Lactate Threshold Concepts

How Valid are They?

Abstract

During the last nearly 50 years, the blood lactate curve and lactate thresholds (LTs) have become important in the diagnosis of endurance performance. An intense and ongoing debate emerged, which was mainly based on terminology and/or the physiological background of LT concepts. The present review aims at evaluating LTs with regard to their validity in assessing endurance capacity. Additionally, LT concepts shall be integrated within the ‘aerobic-anaerobic transition’ — a framework which has often been used for performance diagnosis and intensity prescriptions in endurance sports.

Usually, graded incremental exercise tests, eliciting an exponential rise in blood lactate concentrations (bLa), are used to arrive at lactate curves. A shift of such lactate curves indicates changes in endurance capacity. This very global approach, however, is hindered by several factors that may influence overall lactate levels. In addition, the exclusive use of the entire curve leads to some uncertainty as to the magnitude of endurance gains, which cannot be precisely estimated. This deficiency might be eliminated by the use of LTs.

The aerobic-anaerobic transition may serve as a basis for individually assessing endurance performance as well as for prescribing intensities in endurance training. Additionally, several LT approaches may be integrated in this framework. This model consists of two typical breakpoints that are passed during incremental exercise: the intensity at which bLa begin to rise above baseline levels and the highest intensity at which lactate production and elimination are in equilibrium (maximal lactate steady state [MLSS]).

Within this review, LTs are considered valid performance indicators when there are strong linear correlations with (simulated) endurance performance. In addition, a close relationship between LT and MLSS indicates validity regarding the prescription of training intensities.

A total of 25 different LT concepts were located. All concepts were divided into three categories. Several authors use fixed bLa during incremental exercise to assess endurance performance (category 1). Other LT concepts aim at detecting the first rise in bLa above baseline levels (category 2). The third category consists of threshold concepts that aim at detecting either the MLSS or a rapid/distinct change in the inclination of the blood lactate curve (category 3).

Thirty-two studies evaluated the relationship of LTs with performance in (partly simulated) endurance events. The overwhelming majority of those studies reported strong linear correlations, particularly for running events, suggesting a high percentage of common variance between LT and endurance performance. In addition, there is evidence that some LTs can estimate the MLSS. However, from a practical and statistical point of view it would be of interest to know the variability of individual differences between the respective threshold and the MLSS, which is rarely reported.

Although there has been frequent and controversial debate on the LT phenomenon during the last three decades, many scientific studies have dealt with LT concepts, their value in assessing endurance performance or in prescribing exercise intensities in endurance training. The presented framework may help to clarify some aspects of the controversy and may give a rationale for performance diagnosis and training prescription in future research as well as in sports practice.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Table I
Table II
Table III
Table IV
Table V
Table VI

References

  1. 1.

    Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol 2004 Jul 1; 558 (Pt 1): 5–30

    PubMed  CAS  Google Scholar 

  2. 2.

    Fletcher WM, Hopkins FG. Lactic acid in amphibian muscle. J Physiol (London) 1907; 35: 247–309

    CAS  Google Scholar 

  3. 3.

    Meyerhof O. Untersuchung über die Wärmeströmung der vitalen Oxydationsvorgänge. Biochem Z 1911; 5: 246–328

    Google Scholar 

  4. 4.

    Douglas CG, Haldane JS. The regulation of normal breathing. J Physiol 1909; 38: 420–40

    PubMed  CAS  Google Scholar 

  5. 5.

    Ryffel GH. Lactic acid metabolism: a critical review. Quart J Med 1910; 3: 221–3

    CAS  Google Scholar 

  6. 6.

    Hill AV, Lupton H. Muscular exercise, lactic acid and the supply and utilization of oxygen. Quart J Med 1923; 16: 135–71

    CAS  Google Scholar 

  7. 7.

    Margaria R, Edwards HT, Dill DB. The possible mechanism of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol 1933; 106: 689–714

    CAS  Google Scholar 

  8. 8.

    Gladden LB. Muscle as a consumer of lactate. Med Sci Sports Exerc 2000 Apr; 32 (4): 764–71

    PubMed  CAS  Google Scholar 

  9. 9.

    Brooks GA. The lactate shuttle during exercise and recovery. Med Sci Sports Exerc 1986 Jun; 18 (3): 360–8

    PubMed  CAS  Google Scholar 

  10. 10.

    Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004 Sep; 287 (3): R502–16

    PubMed  CAS  Google Scholar 

  11. 11.

    Coyle EF, Coggan AR, Hopper MK, et al. Determinants of endurance in well-trained cyclists. J Appl Physiol 1988; 64 (6): 2622–30

    PubMed  CAS  Google Scholar 

  12. 12.

    Coyle EF, Feltner ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991 Jan; 23 (1): 93–107

    PubMed  CAS  Google Scholar 

  13. 13.

    Lucía A, Pardo J, Durántez A, et al. Physiological differ ences between professional and elite road cyclists. Int J Sports Med 1998; 19: 342–8

    PubMed  Google Scholar 

  14. 14.

    Impellizzeri FM, Marcora SM, Rampinini E, et al. Correlations between physiological variables and performance in high level cross-country off-road cyclists. Br J Sports Med 2005 Oct; 39 (10): 747–51

    PubMed  CAS  Google Scholar 

  15. 15.

    Sjodin B, Svedenhag J. Applied physiology of marathon running. Sports Med 1985 Mar–Apr; 2 (2): 83–99

    PubMed  CAS  Google Scholar 

  16. 16.

    Faria EW, Parker DL, Faria IE. The science of cycling: physiology and training, part 1. Sports Med 2005; 35 (4): 285–312

    PubMed  Google Scholar 

  17. 17.

    Jacobs I. Blood lactate: implications for training and sports performance. Sports Med 1986; 3 (1): 10–25

    PubMed  CAS  Google Scholar 

  18. 18.

    Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 1980; 12 (5): 357–60

    PubMed  CAS  Google Scholar 

  19. 19.

    Hollmann W. 42 years ago: development of the concepts of ventilatory and lactate threshold. Sports Med 2001; 31 (5): 315–20

    PubMed  CAS  Google Scholar 

  20. 20.

    Meyer T, Scharhag J, Kindermann W. Peak oxygen uptake: myth and truth about an internationally accepted reference value. Z Kardiol 2005 Apr; 94 (4): 255–64

    PubMed  CAS  Google Scholar 

  21. 21.

    Hollmann W. Höchst- und dauerleistungsfähigkeit des sportlers. München: Barth, 1963

    Google Scholar 

  22. 22.

    Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients. Am J Cardiol 1964; 14: 844–52

    PubMed  CAS  Google Scholar 

  23. 23.

    Wells JG, Balke B, Van Fossan DD. Lactic acid accumulation during work: a suggested standardization of work classification. J Appl Physiol 1957 Jan; 10 (1): 51–55

    PubMed  CAS  Google Scholar 

  24. 24.

    Mader A, Liesen H, Heck H, et al. Zur Beurteilung der sportartspezifischen ausdauerleistungsfähigkeit im labor. Sportarzt Sportmed 1976; 27: 80–8, 109–12

    Google Scholar 

  25. 25.

    Atkinson G, Davison R, Jeukendrup A, et al. Science and cycling: current knowledge and future directions for research. J Sports Sci 2003 Sep; 21 (9): 767–87

    PubMed  Google Scholar 

  26. 26.

    Jones AM. The physiology of the world record holder for the womeńs marathon. Int J Sports Sci Coaching 2006; 1 (2): 101–16

    Google Scholar 

  27. 27.

    Svedahl K, MacIntosh BR. Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol 2003 Apr; 28 (2): 299–323

    PubMed  CAS  Google Scholar 

  28. 28.

    Brooks GA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 1985; 17 (1): 22–34

    PubMed  CAS  Google Scholar 

  29. 29.

    Myers J, Ashley E. Dangerous curves: a perspective on exercise, lactate, and the anaerobic threshold. Chest 1997 Mar; 111 (3): 787–95

    PubMed  CAS  Google Scholar 

  30. 30.

    Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 1979; 42: 25–34

    CAS  Google Scholar 

  31. 31.

    Meyer T, Lucia A, Earnest CP, et al. A conceptual frame work for performance diagnosis and training prescription from submaximal gas exchange parameters: theory and application. Int J Sports Med 2005 Feb; 26 Suppl. 1: S38–48

    PubMed  Google Scholar 

  32. 32.

    McLellan TM, Skinner JS. The use of the aerobic threshold as a basis for training. Can J Appl Sport Sci 1981; 6 (4): 197–201

    PubMed  CAS  Google Scholar 

  33. 33.

    McLellan TM. The anaerobic threshold: concept and controversy. Austr J Sci Med Sport 1987; 19 (2): 3–8

    Google Scholar 

  34. 34.

    Skinner JS, McLellan TH. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport 1980; 51 (1): 234–48

    PubMed  CAS  Google Scholar 

  35. 35.

    Wasserman K, Whipp BJ, Koyl SN, et al. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 1973; 35 (2): 236–43

    PubMed  CAS  Google Scholar 

  36. 36.

    Dickhuth HH, Yin L, Niess A, et al. Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med 1999 Feb; 20 (2): 122–7

    PubMed  CAS  Google Scholar 

  37. 37.

    Peronnet F, Aguilaniu B. Lactic acid buffering, non-metabolic CO2 and exercise hyperventilation: a critical reappraisal. Respir Physiol Neurobiol 2006 Jan 25; 150 (1): 4–18

    PubMed  Google Scholar 

  38. 38.

    Yoshida T, Udo M, Chida M, et al. Specificity of physiological adaptation to endurance training in distance runners and competitive walkers. Eur J Appl Physiol Occup Physiol 1990; 61 (3–4): 197–201

    PubMed  CAS  Google Scholar 

  39. 39.

    Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc 1989; 21 (5): 563–8

    PubMed  CAS  Google Scholar 

  40. 40.

    Bosquet L, Leger L, Legros P. Methods to determine aerobic endurance. Sports Med 2002; 32 (11): 675–700

    PubMed  Google Scholar 

  41. 41.

    Mujika I, Padilla S. Cardiorespiratory and metabolic characteristics of detraining in humans. Med Sci Sports Exerc 2001 Mar; 33 (3): 413–21

    PubMed  CAS  Google Scholar 

  42. 42.

    McLellan TM, Gass GC. The relationship between the ventilation and lactate thresholds following normal, low and high carbohydrate diets. Eur J Appl Physiol Occup Physiol 1989; 58 (6): 568–76

    PubMed  CAS  Google Scholar 

  43. 43.

    Reilly T, Woodbridge V. Effects of moderate dietary manipulations on swim performance and on blood lactateswimming velocity curves. Int J Sports Med 1999 Feb; 20 (2): 93–7

    PubMed  CAS  Google Scholar 

  44. 44.

    Yoshida T. Effect of dietary modifications on lactate threshold and onset of blood lactate accumulation during incremental exercise. Eur J Appl Physiol 1984; 53 (3): 200–5

    CAS  Google Scholar 

  45. 45.

    Maassen N, Busse MW. The relationship between lactic acid and work load: a measure for endurance capacity or an indicator of carbohydrate deficiency? Eur J Appl Physiol Occup Physiol 1989; 58 (7): 728–37

    PubMed  CAS  Google Scholar 

  46. 46.

    Midgley AW, McNaughton LR, Jones AM. Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med 2007; 37 (10): 857–80

    PubMed  Google Scholar 

  47. 47.

    Bentley DJ, Newell J, Bishop D. Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Med 2007; 37 (7): 575–86

    PubMed  Google Scholar 

  48. 48.

    Foxdal P, Sjodin B, Sjodin A, et al. The validity and accuracy of blood lactate measurements for prediction of maximal endurance running capacity: dependency of analyzed blood media in combination with different designs of the exercise test. Int J Sports Med 1994; 15 (2): 89–95

    PubMed  CAS  Google Scholar 

  49. 49.

    Heck H, Hess G, Mader A. Comparative study of different lactate threshold concepts [Vergleichende Untersuchung zu verschiedenen Laktat-Schwellenkonzepten]. Dtsch Z Sportmed 1985; 36 (1+2): 19–25, 40–52

    CAS  Google Scholar 

  50. 50.

    Heck H. Laktat in der Leistungsdiagnostik. Schorndorf: Hofmann, 1991

    Google Scholar 

  51. 51.

    Lundberg MA, Hughson RL, Weisiger KH, et al. Computerized estimation of lactate threshold. Comput Biomed Res 1986 Oct; 19 (5): 481–6

    PubMed  CAS  Google Scholar 

  52. 52.

    Grant S, McMillan K, Newell J, et al. Reproducibility of the blood lactate threshold, 4 mmol.1(−1) marker, heart rate and ratings of perceived exertion during incremental treadmill exercise in humans. Eur J Appl Physiol 2002 Jun; 87 (2): 159–66

    PubMed  CAS  Google Scholar 

  53. 53.

    Beaver WL, Wasserman K, Whipp BJ. Improved detection of lactate threshold during exercise using a log-log transformation. J Appl Physiol 1985; 59 (6): 1936–40

    PubMed  CAS  Google Scholar 

  54. 54.

    Cheng B, Kuipers H, Snyder AC, et al. A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med 1992; 13 (7): 518–22

    PubMed  CAS  Google Scholar 

  55. 55.

    Hughson RL, Weisiger KH, Swanson GD. Blood lactate concentration increases as a continuous function in progressive exercise. J Appl Physiol 1987; 62 (5): 1975–81

    PubMed  CAS  Google Scholar 

  56. 56.

    Robergs RA, Chwalbinska-Moneta J, Mitchell JB, et al. Blood lactate threshold differences between arterialized and venous blood. Int J Sports Med 1990; 11 (6): 446–51

    PubMed  CAS  Google Scholar 

  57. 57.

    Feliu J, Ventura JL, Segura R, et al. Differences between lactate concentration of samples from ear lobe and the finger tip. J Physiol Biochem 1999 Dec; 55 (4): 333–9

    PubMed  CAS  Google Scholar 

  58. 58.

    McNaughton LR, Thompson D, Philips G, et al. A comparison of the lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions. Int J Sports Med 2002 Feb; 23 (2): 130–5

    CAS  Google Scholar 

  59. 59.

    Thin AG, Hamzah Z, FitzGerald MX, et al. Lactate determination in exercise testing using an electrochemical analyser: with or without blood lysis? Eur J Appl Physiol Occup Physiol 1999 Jan; 79 (2): 155–9

    PubMed  CAS  Google Scholar 

  60. 60.

    Buono M J, Yeager JE. Intraerythrocyte and plasma lactate concentrations during exercise in humans. Eur J Appl Physiol Occup Physiol 1986; 55 (3): 326–9

    PubMed  CAS  Google Scholar 

  61. 61.

    Forsyth JJ, Farrally MR. A comparison of lactate concentration in plasma collected from the toe, ear, and fingertip after a simulated rowing exercise. Br J Sports Med 2000 Feb; 34 (1): 35–8

    PubMed  CAS  Google Scholar 

  62. 62.

    Draper N, Brent S, Hale B, et al. The influence of sampling site and assay method on lactate concentration in response to rock climbing. Eur J Appl Physiol 2006 Nov; 98 (4): 363–72

    PubMed  CAS  Google Scholar 

  63. 63.

    Hildebrand A, Lormes W, Emmert J, et al. Lactate concentration in plasma and red blood cells during incremental exercise. Int J Sports Med 2000 Oct; 21 (7): 463–8

    PubMed  CAS  Google Scholar 

  64. 64.

    Foxdal P, Sjodin B, Rudstam H, et al. Lactate concentration differences in plasma, whole blood, capillary finger blood and erythrocytes during submaximal graded exercise in humans. Eur J Appl Physiol Occup Physiol 1990; 61 (3–4): 218–22

    PubMed  CAS  Google Scholar 

  65. 65.

    Foxdal P, Sjodin A, Ostman B, et al. The effect of different blood sampling sites and analyses on the relationship between exercise intensity and 4.0 mmol.1-1 blood lactate concentration. Eur J Appl Physiol Occup Physiol 1991; 63 (1): 52–4

    PubMed  CAS  Google Scholar 

  66. 66.

    Medbø JI, Mamen A, Holt Olsen O, et al. Examination of four different instruments for measuring blood lactate concentration. Scand J Clin Lab Invest 2000 Aug; 60 (5): 367–80

    PubMed  Google Scholar 

  67. 67.

    Buckley JD, Bourdon PC, Woolford SM. Effect of measuring blood lactate concentrations using different automated lactate analysers on blood lactate transition thresholds. J Sci Med Sport 2003 Dec; 6 (4): 408–21

    PubMed  CAS  Google Scholar 

  68. 68.

    van Someren KA, Howatson G, Nunan D, et al. Comparison of the Lactate Pro and Analox GM7 blood lactate analysers. Int J Sports Med 2005 Oct; 26 (8): 657–61

    PubMed  Google Scholar 

  69. 69.

    Bishop D. Evaluation of the Accusport lactate analyser. Int J Sports Med 2001 Oct; 22 (7): 525–30

    PubMed  CAS  Google Scholar 

  70. 70.

    Lucía A, Hoyos J, Chicarro JL. Physiology of professional road cycling. Sports Med 2001; 31 (5): 325–37

    PubMed  Google Scholar 

  71. 71.

    Weltman A. The blood lactate response to exercise. Champaign IL: Human Kinetics, 1995

    Google Scholar 

  72. 72.

    Heck H, Mader A, Hess G, et al. Justification of the 4-mmol/l lactate threshold. Int J Sports Med 1985; 6 (3): 117–30

    PubMed  CAS  Google Scholar 

  73. 73.

    Seiler KS, Kjerland GO. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scand J Med Sci Sports 2006 Feb; 16 (1): 49–56

    PubMed  Google Scholar 

  74. 74.

    Esteve-Lanao J, San Juan AF, Earnest CP, et al. How do endurance runners actually train? Relationship with competition performance. Med Sci Sports Exerc 2005 Mar; 37 (3): 496–504

    PubMed  Google Scholar 

  75. 75.

    Bourdon P. Blood lactate transition thresholds: concepts and controversies. In: Gore J, editor. Physiological tests for elite athletes/Australian Sports Commission. Champaign (IL): Human Kinetics, 2000: 50–65

    Google Scholar 

  76. 76.

    Meyer T, Faude O, Urhausen A, et al. Different effects of two regeneration regimens on immunological parameters in cyclists. Med Sci Sports Exerc 2004 Oct; 36 (10): 1743–9

    PubMed  Google Scholar 

  77. 77.

    Meyer T, Gorge G, Schwaab B, et al. An alternative approach for exercise prescription and efficacy testing in patients with chronic heart failure: a randomized controlled training study. Am Heart J 2005 May; 149 (5): e1–7

    PubMed  Google Scholar 

  78. 78.

    McConnell TR, Clark BA, Conlin NC, et al. Gas exchange anaerobic threshold: implications for prescribing exercise in cardiac rehabilitation. J Cardiopulmonary Rehabil 1993; 13: 31–6

    Google Scholar 

  79. 79.

    Faude O, Meyer T, Urhausen A, et al. Recovery training in cyclists: ergometric, hormonal and psychometric findings. Scand J Med Sci Sports. Epub 2008 Apr 23

  80. 80.

    Weltman A, Seip RL, Snead D, et al. Exercise training at and above the lactate threshold in previously untrained women. Int J Sports Med 1992; 13 (3): 257–63

    PubMed  CAS  Google Scholar 

  81. 81.

    Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc 1997 Jun; 29 (6): 837–43

    PubMed  CAS  Google Scholar 

  82. 82.

    Scharhag J, Meyer T, Gabriel HH, et al. Does prolonged cycling of moderate intensity affect immune cell function? Br J Sports Med 2005 Mar; 39 (3): 171–7

    PubMed  CAS  Google Scholar 

  83. 83.

    Meyer T, Gabriel HH, Auracher M, et al. Metabolic profile of 4 h cycling in the field with varying amounts of carbohydrate supply. Eur J Appl Physiol 2003 Jan; 88 (4–5): 431–7

    PubMed  CAS  Google Scholar 

  84. 84.

    Meyer T, Faude O, Gabriel H, et al. Ventilatory threshold and individual anaerobic threshold are reliable prescriptors for intensity of cycling training [abstract]. Med Sci Sports Exerc 2000; 32 Suppl. 5: S171

    Google Scholar 

  85. 85.

    Baron B, Noakes TD, Dekerle J, et al. Why does exercise terminate at the maximal lactate steady state intensity? Br J Sports Med 2008 Oct; 42 (10): 528–33

    Google Scholar 

  86. 86.

    Urhausen A, Coen B, Weiler B, et al. Individual anaerobic threshold and maximum lactate steady state. Int J Sports Med 1993; 14 (3): 134–9

    PubMed  CAS  Google Scholar 

  87. 87.

    Mader A, Heck H. A theory of the metabolic origin of “anaerobic threshold”. Int J Sports Med 1986 Jun; 7 Suppl. 1: 45–65

    PubMed  Google Scholar 

  88. 88.

    Stegmann H, Kindermann W, Schnabel A. Lactate kinetics and individual anaerobic threshold. Int J Sports Med 1981; 2: 160–5

    PubMed  CAS  Google Scholar 

  89. 89.

    MacIntosh BR, Esau S, Svedahl K. The lactate minimum test for cycling: estimation of the maximal lactate steady state. Can J Appl Physiol 2002 Jun; 27 (3): 232–49

    PubMed  CAS  Google Scholar 

  90. 90.

    Lajoie C, Laurencelle L, Trudeau F. Physiological responses to cycling for 60 minutes at maximal lactate steady state. Can J Appl Physiol 2000 Aug; 25 (4): 250–61

    PubMed  CAS  Google Scholar 

  91. 91.

    McLellan TM, Jacobs I. Reliability reproducibility and validity of the individual anaerobic threshold. Eur J Appl Physiol 1993; 67 (2): 125–31

    CAS  Google Scholar 

  92. 92.

    Van Schuylenbergh R, Vanden Eynde B, Hespel P. Correlations between lactate and ventilatory thresholds and the maximal lactate steady state in elite cyclists. Int J Sports Med 2004 Aug; 25 (6): 403–8

    PubMed  Google Scholar 

  93. 93.

    Beneke R, Hutler M, Leithauser RM. Maximal lactatesteady-state independent of performance. Med Sci Sports Exerc 2000 Jun; 32 (6): 1135–9

    PubMed  CAS  Google Scholar 

  94. 94.

    Beneke R, von Duvillard SP. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc 1996 Feb; 28 (2): 241–6

    PubMed  CAS  Google Scholar 

  95. 95.

    Beneke R, Leithauser RM, Hutler M. Dependence of the maximal lactate steady state on the motor pattern of exercise. Br J Sports Med 2001 Jun; 35 (3): 192–6

    PubMed  CAS  Google Scholar 

  96. 96.

    Keul J, Simon G, Berg A, et al. Bestimmung der individuellen anaeroben Schwelle zur Leistungsbewertung und Trainingsgestaltung. Dtsch Z Sportmed 1979; 30: 212–8

    Google Scholar 

  97. 97.

    Simon G, Berg A, Dickhuth H-H, et al. Bestimmung der anaeroben Schwelle in Abhängigkeit von Alter und von der Leistungsfähigkeit. Dtsch Z Sportmed 1981; 32: 7–14

    Google Scholar 

  98. 98.

    Coen B. Individuelle anaerobe Schwelle-Methodik und Anwendung in der sportmedizinischen Leistungsdiagnostik und Trainingssteuerung leichtathletischer Laufdisziplinen. Köln: Sport und Buch Strauss, 1997

    Google Scholar 

  99. 99.

    Coen B, Schwarz L, Urhausen A, et al. Control of training in middle- and long-distance running by means of the individual anaerobic threshold. Int J Sports Med 1991; 12 (6): 519–24

    PubMed  CAS  Google Scholar 

  100. 100.

    Niess AM, Fehrenbach E, Strobel G, et al. Evaluation of stress responses to interval training at low and moderate altitudes. Med Sci Sports Exerc 2003 Feb; 35 (2): 263–9

    PubMed  Google Scholar 

  101. 101.

    Niess AM, Röcker K, Baumann I, et al. Laktatverhalten bei extensiven Tempolaufbelastungen unter Flachlandund moderaten Höhenbedingungen. Leistungssport 1999; (3): 49–53

    Google Scholar 

  102. 102.

    Faude O, Meyer T, Scharhag J, et al. Volume vs intensity in the training of competitive swimmers. Int J Sports Med 2008 Nov; 29 (11): 906–12

    PubMed  CAS  Google Scholar 

  103. 103.

    Smith CG, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol 2001 Jul; 85 (1–2): 19–26

    PubMed  CAS  Google Scholar 

  104. 104.

    Davis HA, Bassett J, Hughes P, et al. Anaerobic threshold and lactate turnpoint. Eur J Appl Physiol 1983; 50 (3): 383–92

    CAS  Google Scholar 

  105. 105.

    Urhausen A, Weiler B, Coen B, et al. Plasma catecholamines during endurance exercise of different intensities as related to the individual anaerobic threshold. Eur J Appl Physiol 1994; 69: 16–20

    CAS  Google Scholar 

  106. 106.

    Gabriel H, Kindermann W. The acute immune response to exercise: what does it mean? Int J Sports Med 1997; 18 Suppl. 1: S28–45

    PubMed  CAS  Google Scholar 

  107. 107.

    Lucia A, Sanchez O, Carvajal A, et al. Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br J Sports Med 1999 Jun; 33 (3): 178–85

    PubMed  CAS  Google Scholar 

  108. 108.

    Sjodin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 1981; 2 (1): 23–6

    PubMed  CAS  Google Scholar 

  109. 109.

    Farrell PA, Wilmore JH, Coyle EF, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports 1979; 11 (4): 338–44

    PubMed  CAS  Google Scholar 

  110. 110.

    Yoshida T, Chida M, Ichioka M, et al. Blood lactate parameters related to aerobic capacity and endurance performance. Eur J Appl Physiol 1987; 56 (1): 7–11

    CAS  Google Scholar 

  111. 111.

    Hagberg JM, Coyle EF. Physiological determinants of endurance performance as studied in competitive racewalkers. Med Sci Sports Exerc 1983; 15: 287–9

    PubMed  CAS  Google Scholar 

  112. 112.

    Jones AM, Doust JH. The validity of the lactate minimum test for determination of the maximal lactate steady state. Med Sci Sports Exerc 1998 Aug; 30 (8): 1304–13

    PubMed  CAS  Google Scholar 

  113. 113.

    Haverty M, Kenney WL, Hodgson JL. Lactate and gas exchange responses to incremental and steady state running. Br J Sports Med 1988; 22 (2): 51–4

    PubMed  CAS  Google Scholar 

  114. 114.

    Harnish CR, Swensen TC, Pate RR. Methods for estimating the maximal lactate steady state in trained cyclists. Med Sci Sports Exerc 2001 Jun; 33 (6): 1052–5

    PubMed  CAS  Google Scholar 

  115. 115.

    Beneke R. Methodological aspects of maximal lactate steady state: implications for performance testing. Eur J Appl Physiol 2003 Mar; 89 (1): 95–9

    PubMed  CAS  Google Scholar 

  116. 116.

    Billat VL, Sirvent P, Py G, et al. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med 2003; 33 (6): 407–26

    PubMed  Google Scholar 

  117. 117.

    Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc 1995; 27 (6): 863–7

    PubMed  CAS  Google Scholar 

  118. 118.

    Baron B, Dekerle J, Robin S, et al. Maximal lactate steady state does not correspond to a complete physiological steady state. Int J Sports Med 2003 Nov; 24 (8): 582–7

    PubMed  CAS  Google Scholar 

  119. 119.

    Urhausen A, Coen B, Kindermann W. Individual assessment of the aerobic-anaerobic transition by measurements of blood lactate. In: Garrett Jr WE, Kirkendall DT, editors. Exercise and sport science. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 267–75

    Google Scholar 

  120. 120.

    Mujika I, Busso T, Geyssant A, et al. Modeling the effects of training in competitive swimming. In: Troup JP, Hollander AP, Strasse D, editors. Biomechanics and medicine in swimming. London: E & FN Spon, 1996: 221–8

    Google Scholar 

  121. 121.

    Kumagai S, Tanaka K, Matsuura Y, et al. Relationships of the anaerobic threshold with the 5 km, 10 km, and 10 mile races. Eur J Appl Physiol 1982; 49 (1): 13–23

    CAS  Google Scholar 

  122. 122.

    Aunola S, Rusko H. Does anaerobic threshold correlate with maximal lactate steady-state? J Sports Sci 1992; 10 (4): 309–23

    PubMed  CAS  Google Scholar 

  123. 123.

    Weltman A, Snead D, Seip R, et al. Prediction of lactate threshold and fixed blood lactate concentrations from 3200-m running performance in male runners. Int J Sports Med 1987 Dec; 8 (6): 401–6

    PubMed  CAS  Google Scholar 

  124. 124.

    Föhrenbach R, Mader A, Hollmann W. Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int J Sports Med 1987; 8: 11–8

    PubMed  Google Scholar 

  125. 125.

    Hurley BF, Hagberg JM, Allen WK, et al. Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol 1984; 56 (5): 1260–4

    PubMed  CAS  Google Scholar 

  126. 126.

    Ivy JL, Withers RT, Van Handel PJ, et al. Muscle respiratory capacity and fiber type as determinants of the lactate threshold. J Appl Physiol 1980 Mar; 48 (3): 523–7

    PubMed  CAS  Google Scholar 

  127. 127.

    Caiozzo VJ, Davis JA, Ellis JF, et al. A comparison of gas exchange indices used to detect the anaerobic threshold. J Appl Physiol 1982; 53 (5): 1184–9

    PubMed  CAS  Google Scholar 

  128. 128.

    Tanaka H. Predicting running velocity at blood lactate threshold from running performance tests in adolescent boys. Eur J Appl Physiol 1986; 55 (4): 344–8

    CAS  Google Scholar 

  129. 129.

    Tanaka K, Matsuura Y. Marathon performance, anaerobic threshold, and onset of blood lactate accumulation. J Appl Physiol 1984; 57 (3): 640–3

    PubMed  CAS  Google Scholar 

  130. 130.

    Tanaka K, Matsuura Y, Matsuzaka A, et al. A longitudinal assessment of anaerobic threshold and distance-running performance. Med Sci Sports Exerc 1984 Jun; 16 (3): 278–82

    PubMed  CAS  Google Scholar 

  131. 131.

    Yoshida T, Udo M, Iwai K, et al. Significance of the contribution of aerobic and anaerobic components to several distance running performances in female athletes. Eur J Appl Physiol Occup Physiol 1990; 60 (4): 249–53

    PubMed  CAS  Google Scholar 

  132. 132.

    Yoshida T, Udo M, Iwai K, et al. Physiological characteristics related to endurance running performance in female distance runners. J Sports Sci 1993 Feb; 11 (1): 57–62

    PubMed  CAS  Google Scholar 

  133. 133.

    Davis JA, Vodak P, Wilmore JH, et al. Anaerobic threshold and maximal aerobic power for three modes of exercise. J Appl Physiol 1976 Oct; 41 (4): 544–50

    PubMed  CAS  Google Scholar 

  134. 134.

    Weltman J, Seip R, Levine S, et al. Prediction of lactate threshold and fixed blood lactate concentrations from 3200-m time trial running performance in untrained females. Int J Sports Med 1989 Jun; 10 (3): 207–11

    PubMed  CAS  Google Scholar 

  135. 135.

    Roecker K, Schotte O, Niess AM, et al. Predicting competition performance in long-distance running by means of a treadmill test. Med Sci Sports Exerc 1998 Oct; 30 (10): 1552–7

    PubMed  CAS  Google Scholar 

  136. 136.

    Dickhuth HH, Huonker M, Münzel T, et al. Individual anaerobic threshold for evaluation of competitive athletes and patients with left ventricular dysfunctions. In: Bachl N, Graham TE, Löllgen H, editors. Advances in ergometry. Berlin: Springer, 1991: 173–9

    Google Scholar 

  137. 137.

    Berg A, Stippig J, Keul J, et al. Zur Beurteilung der Leistungsfähigkeit und Belastbarkeit von Patienten mit coronarer Herzkrankheit. Dtsch Z Sportmed 1980; 31: 199–205

    Google Scholar 

  138. 138.

    Hughson RL, Green HJ. Blood acid-base and lactate relationships studied by ramp work tests. Med Sci Sports Exerc 1982; 14 (4): 297–302

    PubMed  CAS  Google Scholar 

  139. 139.

    Coyle EF, Martin WH, Ehsani AA, et al. Blood lactate threshold in some well-trained ischemic heart disease patients. J Appl Physiol 1983 Jan; 54 (1): 18–23

    PubMed  CAS  Google Scholar 

  140. 140.

    Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc 1998 Aug; 30 (8): 1270–5

    PubMed  CAS  Google Scholar 

  141. 141.

    Amann M, Subudhi AW, Foster C. Predictive validity of ventilatory and lactate thresholds for cycling time trial performance. Scand J Med Sci Sports 2006 Feb; 16 (1): 27–34

    PubMed  Google Scholar 

  142. 142.

    Yeh MP, Gardner RM, Adams TD, et al. “Anaerobic threshold”: problems of determination and validation. J Appl Physiol 1983 Oct; 55 (4): 1178–86

    PubMed  CAS  Google Scholar 

  143. 143.

    Bunc V, Heller J, Novack J, et al. Determination of the individual anaerobic threshold. Acta Univ Carol, Gymnica 1985; 27: 73–81

    Google Scholar 

  144. 144.

    Baldari C, Guidetti L. A simple method for individual anaerobic threshold as predictor of max lactate steady state. Med Sci Sports Exerc 2000 Oct; 32 (10): 1798–802

    PubMed  CAS  Google Scholar 

  145. 145.

    Tegtbur U, Busse MW, Braumann KM. Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sci Sports Exerc 1993 May; 25 (5): 620–7

    PubMed  CAS  Google Scholar 

  146. 146.

    Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/l lactate. Int J Sports Med 1982; 3 (2): 105–10

    PubMed  CAS  Google Scholar 

  147. 147.

    Orok CJ, Hughson RL, Green HJ, et al. Blood lactate responses in incremental exercise as predictors of constant load performance. Eur J Appl Physiol 1989; 59 (4): 262–7

    CAS  Google Scholar 

  148. 148.

    Carter H, Jones AM, Doust JH. Effect of incremental test protocol on the lactate minimum speed. Med Sci Sports Exerc 1999 Jun; 31 (6): 837–45

    PubMed  CAS  Google Scholar 

  149. 149.

    Coen B, Urhausen A, Kindermann W. Individual anaerobic threshold: methodological aspects of its assessment in running. Int J Sports Med 2001 Jan; 22 (1): 8–16

    PubMed  CAS  Google Scholar 

  150. 150.

    Weltman A, Snead D, Stein P, et al. Reliability and validity of a continuous incremental treadmill protocol for the determination of lactate threshold, fixed blood lactate concentrations, and V̇O2max. Int J Sports Med 1990; 11 (1): 26–32

    PubMed  CAS  Google Scholar 

  151. 151.

    Aunola S, Rusko H. Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. Eur J Appl Physiol 1984; 53 (3): 260–6

    CAS  Google Scholar 

  152. 152.

    Pfitzinger P, Freedson PS. The reliability of lactate measurements during exercise. Int J Sports Med 1998 Jul; 19 (5): 349–57

    PubMed  CAS  Google Scholar 

  153. 153.

    Zhou S, Weston SB. Reliability of using the D-max method to define physiological responses to incremental exercise testing. Physiol Meas 1997 May; 18 (2): 145–54

    PubMed  CAS  Google Scholar 

  154. 154.

    Takeshima N, Tanaka K. Prediction of endurance running performance for middle-aged and older runners. Br J Sports Med 1995 Mar; 29 (1): 20–3

    PubMed  CAS  Google Scholar 

  155. 155.

    Tanaka K, Matsuura Y, Kumagai S, et al. Relationships of anaerobic threshold and onset of blood lactate accumulation with endurance performance. Eur J Appl Physiol Occup Physiol 1983; 52 (1): 51–6

    PubMed  CAS  Google Scholar 

  156. 156.

    Bourdin M, Messonnier L, Hager JP, et al. Peak power output predicts rowing ergometer performance in elite male rowers. Int J Sports Med 2004 Jul; 25 (5): 368–73

    PubMed  CAS  Google Scholar 

  157. 157.

    Bjorklund G, Pettersson S, Schagatay E. Performance predicting factors in prolonged exhausting exercise of varying intensity. Eur J Appl Physiol 2007 Mar; 99 (4): 423–9

    PubMed  Google Scholar 

  158. 158.

    Grant S, Craig I, Wilson J, et al. The relationship between 3 km running performance and selected physiological variables. J Sports Sci 1997 Aug; 15 (4): 403–10

    PubMed  CAS  Google Scholar 

  159. 159.

    Fay L, Londeree BR, LaFontaine TP, et al. Physiological parameters related to distance running performance in female athletes. Med Sci Sports Exerc 1989 Jun; 21 (3): 319–24

    PubMed  CAS  Google Scholar 

  160. 160.

    Nicholson RM, Sleivert GG. Indices of lactate threshold and their relationship with 10-km running velocity. Med Sci Sports Exerc 2001 Feb; 33 (2): 339–42

    PubMed  CAS  Google Scholar 

  161. 161.

    Lehmann M, Berg A, Kapp R, et al. Correlations between laboratory testing and distance running performance in marathoners of similar performance ability. Int J Sports Med 1983 Nov; 4 (4): 226–30

    PubMed  CAS  Google Scholar 

  162. 162.

    Tanaka K, Watanabe H, Konishi Y, et al. Longitudinal associations between anaerobic threshold and distance running performance. Eur J Appl Physiol Occup Physiol 1986; 55 (3): 248–52

    PubMed  CAS  Google Scholar 

  163. 163.

    Tokmakidis SP, Leger LA, Pilianidis TC. Failure to obtain a unique threshold on the blood lactate concentration curve during exercise. Eur J Appl Physiol Occup Physiol 1998 Mar; 77 (4): 333–42

    PubMed  CAS  Google Scholar 

  164. 164.

    Stratton E, O’Brien BJ, Harvey J, et al. Treadmill velocity best predicts 5000-m run performance. Int J Sports Med 2009; 30 (1): 40–5

    PubMed  CAS  Google Scholar 

  165. 165.

    Bentley DJ, McNaughton LR, Thompson D, et al. Peak power output, the lactate threshold, and time trial performance in cyclists. Med Sci Sports Exerc 2001 Dec; 33 (12): 2077–81

    PubMed  CAS  Google Scholar 

  166. 166.

    McNaughton LR, Roberts S, Bentley DJ. The relationship among peak power output, lactate threshold, and short-distance cycling performance: effects of incremental exercise test design. J Strength Cond Res 2006 Feb; 20 (1): 157–61

    PubMed  Google Scholar 

  167. 167.

    Craig NP, Norton KI, Bourdon PC, et al. Aerobic and anaerobic indices contributing to track endurance cycling performance. Eur J Appl Physiol Occup Physiol 1993; 67 (2): 150–8

    PubMed  CAS  Google Scholar 

  168. 168.

    Nichols JF, Phares SL, Buono MJ. Relationship between blood lactate response to exercise and endurance performance in competitive female master cyclists. Int J Sports Med 1997 Aug; 18 (6): 458–63

    PubMed  CAS  Google Scholar 

  169. 169.

    Gregory J, Johns DP, Walls JT. Relative versus absolute physiological measures as predictors of mountain bike cross-country race performance. J Strength Cond Res 2007 Feb; 21 (1): 17–22

    PubMed  Google Scholar 

  170. 170.

    Impellizzeri FM, Rampinini E, Sassi A, et al. Physiological correlates to off-road cycling performance. J Sports Sci 2005 Jan; 23 (1): 41–47

    PubMed  Google Scholar 

  171. 171.

    Coyle EF. Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol 2005 Jun; 98 (6): 2191–6

    PubMed  Google Scholar 

  172. 172.

    Lucia A, Earnest C, Arribas C. The Tour de France: a physiological review. Scand J Med Sci Sports 2003 Oct; 13 (5): 275–83

    PubMed  Google Scholar 

  173. 173.

    Impellizzeri FM, Marcora SM. The physiology of mountain biking. Sports Med 2007; 37 (1): 59–71

    PubMed  Google Scholar 

  174. 174.

    Yoshida T, Udo M, Iwai K, et al. Physiological determinants of race walking performance in female race walkers. Br J Sports Med 1989 Dec; 23 (4): 250–4

    PubMed  CAS  Google Scholar 

  175. 175.

    Ingham SA, Whyte GP, Jones K, et al. Determinants of 2000 m rowing ergometer performance in elite rowers. Eur J Appl Physiol 2002 Dec; 88 (3): 243–6

    PubMed  CAS  Google Scholar 

  176. 176.

    Cosgrove MJ, Wilson J, Watt D, et al. The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. J Sports Sci 1999 Nov; 17 (11): 845–52

    PubMed  CAS  Google Scholar 

  177. 177.

    Noakes TD. The central governor model of exercise regulation applied to the marathon. Sports Med 2007; 37 (4–5): 374–7

    PubMed  Google Scholar 

  178. 178.

    Swensen TC, Harnish CR, Beitman L, et al. Noninvasive estimation of the maximal lactate steady state in trained cyclists. Med Sci Sports Exerc 1999 May; 31 (5): 742–6

    PubMed  CAS  Google Scholar 

  179. 179.

    Snyder AC, Woulfe T, Welsh R, et al. A simplified approach to estimating the maximal lactate steady state. Int J Sports Med 1994; 15 (1): 27–31

    PubMed  CAS  Google Scholar 

  180. 180.

    Kilding AE, Jones AM. Validity of a single-visit protocol to estimate the maximum lactate steady state. Med Sci Sports Exerc 2005 Oct; 37 (10): 1734–40

    PubMed  Google Scholar 

  181. 181.

    Billat V, Dalmay F, Antonini MT, et al. A method for determining the maximal steady state of blood lactate concentration from two levels of submaximal exercise. Eur J Appl Physiol Occup Physiol 1994; 69 (3): 196–202

    PubMed  CAS  Google Scholar 

  182. 182.

    Palmer AS, Potteiger JA, Nau KL, et al. A 1-day maximal lactate steady-state assessment protocol for trained runners. Med Sci Sports Exerc 1999 Sep; 31 (9): 1336–41

    PubMed  CAS  Google Scholar 

  183. 183.

    Loat CE, Rhodes EC. Relationship between the lactate and ventilatory thresholds during prolonged exercise. Sports Med 1993; 15 (2): 104–15

    PubMed  CAS  Google Scholar 

  184. 184.

    Simon J, Young JL, Gutin B, et al. Lactate accumulation relative to the anaerobic and respiratory compensation thresholds. J Appl Physiol 1983; 54 (1): 13–7

    PubMed  CAS  Google Scholar 

  185. 185.

    Yamamoto Y, Miyashita M, Hughson RL, et al. The ventilatory threshold gives maximal lactate steady state. Eur J Appl Physiol 1991; 63 (1): 55–9

    CAS  Google Scholar 

  186. 186.

    Scheen A, Juchmes J, Cession-Fossion A. Critical analysis of the“anaerobic threshold” during exercise at constant workloads. Eur J Appl Physiol Occup Physiol 1981; 46 (4): 367–77

    PubMed  CAS  Google Scholar 

  187. 187.

    Laplaud D, Guinot M, Favre-Juvin A, et al. Maximal lactate steady state determination with a single incremental test exercise. Eur J Appl Physiol 2006 Mar; 96 (4): 446–52

    PubMed  CAS  Google Scholar 

  188. 188.

    Dekerle J, Baron B, Dupont L, et al. Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol 2003 May; 89 (3–4): 281–8

    PubMed  CAS  Google Scholar 

  189. 189.

    Loat CER, Rhodes EC. Comparison of the lactate and ventilatory thresholds during prolonged work. Biol Sport 1996; 13 (1): 3–12

    Google Scholar 

  190. 190.

    Schnabel A, Kindermann W, Schmitt WM, et al. Hormonal and metabolic consequences of prolonged running at the individual anaerobic threshold. Int J Sports Med 1982; 3 (3): 163–8

    PubMed  CAS  Google Scholar 

  191. 191.

    Oyono-Enguelle S, Heitz A, Marbach J, et al. Blood lactate during constant-load exercise at aerobic and anaerobic thresholds. Eur J Appl Physiol 1990; 60 (5): 321–30

    CAS  Google Scholar 

  192. 192.

    Ribeiro JP, Hughes V, Fielding RA, et al. Metabolic and ventilatory responses to steady state exercise relative to lactate thresholds. Eur J Appl Physiol Occup Physiol 1986; 55 (2): 215–21

    PubMed  CAS  Google Scholar 

  193. 193.

    Bacon L, Kern M. Evaluating a test protocol for predicting maximum lactate steady state. J Sports Med Phys Fitness 1999 Dec; 39 (4): 300–8

    PubMed  CAS  Google Scholar 

  194. 194.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986 Feb 8; 1 (8476): 307–10

    PubMed  CAS  Google Scholar 

  195. 195.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998 Oct; 26 (4): 217–38

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are relevant to the content of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Oliver Faude.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Faude, O., Kindermann, W. & Meyer, T. Lactate Threshold Concepts. Sports Med 39, 469–490 (2009). https://doi.org/10.2165/00007256-200939060-00003

Download citation

Keywords

  • Endurance Performance
  • Lactate Threshold
  • Incremental Exercise
  • Endurance Capacity
  • Incremental Exercise Test