

    Article  PubMed  CAS  Google Scholar 

  40. Paladino JA, Sperry HE, Backes JM, et al. Clinical and economic evaluation of oral ciprofloxacin after an abbreviated course of intravenous antibiotics. Am J Med 1991; 91: 462–70

    Article  PubMed  CAS  Google Scholar 

  41. Weingarten SR, Riedinger MS, Varis G, et al. Identification of low-risk hospitalized patients with pneumonia: implications for early conversion to oral antimicrobial therapy. Chest 1991; 105(4): 1109–14

    Article  Google Scholar 

  42. Horan TC, White JW, Jarvis WR, et al. Nosocomial infection surveillance, 1984. MMWR Surveill Summ 1986; 35: 17SS–29SS

    CAS  Google Scholar 

  43. Hessen MT, Kaye D. Nosocomial pneumonia. Crit Care Clin 1988; 4: 245–57

    PubMed  CAS  Google Scholar 

  44. Garner JS, Jarvis WR, Emori TG, et al. CSC definitions for nosocomial infections. Am J Infect Control 1988; 16: 128–40

    Article  PubMed  CAS  Google Scholar 

  45. Johansen WG, Pierce AK, Sanford JP, et al. Nosocomial respiratory infections with gram-negative bacilli: the significance of colonization of the respiratory tract. Ann Intern Med 1972; 77: 701–6

    Google Scholar 

  46. Tryba M. Risk of acute stress bleeding and nosocomial pneumonia in ventilated intensive care unit patients: sucralfate vs. antacids. Am J Med 1987; 83 Suppl. 3B: 117–24

    Article  PubMed  CAS  Google Scholar 

  47. Driks MR, Craven DE, Celli BR, et al. Nosocomial pneumonia in intubated patients given sucralfate as compared with antacids or histamine type 2 blockers: the role of gastric colonization. N Engl J Med 1987; 317: 1376–82

    Article  PubMed  CAS  Google Scholar 

  48. Simms HH, DeMaria E, McDonald L, et al. Role of gastric colonization in the development of pneumonia in critically ill trauma patients: results of a prospective randomized trial. J Trauma 1991; 31(4): 531–6

    Article  PubMed  CAS  Google Scholar 

  49. Donowitz GR, Mandell GL. Empiric therapy for pneumonia. Rev Infect Dis 1983; 5 Suppl. 1: S40–54

    Article  PubMed  Google Scholar 

  50. Scheid WM, Mandell GL. Nosocomial pneumonia: pathogenesis and recent advances in diagnosis and therapy. Rev Infect Dis 1991; 13 Suppl. 9: S743–51

    Article  Google Scholar 

  51. Bartlett JG, O’Keefe P, Tally FP, et al. Bacteriology of hospital-acquired pneumonia. Arch Intern Med 1986; 146: 868–71

    Article  PubMed  CAS  Google Scholar 

  52. Hessen MT, Kaye D. Nosocomial pneumonia. Crit Care Clin 1988; 4: 245–57

    PubMed  CAS  Google Scholar 

  53. LaForce FM. Hospital-acquired gram-negative rod pneumonias: an overview. Am J Med 1981; 70: 664–9

    Article  PubMed  CAS  Google Scholar 

  54. Vincent MT, Goldman BS. Anaerobic lung infections. Am Fam Physician 1994; 49(8): 1815–20

    PubMed  CAS  Google Scholar 

  55. Brindle RJ. Nosocomial legionnaires’ disease-advances in diagnosis and typing. J Hosp Infect 1988; 11 Suppl. A: 196–200

    Article  PubMed  Google Scholar 

  56. Valenti WM, Hall CB, Souglas Jr RG, et al. Nosocomial viral infections: I. Epidemiology and significance. Infect Control Hosp Epidemiol 1981; 1: 33–7

    Google Scholar 

  57. Cook JL. Role of aztreonam in lower respiratory tract infections. Urology 1988; 31 Suppl.: 33–6

    PubMed  CAS  Google Scholar 

  58. Brittain DS, Scully BE, Neu HC. Ticarcillin plus clavulanic acid in the treatment of pneumonia and other serious infections. Am J Med 1985; 79 Suppl. 5B: 81–3

    Article  PubMed  CAS  Google Scholar 

  59. Peloquin CA, Cumbo TJ, Nix DE, et al. Evaluation of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections. Arch Intern Med 1989; 149: 2269–73

    Article  PubMed  CAS  Google Scholar 

  60. Haddow A, Greene S, Heinz G, et al. Ciprofloxacin (intravenous/oral) versus ceftazidime in lower respiratory tract infections. Am J Med 1989; 87 Suppl. 5A: 113S–5S

    Article  PubMed  CAS  Google Scholar 

  61. Fass RJ. Efficacy and safety of oral ciprofloxacin in the treatment of serious respiratory infections. Am J Med 1987; 82 Suppl. 4A: 202–7

    PubMed  CAS  Google Scholar 

  62. Hux JE, Naylor CD. Drug prices and third party payment: do they influence medication selection? PharmacoEconomics 1994; 5: 343–50

    Article  PubMed  CAS  Google Scholar 

  63. Weinstein MC, Read JL, MacKay DN, et al. Cost-effective choice of antimicrobial therapy for serious infections. J Gen Intern Med 1986; 1: 351–63

    Article  PubMed  CAS  Google Scholar 

  64. Taugourdeau MC. Taking a positive approach in cost management: STAR, a cost-containment computerized system. Eur Resp Rev 1994; 4: 336–42

    Google Scholar 

  65. Garrelts JC, Smith DF, Ast D, et al. A comparison of the safety, timing, and cost-effectiveness of administering antibiotics by intravenous bolus (push) versus intravenous piggyback (slow infusion) in surgical prophylaxis. PharmacoEconomics 1992; 1: 116–23

    Article  PubMed  CAS  Google Scholar 

  66. Janknegt R. Fluoroquinolones: use of clinical data to aid formulary choice by the System of Objective Judgment Analysis (SOJA) method. PharmacoEconomics 1994; 6: 15–33

    Article  PubMed  CAS  Google Scholar 

  67. Stein GE, Mantz SL. Antibiotic utilization and cost analysis in hospitalized patients with community acquired pneumonia. Hosp Pharm 1995; 30: 132–34, 37

    PubMed  CAS  Google Scholar 

  68. Thompson D, Huse DM, Oster G. Outcomes of cefazolin versus ceftriaxone therapy in treating lower respiratory tract infections in adults. Ann Pharmacother 1992; 26: 1503–6

    PubMed  CAS  Google Scholar 

  69. Capri S, Dellamano R. Cost-effectiveness in the hospital use of antibiotics: introductory considerations. J Chemother 1993; 5: 348–51

    PubMed  CAS  Google Scholar 

  70. Massaro FJ, Bungay KM, Snydman WA, et al. The effect of antibiotic choice on the length of stay in patients with community-acquired pneumonia [abstract]. Pharm World Sci 1994; 16 Suppl. E: 12

    Google Scholar 

  71. Mangi RJ, Greco T, Ryan J, et al. Cefoperazone versus combination antibiotic therapy of hospital-acquired pneumonia. Am J Med 1988; 84: 68–73

    Article  PubMed  CAS  Google Scholar 

  72. Mangi RJ, Ryan J, Berenson C, et al. Cefoperazone versus ceftazidime monotherapy of nosocomial pneumonia. Am J Med 1988; 85 Suppl. 1A: 44–8

    Article  PubMed  CAS  Google Scholar 

  73. Graham E, Whalen E, Smith ME, et al. Comparison of costs between ciprofloxacin and imipenem for the treatment of pneumonia in hospitalized patients [abstract]. Pharmacotherapy 1994; 14: 370–1

    Google Scholar 

  74. Scott WG, Tilyard MW, Dovey SM, et al. Roxithromycin versus cefaclor in lower respiratory tract infection. Pharmaco-Economics 1993; 4: 122–30

    Article  CAS  Google Scholar 

  75. Hughes T. Roxithromycin versus cefaclor [letter]. Pharmaco-Economics 1993; 4: 396–8

    Article  CAS  Google Scholar 

  76. Karalus NC, Garrett JE, Lang SDR, et al. A clinical and economic comparison of roxithromycin 150 mg twice daily versus amoxicillin 500 mg/clavulanic acid 125 mg three times daily for the treatment of lower respiratory infections in general practice. Drug Invest 1994; 8: 179–90

    Article  Google Scholar 

  77. Briceland LL, Nightingale CH, Quintiliani R, et al. Antibiotic streamlining from combination therapy to monotherapy utilizing an interdisciplinary approach. Arch Intern Med 1988; 148: 2019–22

    Article  PubMed  CAS  Google Scholar 

  78. Fliegelman RM, Mattingly PM, Dempsey CL, et al. Economic impact of oral ciprofloxacin following standard intravenous therapy. Diagn Microbiol Infect Dis 1990; 13: 187–9

    Article  PubMed  CAS  Google Scholar 

  79. Gentry LO, Rodriguez-Gomez G, Kohler RB, et al. Parenteral followed by oral ofloxacin for nosocomial pneumonia and community-acquired pneumonia requiring hospitalization. Am Rev Resp Dis 1992; 145: 31–5

    Article  PubMed  CAS  Google Scholar 

  80. Ehrenkranz NJ, Nerenberg DE, Shultz JM, et al. Intervention to discontinue parenteral antimicrobial therapy in patients hospitalized with pulmonary infections: effect on shortening patient stay. Infect Control Hosp Epidemiol 1992; 13: 21–32

    Article  PubMed  CAS  Google Scholar 

  81. Ramirez JA, Srinath L, Ahkee S, et al. Early switch from intravenous to oral cephalosporins in the treatment of hospitalized patients with community-acquired pneumonia. Arch Intern Med 1995; 155: 1273–6

    Article  PubMed  CAS  Google Scholar 

  82. Hendrickson JR, North DS. Pharmacoeconomic benefit of antibiotic step-down therapy: converting patients from intravenous ceftriaxone to oral cefpodoxime proxetil. Ann Pharmacother 1995; 29: 561–5

    PubMed  CAS  Google Scholar 

  83. Destache CJ, Elsasser GN, Shinn BW. Assessment of pharmaceutical intervention in community-acquired pneumonia: intravenous ceftriaxone switching to cefpodoxime [abstract]. Pharmacotherapy 1995; 15: 377

    Google Scholar 

  84. Zuck P, Rio Y, Ichou F. Efficacy and tolerance of cefpodoxime proxetil compared with ceftriaxone in vulnerable patients with bronchopneumonia. J Antimicrob Chemother 1990; 26 Suppl. E: 71–7

    Article  PubMed  Google Scholar 

  85. Sanders WE, Morris JF, Alessi P, et al. Oral ofloxacin for the treatment of acute bacterial pneumonia: use of a non-traditional protocol to compare experimental therapy with ‘usual care’ in a multi-center clinical trial. Am J Med 1991; 91: 261–6

    Article  PubMed  Google Scholar 

  86. Menzin J, Huse DM, Richner R, et al. Economic evaluation of oral ofloxacin versus parenteral therapy in the treatment of pneumonia. PharmacoEconomics 1992; 2: 171–7

    Article  PubMed  CAS  Google Scholar 

  87. Chan R, Hemeryck L, O’Regan M, et al. Oral versus intravenous antibiotics for community acquired lower respiratory tract infection in a general hospital: open, randomized controlled trial. BMJ 1995; 310: 1360–2

    Article  PubMed  CAS  Google Scholar 

  88. Pond MN, Newport M, Joanes D, et al. Home versus hospital intravenous antibiotic therapy in the treatment of young adults with cystic fibrosis. Eur Respir J 1994; 7: 1640–4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrelts, J.C., Herrington, A.M. & Garrelts, J. Cost-Effective Treatment of Lower Respiratory Tract Infections. Pharmacoeconomics 10, 36–58 (1996). https://doi.org/10.2165/00019053-199610010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00019053-199610010-00005

Keywords

Navigation