Bouxsein ML, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep 2006; 4 (2): 49–56
PubMed
Google Scholar
Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int 2006; 17 (3): 319–36
PubMed
CAS
Google Scholar
Seeman E, Delmas PD. Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 2006; 354 (21): 2250–61
PubMed
CAS
Google Scholar
Ottani V, Raspanti M, Ruggeri A. Collagen structure and functional implications. Micron 2001; 32 (3): 251–60
PubMed
CAS
Google Scholar
Currey JD. Changes in the impact energy absorption of bone with age. J Biomech 1979; 12 (6): 459–69
PubMed
CAS
Google Scholar
Currey JD. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 1988; 21 (2): 131–9
PubMed
CAS
Google Scholar
Currey JD, Brear K, Zioupos P. The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 1996; 29 (2): 257–60
PubMed
CAS
Google Scholar
Bailey AJ, Wotton SF, Sims TJ, et al. Post-translational modifications in the collagen of human osteoporotic femoral head. Biochem Biophys Res Commun 1992; 185 (3): 801–5
PubMed
CAS
Google Scholar
Boskey AL, Wright TM, Blank RD. Collagen and bone strength. J Bone Miner Res 1999; 14 (3): 330–5
PubMed
CAS
Google Scholar
Wang X, Bank RA, TeKoppele JM, et al. The role of collagen in determining bone mechanical properties. J Orthop Res 2001; 19 (6): 1021–6
PubMed
CAS
Google Scholar
Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech 1969; 2 (1): 1–11
PubMed
CAS
Google Scholar
Niyibizi C, Eyre DR. Structural characteristics of cross-linking sites in type V collagen of bone: chain specificities and heterotypic links to type I collagen. Eur J Biochem 1994; 224 (3): 943–50
PubMed
CAS
Google Scholar
Eyre DR, Dickson IR, Van Ness K. Collagen cross-linking in human bone and articular cartilage: age-related changes in the content of mature hydroxypyridinium residues. Biochem J 1988; 252 (2): 495–500
PubMed
CAS
Google Scholar
Fantner GE, Birkedal H, Kindt JH, et al. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone 2004; 35 (5): 1013–22
PubMed
CAS
Google Scholar
Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res 2002; 17 (9): 1621–8
PubMed
CAS
Google Scholar
Fantner GE, Hassenkam T, Kindt JH, et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 2005; 4 (8): 612–6
PubMed
CAS
Google Scholar
Hert J, Fiala P, Petrtyl M. Osteon orientation of the diaphysis of the long bones in man. Bone 1994; 15 (3): 269–77
PubMed
CAS
Google Scholar
Martin RB, Boardman DL. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech 1993; 26 (9): 1047–54
PubMed
CAS
Google Scholar
Puustjarvi K, Nieminen J, Rasanen T, et al. Do more highly organized collagen fibrils increase bone mechanical strength in loss of mineral density after one-year running training? J Bone Miner Res 1999; 14 (3): 321–9
PubMed
CAS
Google Scholar
Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003; 423 (6937): 349–55
PubMed
CAS
Google Scholar
Pavy-Le Traon A, Heer M, Narici MV, et al. From space to earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 2007; 101 (2): 143–94
PubMed
CAS
Google Scholar
Chilibeck PD, Sale DG, Webber CE. Exercise and bone mineral density. Sports Med 1995; 19 (2): 103–22
PubMed
CAS
Google Scholar
Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003; 275 (2): 1081–101
PubMed
Google Scholar
Rittweger J. What is new in neuro-musculoskeletal interactions: mechanotransduction, microdamage and repair? J Musculoskel Neuron Interact 2007; 7 (2): 191–3
CAS
Google Scholar
Rosen CJ. Bone remodeling, energy metabolism, and the molecular clock. Cell Metab 2008; 7 (1): 7–10
PubMed
CAS
Google Scholar
Lee KC, Lanyon LE. Mechanical loading influences bone mass through estrogen receptor alpha. Exerc Sport Sci Rev 2004; 32 (2): 64–8
PubMed
Google Scholar
Skerry TM. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskel Neuron Interact 2006; 6 (2): 122–7
CAS
Google Scholar
Scott A, Khan KM, Duronio V, et al. Mechanotransduction in human bone: in vitro cellular physiology that underpins bone changes with exercise. Sports Med 2008; 38 (2): 139–60
PubMed
Google Scholar
Rubin J, Rubin C, Jacobs CR. Molecular pathways mediating mechanical signaling in bone. Gene 2006; 367: 1–16
PubMed
CAS
Google Scholar
Saxon LK, Lanyon LE. Assessment of the in vivo adaptive response to mechanical loading. Method Molec Biol 2008; 455: 307–22
Google Scholar
Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec 1987; 219 (1): 1–9
PubMed
CAS
Google Scholar
Frost HM. Wolff’s law: an ‘MGS’ derivation of gamma in the Three-Way Rule for mechanically controlled lamellar bone modeling drifts. Bone Miner 1993; 22 (2): 117–27
PubMed
CAS
Google Scholar
Bailey CA, Brooke-Wavell K. Exercise for optimising peak bone mass in women. Proc Nutr Soc 2008; 67 (1): 9–18
PubMed
CAS
Google Scholar
Shaw J. Exercise for skeletal health and osteoporosis prevention: ACSM’s resource manual for guidelines for exercise testing and prescription. Philadelphia (PA): Lippincott Williams & Wilkins, 1998: 288–93
Google Scholar
Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 1, redefining Wolff’s law–the bone modeling problem. Anat Rec 1990; 226 (4): 403–13
PubMed
CAS
Google Scholar
Burr DB, Forwood MR, Fyhrie DP, et al. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 1997; 12 (1): 6–15
PubMed
CAS
Google Scholar
Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984; 66 (3): 397–402
PubMed
CAS
Google Scholar
Rubin C, Turner AS, Bain S, et al. Anabolism: low mechanical signals strengthen long bones. Nature 2001; 412 (6847): 603–4
PubMed
CAS
Google Scholar
Rubin C, Turner AS, Muller R, et al. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 2002; 17 (2): 349–57
PubMed
Google Scholar
Borer KT. Physical activity in the prevention and amelioration of osteoporosis in women: interaction of mechanical, hormonal and dietary factors. Sports Med 2005; 35 (9): 779–830
PubMed
Google Scholar
Nordström A, Karlsson C, Nyquist F, et al. Bone loss and fracture risk after reduced physical activity. J Bone Miner Res 2005; 20 (2): 202–7
PubMed
Google Scholar
WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser 1994; 843: 1–129
Google Scholar
Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women: Study of Osteoporotic Fractures Research Group. N Engl J Med 1995; 332 (12): 767–73
PubMed
CAS
Google Scholar
Kanis JA, Melton 3rd LJ, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res 1994; 9 (8): 1137–41
PubMed
CAS
Google Scholar
Mein AL, Briffa NK, Dhaliwal SS, et al. Lifestyle influences on 9-year changes in BMD in young women. J Bone Miner Res 2004; 19 (7): 1092–8
PubMed
Google Scholar
Vicente-Rodriguez G. How does exercise affect bone development during growth? Sports Med 2006; 36 (7): 561–9
PubMed
Google Scholar
Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, et al. Enhanced bone mass and physical fitness in prepubescent footballers. Bone 2003; 33 (5): 853–9
PubMed
CAS
Google Scholar
Vicente-Rodriguez G, Dorado C, Perez-Gomez J, et al. Enhanced bone mass and physical fitness in young female handball players. Bone 2004; 35 (5): 1208–15
PubMed
CAS
Google Scholar
Vicente-Rodriguez G, Dorado C, Ara I, et al. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls. Int J Sports Med 2007; 28 (5): 386–93
PubMed
CAS
Google Scholar
McVeigh JA, Norris SA, Pettifor JM. Bone mass accretion rates in pre- and early-pubertal South African black and white children in relation to habitual physical activity and dietary calcium intakes. Acta Paediatr 2007; 96 (6): 874–80
PubMed
CAS
Google Scholar
Vicente-Rodriguez G, Ara I, Perez-Gomez J, et al. High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc 2004; 36 (10): 1789–95
PubMed
Google Scholar
Wang Q, Alen M, Nicholson P, et al. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls: a 2-year longitudinal study. Bone 2007; 40 (5): 1196–202
PubMed
Google Scholar
Bradney M, Pearce G, Naughton G, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 1998; 13 (12): 1814–21
PubMed
CAS
Google Scholar
Bass SL. The prepubertal years: a uniquely opportune stage of growth when the skeleton is most responsive to exercise? Sports Med 2000; 30 (2): 73–8
PubMed
CAS
Google Scholar
Bailey DA, McKay HA, Mirwald RL, et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 1999; 14 (10): 1672–9
PubMed
CAS
Google Scholar
Greene DA, Naughton GA. Adaptive skeletal responses to mechanical loading during adolescence. Sports Med 2006; 36 (9): 723–32
PubMed
Google Scholar
Bass SL, Saxon L, Daly RM, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res 2002; 17 (12): 2274–80
PubMed
CAS
Google Scholar
Seeman E. An exercise in geometry. J Bone Miner Res 2002; 17 (3): 373–80
PubMed
Google Scholar
Kannus P, Haapasalo H, Sankelo M, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 1995; 123 (1): 27–31
PubMed
CAS
Google Scholar
Heinonen A, Sievanen H, Kannus P, et al. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int 2000; 11 (12): 1010–7
PubMed
CAS
Google Scholar
Manias K, McCabe D, Bishop N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone 2006; 39 (3): 652–7
PubMed
Google Scholar
Laing EM, Wilson AR, Modlesky CM, et al. Initial years of recreational artistic gymnastics training improves lumbar spine bone mineral accrual in 4- to 8-year-old females. J Bone Miner Res 2005; 20 (3): 509–19
PubMed
Google Scholar
Lanyon LE. Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 1996; 18 (1 Suppl.): 37S–43S
PubMed
CAS
Google Scholar
Martyn-St James M, Carroll S. Progressive high-intensity resistance training and bone mineral density changes among premenopausal women: evidence of discordant site-specific skeletal effects. Sports Med 2006; 36 (8): 683–704
PubMed
Google Scholar
Forwood MR, Turner CH. The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation. Bone 1994; 15 (6): 603–9
PubMed
CAS
Google Scholar
Pazzaglia UE, Andrini L, Di Nucci A. The effects of mechanical forces on bones and joints: experimental study on the rat tail. J Bone Joint Surg Br 1997; 79 (6): 1024–30
PubMed
CAS
Google Scholar
Robling AG, Duijvelaar KM, Geevers JV, et al. Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone 2001; 29 (2): 105–13
PubMed
CAS
Google Scholar
Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int 2002; 13 (9): 688–700
PubMed
CAS
Google Scholar
Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 2000; 80 (3): 1055–81
PubMed
CAS
Google Scholar
Van Hall G, Jensen-Urstad M, Rosdahl H, et al. Leg and arm lactate and substrate kinetics during exercise. Am J Physiol Endocrinol Metab 2003; 284 (1): E193–205
PubMed
Google Scholar
Mastorakos G, Pavlatou M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res 2005; 37 (9): 577–84
PubMed
CAS
Google Scholar
Calbet JA, Lundby C, Sander M, et al. Effects of ATP-induced leg vasodilation on VO2 peak and leg O2 extraction during maximal exercise in humans. Am J Physiol Regul Integr Comp Physiol 2006; 291 (2): R447–53
PubMed
CAS
Google Scholar
Ara I, Perez-Gomez J, Vicente-Rodriguez G, et al. Serum free testosterone, leptin and soluble leptin receptor changes in a 6-week strength-training programme. Br J Nutr 2006; 96 (6): 1053–9
PubMed
CAS
Google Scholar
Frost HM, Jee WS. On the rat model of human osteopenias and osteoporoses. Bone Miner 1992; 18 (3): 227–36
PubMed
CAS
Google Scholar
Bourrin S, Palle S, Pupier R, et al. Effect of physical training on bone adaptation in three zones of the rat tibia. J Bone Miner Res 1995; 10 (11): 1745–52
PubMed
CAS
Google Scholar
Yeh JK, Liu CC, Aloia JF. Effects of exercise and immobilization on bone formation and resorption in young rats. Am J Physiol 1993; 264 (2 Pt 1): E182–9
PubMed
CAS
Google Scholar
Hagihara Y, Fukuda S, Goto S, et al. How many days per week should rats undergo running exercise to increase BMD? J Bone Miner Metab 2005; 23 (4): 289–94
PubMed
Google Scholar
Barengolts EI, Curry DJ, Bapna MS, et al. Effects of endurance exercise on bone mass and mechanical properties in intact and ovariectomized rats. J Bone Miner Res 1993; 8 (8): 937–42
PubMed
CAS
Google Scholar
Horcajada M, Coxam V, Davicco M, et al. Influence of treadmill running on femoral bone in young orchidectomized rats. J Appl Physiol 1997; 83 (1): 129–33
PubMed
CAS
Google Scholar
van der Wiel HE, Lips P, Graafmans WC, et al. Additional weight-bearing during exercise is more important than duration of exercise for anabolic stimulus of bone: a study of running exercise in female rats. Bone 1995; 16 (1): 73–80
PubMed
Google Scholar
Bourrin S, Genty C, Palle S, et al. Adverse effects of strenuous exercise: a densitometric and histomorphometric study in the rat. J Appl Physiol 1994; 76 (5): 1999–2005
PubMed
CAS
Google Scholar
Iwamoto J, Takeda T, Sato Y. Effect of treadmill exercise on bone mass in female rats. Exp Anim 2005; 54 (1): 1–6
PubMed
CAS
Google Scholar
Wronski TJ, Yen CF. The ovariectomized rat as an animal-model for postmenopausal bone loss. Cell Mater Suppl 1991; 1: 69–74
Google Scholar
Jarvinen TL, Kannus P, Pajamaki I, et al. Estrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loading. Bone 2003; 32 (6): 642–51
PubMed
CAS
Google Scholar
Sanchis-Moysi J, Dorado C, Vicente-Rodriguez G, et al. Inter-arm asymmetry in bone mineral content and bone area in postmenopausal recreational tennis players. Maturitas 2004; 48 (3): 289–98
PubMed
CAS
Google Scholar
Calbet JA, Dorado C, Diaz-Herrera P, et al. High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc 2001; 33 (10): 1682–7
PubMed
CAS
Google Scholar
Morel J, Combe B, Francisco J, et al. Bone mineral density of 704 amateur sportsmen involved in different physical activities. Osteoporos Int 2001; 12 (2): 152–7
PubMed
CAS
Google Scholar
Calbet JA, Moysi JS, Dorado C, et al. Bone mineral content and density in professional tennis players. Calcif Tissue Int 1998; 62 (6): 491–6
PubMed
CAS
Google Scholar
Wittich A, Mautalen CA, Oliveri MB, et al. Professional football (soccer) players have a markedly greater skeletal mineral content, density and size than age- and BMI-matched controls. Calcif Tissue Int 1998; 63 (2): 112–7
PubMed
CAS
Google Scholar
Egan E, Reilly T, Giacomoni M, et al. Bone mineral density among female sports participants. Bone 2006; 38 (2): 227–33
PubMed
Google Scholar
Nichols JF, Rauh MJ, Barrack MT, et al. Bone mineral density in female high school athletes: interactions of menstrual function and type of mechanical loading. Bone 2007; 41 (3): 371–7
PubMed
Google Scholar
Alfredson H, Nordström P, Lorentzon R. Total and regional bone mass in female soccer players. Calcif Tissue Int 1996; 59 (6): 438–42
PubMed
CAS
Google Scholar
Ducher G, Prouteau S, Courteix D, et al. Cortical and trabecular bone at the forearm show different adaptation patterns in response to tennis playing. J Clin Densitom 2004; 7 (4): 399–405
PubMed
Google Scholar
Karlsson MK. Skeletal effects of exercise in men. Calcif Tissue Int 2001; 69 (4): 196–9
PubMed
CAS
Google Scholar
Layne JE, Nelson ME. The effects of progressive resistance training on bone density: a review. Med Sci Sports Exerc 1999; 31 (1): 25–30
PubMed
CAS
Google Scholar
Nichols DL, Sanborn CF, Essery EV. Bone density and young athletic women: an update. Sports Med 2007; 37 (11): 1001–14
PubMed
Google Scholar
Karlsson M. Has exercise an antifracture efficacy in women? Scand J Med Sci Sports 2004; 14 (1): 2–15
PubMed
Google Scholar
Daly RM, Rich PA, Klein R, et al. Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: a prospective study in young male gymnasts. J Bone Miner Res 1999; 14 (7): 1222–30
PubMed
CAS
Google Scholar
Taaffe DR, Snow-Harter C, Connolly DA, et al. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. J Bone Miner Res 1995; 10 (4): 586–93
PubMed
CAS
Google Scholar
Hawkey A. The importance of exercising in space. Interdiscip Sci Rev 2003; 28 (2): 130–8
PubMed
Google Scholar
Perez-Gomez J, Olmedillas H, Delgado-Guerra S, et al. Effects of weight lifting training combined with plyometric exercises on physical fitness, body composition, and knee extension velocity during kicking in football. Appl Physiol Nutr Metab 2008; 33 (3): 501–10
PubMed
CAS
Google Scholar
Kellis E, Katis A, Vrabas IS. Effects of an intermittent exercise fatigue protocol on biomechanics of soccer kick performance. Scand J Med Sci Sports 2006; 16 (5): 334–44
PubMed
CAS
Google Scholar
Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab 1993; 77 (3): 770–5
PubMed
CAS
Google Scholar
Kannus P, Haapasalo H, Sievanen H, et al. The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone 1994; 15 (3): 279–84
PubMed
CAS
Google Scholar
Haapasalo H, Kannus P, Sievanen H, et al. Long-term unilateral loading and bone mineral density and content in female squash players. Calcif Tissue Int 1994; 54 (4): 249–55
PubMed
CAS
Google Scholar
Ducher G, Tournaire N, Meddahi-Pelle A, et al. Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius. J Bone Miner Metab 2006; 24 (6): 484–90
PubMed
Google Scholar
Vicente-Rodriguez G. How does exercise affect bone development during growth? Sports Med 2006; 36 (7): 561–9
PubMed
Google Scholar
Calbet JA, Dorado C, Diaz-Herrera P, et al. High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc 2001; 33 (10): 1682–7
PubMed
CAS
Google Scholar
Egan E, Reilly T, Giacomoni M, et al. Bone mineral density among female sports participants. Bone 2006; 38 (2): 227–33
PubMed
Google Scholar
Ng MY, Sham PC, Paterson AD, et al. Effect of environmental factors and gender on the heritability of bone mineral density and bone size. Ann Hum Genet 2006; 70 (Pt 4): 428–38
PubMed
CAS
Google Scholar
Kemper HC, Post GB, Twisk JW, et al. Lifestyle and obesity in adolescence and young adulthood: results from the Amsterdam Growth And Health Longitudinal Study (AGAHLS). Int J Obes Relat Metab Disord 1999; 23 Suppl. 3: S34–40
PubMed
Google Scholar
Armstrong N, Welsman JR. The physical activity patterns of European youth with reference to methods of assessment. Sports Med 2006; 36 (12): 1067–86
PubMed
Google Scholar
Tanner JM. Principles of growth standards. Acta Paediatr Scand 1990; 79 (10): 963–7
PubMed
CAS
Google Scholar
Friedlander AL, Genant HK, Sadowsky S, et al. A two-year program of aerobics and weight training enhances bone mineral density of young women. J Bone Miner Res 1995; 10 (4): 574–85
PubMed
CAS
Google Scholar
Schroeder ET, Hawkins SA, Jaque SV. Musculoskeletal adaptations to 16 weeks of eccentric progressive resistance training in young women. J Strength Cond Res 2004; 18 (2): 227–35
PubMed
Google Scholar
Hawkins SA, Schroeder ET, Wiswell RA, et al. Eccentric muscle action increases site-specific osteogenic response. Med Sci Sports Exerc 1999; 31 (9): 1287–92
PubMed
CAS
Google Scholar
Nickols-Richardson SM, Miller LE, Wootten DF, et al. Concentric and eccentric isokinetic resistance training similarly increases muscular strength, fat-free soft tissue mass, and specific bone mineral measurements in young women. Osteoporos Int 2007; 18 (6): 789–96
PubMed
CAS
Google Scholar
Kato T, Terashima T, Yamashita T, et al. Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol 2006; 100 (3): 839–43
PubMed
Google Scholar
Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporos Int 1994; 4 (2): 72–5
PubMed
CAS
Google Scholar
Sinaki M, Wahner HW, Bergstralh EJ, et al. Three-year controlled, randomized trial of the effect of dose-specified loading and strengthening exercises on bone mineral density of spine and femur in nonathletic, physically active women. Bone 1996; 19 (3): 233–44
PubMed
CAS
Google Scholar
Chilibeck PD, Calder A, Sale DG, et al. Twenty weeks of weight training increases lean tissue mass but not bone mineral mass or density in healthy, active young women. Can J Physiol Pharmacol 1996; 74 (10): 1180–5
PubMed
CAS
Google Scholar
Nindl BC, Harman EA, Marx JO, et al. Regional body composition changes in women after 6 months of periodized physical training. J Appl Physiol 2000; 88 (6): 2251–9
PubMed
CAS
Google Scholar
Lohman T, Going S, Pamenter R, et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995; 10 (7): 1015–24
PubMed
CAS
Google Scholar
Vainionpää A, Korpelainen R, Leppaluoto J, et al. Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int 2005; 16 (2): 191–7
PubMed
Google Scholar
Winters-Stone KM, Snow CM. Site-specific response of bone to exercise in premenopausal women. Bone 2006; 39 (6): 1203–9
PubMed
Google Scholar
Heinonen A, Kannus P, Sievanen H, et al. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 1996; 348 (9038): 1343–7
PubMed
CAS
Google Scholar
Kohrt WM, Bloomfield SA, Little KD, et al. American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc 2004; 36 (11): 1985–96
PubMed
Google Scholar
Deschenes MR, Kraemer WJ. Performance and physiologic adaptations to resistance training. Am J Phys Med Rehabil 2002; 81 (11 Suppl.): S3–16
PubMed
Google Scholar
Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 2004; 36 (4): 674–88
PubMed
Google Scholar
Kraemer WJ, Mazzetti SA, Nindl BC, et al. Effect of resistance training on women’s strength/power and occupational performances. Med Sci Sports Exerc 2001; 33 (6): 1011–25
PubMed
CAS
Google Scholar
Kraemer WJ, Nindl BC, Ratamess NA, et al. Changes in muscle hypertrophy in women with periodized resistance training. Med Sci Sports Exerc 2004; 36 (4): 697–708
PubMed
Google Scholar
Uusi-Rasi K, Sievanen H, Pasanen M, et al. Association of physical activity and calcium intake with the maintenance of bone mass in premenopausal women. Osteoporos Int 2002; 13 (3): 211–7
PubMed
CAS
Google Scholar
Snow-Harter C, Bouxsein ML, Lewis BT, et al. Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res 1992; 7 (7): 761–9
PubMed
CAS
Google Scholar
Mayhew TP, Rothstein JM, Finucane SD, et al. Muscular adaptation to concentric and eccentric exercise at equal power levels. Med Sci Sports Exerc 1995; 27 (6): 868–73
PubMed
CAS
Google Scholar
Gilsanz V, Wren TA, Sanchez M, et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 2006; 21 (9): 1464–74
PubMed
Google Scholar
Fujimura R, Ashizawa N, Watanabe M, et al. Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism. J Bone Miner Res 1997; 12 (4): 656–62
PubMed
CAS
Google Scholar
Hartman JW, Tang JE, Wilkinson SB, et al. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr 2007; 86 (2): 373–81
PubMed
CAS
Google Scholar
Ballard TL, Specker BL, Binkley TL, et al. Effect of protein supplementation during a 6-month strength and conditioning program on areal and volumetric bone parameters. Bone 2006; 38 (6): 898–904
PubMed
CAS
Google Scholar
Ryan AS, Ivey FM, Hurlbut DE, et al. Regional bone mineral density after resistive training in young and older men and women. Scand J Med Sci Sports 2004; 14 (1): 16–23
PubMed
Google Scholar
Mullins NM, Sinning WE. Effects of resistance training and protein supplementation on bone turnover in young adult women. Nutr Metab (Lond) 2005; 2: 19
Google Scholar
Torvinen S, Kannus P, Sievanen H, et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 2003; 18 (5): 876–84
PubMed
Google Scholar
Beck BR, Kent K, Holloway L, et al. Novel, high-frequency, low-strain mechanical loading for pre-menopausal women with low bone mass: early findings. J Bone Mineral Metab 2006; 24 (6): 505–7
Google Scholar
Menkes A, Mazel S, Redmond RA, et al. Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men. J Appl Physiol 1993; 74 (5): 2478–84
PubMed
CAS
Google Scholar
Huuskonen J, Vaisanen SB, Kroger H, et al. Regular physical exercise and bone mineral density: a four-year controlled randomized trial in middle-aged men — the DNASCO study. Osteoporos Int 2001; 12 (5): 349–55
PubMed
CAS
Google Scholar
Stewart KJ, Bacher AC, Hees PS, et al. Exercise effects on bone mineral density relationships to changes in fitness and fatness. Am J Prev Med 2005; 28 (5): 453–60
PubMed
Google Scholar
Madeo B, Zirilli L, Caffagni G, et al. The osteoporotic male: overlooked and undermanaged? Clin Interv Aging 2007; 2 (3): 305–12
PubMed
Google Scholar
Hui SL, Slemenda CW, Johnston Jr CC, et al. The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1990; 1 (1): 30–4
PubMed
CAS
Google Scholar
Jones HH, Priest JD, Hayes WC, et al. Humeral hypertrophy in response to exercise. J Bone Joint Surg Am 1977; 59 (2): 204–8
PubMed
CAS
Google Scholar
Province MA, Hadley EC, Hornbrook MC, et al. The effects of exercise on falls in elderly patients: a preplanned meta-analysis of the FICSIT Trials. Frailty and injuries: cooperative studies of intervention techniques. JAMA 1995; 273 (17): 1341–7
PubMed
CAS
Google Scholar
Paganini-Hill A, Chao A, Ross RK, et al. Exercise and other factors in the prevention of hip fracture: the Leisure World study. Epidemiology 1991; 2 (1): 16–25
PubMed
CAS
Google Scholar
Wyshak G, Frisch RE, Albright TE, et al. Bone fractures among former college athletes compared with nonathletes in the menopausal and postmenopausal years. Obstet Gynecol 1987; 69 (1): 121–6
PubMed
CAS
Google Scholar
Nelson ME, Fiatarone MA, Morganti CM, et al. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures: a randomized controlled trial. JAMA 1994; 272 (24): 1909–14
PubMed
CAS
Google Scholar
Kerr D, Morton A, Dick I, et al. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 1996; 11 (2): 218–25
PubMed
CAS
Google Scholar
Kohrt WM, Snead DB, Slatopolsky E, et al. Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J Bone Miner Res 1995; 10 (9): 1303–11
PubMed
CAS
Google Scholar
Stengel SV, Kemmler W, Pintag R, et al. Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 2005; 99 (1): 181–8
PubMed
CAS
Google Scholar
Chien MY, Wu YT, Hsu AT, et al. Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women. Calcif Tissue Int 2000; 67 (6): 443–8
PubMed
CAS
Google Scholar
Kohrt WM, Ehsani AA, Birge Jr SJ, et al. Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Miner Res 1997; 12 (8): 1253–61
PubMed
CAS
Google Scholar
Verschueren SM, Roelants M, Delecluse C, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 2004; 19 (3): 352–9
PubMed
Google Scholar
Pruitt LA, Jackson RD, Bartels RL, et al. Weight-training effects on bone mineral density in early postmenopausal women. J Bone Miner Res 1992; 7 (2): 179–85
PubMed
CAS
Google Scholar
Maddalozzo GF, Snow CM. High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int 2000; 66 (6): 399–404
PubMed
CAS
Google Scholar
Ryan AS, Treuth MS, Rubin MA, et al. Effects of strength training on bone mineral density: hormonal and bone turnover relationships. J Appl Physiol 1994; 77 (4): 1678–84
PubMed
CAS
Google Scholar
Ryan AS, Treuth MS, Hunter GR, et al. Resistive training maintains bone mineral density in postmenopausal women. Calcif Tissue Int 1998; 62 (4): 295–9
PubMed
CAS
Google Scholar
Bassey EJ, Rothwell MC, Littlewood JJ, et al. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 1998; 13 (12): 1805–13
PubMed
CAS
Google Scholar
Sugiyama T, Yamaguchi A, Kawai S. Effects of skeletal loading on bone mass and compensation mechanism in bone: a new insight into the “mechanostat” theory. J Bone Miner Metab 2002; 20 (4): 196–200
PubMed
Google Scholar
Palombaro KM. Effects of walking-only interventions on bone mineral density at various skeletal sites: a metaanalysis. J Geriatr Phys Ther 2005; 28 (3): 102–7
PubMed
Google Scholar
Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech 1993; 26 (8): 969–90
PubMed
CAS
Google Scholar
Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskel Disord 2006; 7: 92
Google Scholar
Rubin C, Recker R, Cullen D, et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 2004; 19 (3): 343–51
PubMed
Google Scholar
Zehnacker CH, Bemis-Dougherty A. Effect of weighted exercises on bone mineral density in post menopausal women: a systematic review. J Geriatr Phys Ther 2007; 30 (2): 79–88
PubMed
Google Scholar
Englund U, Littbrand H, Sondell A, et al. The beneficial effects of exercise on BMD are lost after cessation: a 5-year follow-up in older post-menopausal women. Scand J Med Sci Sports. Epub 2008 May 22
Mackey DC, Lui LY, Cawthon PM, et al. High-trauma fractures and low bone mineral density in older women and men. JAMA 2007; 298 (20): 2381–8
PubMed
CAS
Google Scholar
Frost HM. Some effects of basic multicellular unit-based remodelling on photon absorptiometry of trabecular bone. Bone Miner 1989; 7 (1): 47–65
PubMed
CAS
Google Scholar
Forwood MR, Burr DB. Physical activity and bone mass: exercises in futility? Bone Miner 1993; 21 (2): 89–112
PubMed
CAS
Google Scholar