Physiological Differences Between Cycling and Running

Lessons from Triathletes

Abstract

The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V̇O2max), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow,muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V̇O2max on treadmill whereas cyclists can achieve a V̇O2max value in cycle ergometry similar to that in treadmill running. Hence, V̇O2max is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V̇O2max. However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V̇O2max measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V̇O2max in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V̇O2max and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.

This is a preview of subscription content, log in to check access.

Table I
Table II
Table III

References

  1. 1.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol 2008 Jan 1; 586 (1): 35–44

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Loy SF, Hoffmann JJ, Holland GJ. Benefits and practical use of cross-training in sports. Sports Med 1995 Jan; 19(1): 1–8

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Tanaka H. Effects of cross-training: transfer of training effects on VO2max between cycling, running and swimming. Sports Med 1994 Nov; 18 (5): 330–9

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Sleivert GG, Rowlands DS. Physical and physiological factors associated with success in the triathlon. Sports Med 1996 Jul; 22 (1): 8–18

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Pechar GS, McArdle WD, Katch FI, et al. Specificity of cardiorespiratory adaptation to bicycle and treadmill training. J Appl Physiol 1974 Jun; 36 (6): 753–6

    PubMed  CAS  Google Scholar 

  6. 6.

    Withers RT, Sherman WM, Miller JM, et al. Specificity of the anaerobic threshold in endurance trained cyclists and runners. Eur J Appl Physiol Occup Physiol 1981; 47 (1): 93–104

    PubMed  CAS  Article  Google Scholar 

  7. 7.

    Fernhall B, Kohrt W. The effect of training specificity on maximal and submaximal physiological responses to treadmill and cycle ergometry. J Sports Med Phys Fitness 1990 Sep; 30 (3): 268–75

    PubMed  CAS  Google Scholar 

  8. 8.

    Basset FA, Boulay MR. Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur J Appl Physiol 2000 Feb; 81 (3): 214–21

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Hue O, Le Gallais D, Chollet D, et al. Ventilatory threshold and maximal oxygen uptake in present triathletes. Can J Appl Physiol 2000 Apr; 25 (2): 102–13

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Schneider DA, Lacroix KA, Atkinson GR, et al. Ventilatory threshold and maximal oxygen uptake during cycling and running in triathletes. Med Sci Sports Exerc 1990 Apr; 22 (2): 257–64

    PubMed  CAS  Google Scholar 

  11. 11.

    Millet GP, Dreano P, Bentley DJ. Physiological characteristics of elite short- and long-distance triathletes. Eur J Appl Physiol 2003 Jan; 88 (4-5): 427–30

    PubMed  Article  Google Scholar 

  12. 12.

    Kreider RB. Ventilatory threshold in swimming, cycling and running in triathletes. Int J Sports Med 1988; 9: 147–8

    Google Scholar 

  13. 13.

    Millet GP, Candau RB, Barbier B, et al. Modelling the transfers of training effects on performance in elite triathletes. Int J Sports Med 2002 Jan; 23 (1): 55–63

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Astrand PO, Saltin B. Maximal oxygen uptake and heart rate in various types of muscular activity. J Appl Physiol 1961 Nov; 16: 977–81

    PubMed  CAS  Google Scholar 

  15. 15.

    Saltin B. The interplay between peripheral and central factors in the adaptive response to exercise and training. Ann N Y Acad Sci 1977; 301: 224–31

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Saltin B, Nazar K, Costill DL, et al. The nature of the training response; peripheral and central adaptations ofone-legged exercise. Acta Physiol Scand 1976 Mar; 96 (3): 289–305

    PubMed  CAS  Article  Google Scholar 

  17. 17.

    Gleser MA, Horstman DH, Mello RP. The effect on VO2max of adding arm work to maximal leg work. Med Sci Sports 1974 Summer; 6 (2): 104–7

    PubMed  CAS  Google Scholar 

  18. 18.

    Secher NH, Ruberg-Larsen N, Binkhorst RA, et al. Maximal oxygen uptake during arm cranking and combined arm plus leg exercise. J Appl Physiol 1974 May; 36 (5): 515–8

    PubMed  CAS  Google Scholar 

  19. 19.

    Reybrouck T, Heigenhauser GF, Faulkner JA. Limitations to maximum oxygen uptake in arms, leg, and combined arm-leg ergometry. J Appl Physiol 1975 May; 38(5): 774–9

    PubMed  CAS  Google Scholar 

  20. 20.

    Stenberg J, Astrand PO, Ekblom B, et al. Hemodynamic response to work with different muscle groups, sitting and supine. J Appl Physiol 1967 Jan; 22 (1): 61–70

    PubMed  CAS  Google Scholar 

  21. 21.

    Hermansen L, Saltin B. Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol 1969 Jan; 26(1): 31–7

    PubMed  CAS  Google Scholar 

  22. 22.

    Hermansen L, Ekblom B, Saltin B. Cardiac output during submaximal and maximal treadmill and bicycle exercise. J Appl Physiol 1970 Jul; 29 (1): 82–6

    PubMed  CAS  Google Scholar 

  23. 23.

    McArdle WD, Magel JR. Physical work capacity and maximum oxygen uptake in treadmill and bicycle exercise. Med Sci Sports 1970 Fall; 2 (3): 118–23

    PubMed  CAS  Google Scholar 

  24. 24.

    Faulkner JA, Roberts DE, Elk RL, et al. Cardiovascular responses to submaximum and maximum effort cycling and running. J Appl Physiol 1971 Apr; 30 (4): 457–61

    PubMed  CAS  Google Scholar 

  25. 25.

    Katch FI, McArdle WD, Pechar GS. Relationship of maximal leg force and leg composition to treadmill andbicycle ergometer maximum oxygen uptake. Med Sci Sports 1974 Spring; 6 (1): 38–43

    PubMed  CAS  Google Scholar 

  26. 26.

    Davis JA, Vodak P, Wilmore JH, et al. Anaerobic threshold and maximal aerobic power for three modes of exercise. J Appl Physiol 1976 Oct; 41 (4): 544–50

    PubMed  CAS  Google Scholar 

  27. 27.

    Hagberg JM, Giese MD, Schneider RB. Comparison of the three procedures for measuring VO2max in competitive cyclists. Eur J Appl Physiol Occup Physiol 1978 Jul 17; 39 (1): 47–52

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Matsui H, Kitamura K, Miyamura M. Oxygen uptake and blood flow of the lower limb in maximal treadmill and bicycle exercise. Eur J Appl Physiol Occup Physiol 1978 Dec 15; 40 (1): 57–62

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Miles DS, Critz JB, Knowlton RG. Cardiovascular, metabolic, and ventilatory responses of women to equivalent cycle ergometer and treadmill exercise. Med Sci Sports Exerc 1980 Spring; 12 (1): 14–9

    PubMed  CAS  Google Scholar 

  30. 30.

    Moreira-da-Costa M, Russo AK, Picarro IC, et al. Maximal oxygen uptake during exercise using trained or untrained muscles. Braz J Med Biol Res 1984; 17 (2): 197–202

    PubMed  CAS  Google Scholar 

  31. 31.

    Jacobs I, Sjodin B. Relationship of ergometer-specific VO2max and muscle enzymes to blood lactate during submaximal exercise. Br J Sports Med 1985 Jun; 19 (2): 77–80

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Moreira-da-Costa M, Russo AK, Picarro IC, et al. Oxygen consumption and ventilation during constant-load exercise in runners and cyclists. J Sports Med Phys Fitness 1989 Mar; 29 (1): 36–44

    Google Scholar 

  33. 33.

    Green HJ, Sutton J, Young P, et al. Operation Everest II: muscle energetics during maximal exhaustive exercise. J Appl Physiol 1989 Jan; 66 (1): 142–50

    PubMed  CAS  Google Scholar 

  34. 34.

    Bouckaert J, Vrijens J, Pannier JL. Effect of specific test procedures on plasma lactate concentration and peak oxygen uptake in endurance athletes. J Sports Med Phys Fitness 1990 Mar; 30 (1): 13–8

    PubMed  CAS  Google Scholar 

  35. 35.

    Hill DW, Halcomb JN, Stevens EC. Oxygen uptake kinetics during severe intensity running and cycling. Eur J Appl Physiol 2003 Aug; 89 (6): 612–8

    PubMed  Article  Google Scholar 

  36. 36.

    Scott CB, Littlefield ND, Chason JD, et al. Differences in oxygen uptake but equivalent energy expenditure between a brief bout of cycling and running. Nutr Metab (Lond) 2006; 3: 1

    Article  Google Scholar 

  37. 37.

    Bentley DJ, Newell J, Bishop D. Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Med 2007; 37 (7): 575–86

    PubMed  Article  Google Scholar 

  38. 38.

    Midgley AW, Bentley DJ, Luttikholt H, et al. Challenging a dogma of exercise physiology: does an incremental exercise test for valid determination really need to last between 8-12 minutes? Sports Med 2008; 38 (6): 441–63

    PubMed  Article  Google Scholar 

  39. 39.

    Stromme SB, Ingjer F, Meen HD. Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 1977 Jun; 42 (6): 833–7

    PubMed  CAS  Google Scholar 

  40. 40.

    Ricci J, Leger LA. VO2max of cyclists from treadmill, bicycle ergometer and velodrome tests. Eur J Appl PhysiolOccup Physiol 1983; 50 (2): 283–9

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Coyle EF, Coggan AR, Hopper MK, et al. Determinants of endurance in well-trained cyclists. J Appl Physiol 1988 Jun; 64 (6): 2622–30

    PubMed  CAS  Google Scholar 

  42. 42.

    Mazzeo RS, Marshall P. Influence of plasma catecholamines on the lactate threshold during graded exercise. J Appl Physiol 1989 Oct; 67 (4): 1319–22

    PubMed  CAS  Google Scholar 

  43. 43.

    Kravitz L, Robergs RA, Heyward VH, et al. Exercise mode and gender comparisons of energy expenditure at self-selected intensities. Med Sci Sports Exerc 1997 Aug; 29(8): 1028–35

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Zeni AI, Hoffman MD, Clifford PS. Energy expenditure with indoor exercise machines. JAMA 1996 May 8; 275(18): 1424–7

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Sedlock DA. Post-exercise energy expenditure after cycle ergometer and treadmill exercise. J Appl Sport Sci Res 1992; 6: 19–23

    Google Scholar 

  46. 46.

    Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev 1995; 23: 25–63

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004 Sep; 287 (3): R502–16

    Article  Google Scholar 

  48. 48.

    Loat CE, Rhodes EC. Relationship between the lactate and ventilatory thresholds during prolonged exercise. Sports Med 1993 Feb; 15 (2): 104–15

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Svedahl K, MacIntosh BR. Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol 2003 Apr; 28 (2): 299–323

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Hawley JA, Stepto NK. Adaptations to training in endurance cyclists: implications for performance. Sports Med 2001; 31 (7): 511–20

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Hassmen P. Perceptual and physiological responses to cycling and running in groups of trained and untrained subjects. Eur J Appl Physiol Occup Physiol 1990; 60 (6): 445–51

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Albrecht TL, Foster VL, Dickinson AL. Triathletes: exercise parameters measured during bicycle, swim bench,and treadmill testing [abstract]. Med Sci Sports Exerc 1986; 18: S86

    Google Scholar 

  53. 53.

    Kohrt WM, Morgan DW, Bates B, et al. Physiological responses of triathletes to maximal swimming, cycling, and running. Med Sci Sports Exerc 1987 Feb; 19 (1): 51–5

    PubMed  CAS  Google Scholar 

  54. 54.

    O’Toole ML, Hiller DB, Crosby LO, et al. The ultra-endurance triathlete: a physiological profile. Med Sci Sports Exerc 1987 Feb; 19 (1): 45–50

    PubMed  Google Scholar 

  55. 55.

    O’Toole M, Hiller WDB, Douglas PS. Cardiovascular responses to prolonged cycling and running. Ann Sports Med 1987; 3: 124–30

    Google Scholar 

  56. 56.

    Roalstad MS. Physiologic testing of the ultra-endurance triathlete. Med Sci Sports Exerc 1989 Oct; 21 (5 Suppl.): S200–4

    Google Scholar 

  57. 57.

    Flynn MG, Costill DL, Kirwan JP, et al. Muscle fiber composition and respiratory capacity in triathletes. Int J Sports Med 1987 Dec; 8 (6): 383–6

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Kreider RB, Boone T, Thompson WR, et al. Cardiovascular and thermal responses of triathlon performance. Med Sci Sports Exerc 1988 Aug; 20 (4): 385–90

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Loftin M, Warren BL, Zingraf S, et al. Peak physiological function and performance of recreational triathletes. J Sports Med Phys Fitness 1988 Dec; 28 (4): 330–5

    PubMed  CAS  Google Scholar 

  60. 60.

    Dengel DR, Flynn MG, Costill DL, et al. Determinants of success during triathlon competition. Res Q Exerc Sport 1989 Sep; 60 (3): 234–8

    PubMed  CAS  Google Scholar 

  61. 61.

    Stein TP, Hoyt RW, Toole MO, et al. Protein and energy metabolism during prolonged exercise in trained athletes. Int J Sports Med 1989 Oct; 10 (5): 311–6

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Kohrt WM, O’Connor JS, Skinner JS. Longitudinal assessment of responses by triathletes to swimming, cycling, and running. Med Sci Sports Exerc 1989 Oct; 21 (5): 569–75

    PubMed  CAS  Google Scholar 

  63. 63.

    Millard-Stafford M, Sparling PB, Rosskopf LB, et al. Carbohydrate-electrolyte replacement during a simulated triathlon in the heat. Med Sci Sports Exerc 1990 Oct; 22(5): 621–8

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Rehrer NJ, Brouns F, Beckers EJ, et al. Gastric emptying with repeated drinking during running and bicycling. Int J Sports Med 1990 Jun; 11 (3): 238–43

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Butts NK, Henry BA, McLean D. Correlations between VO2max and performance times of recreational triathletes. J Sports Med Phys Fitness 1991 Sep; 31 (3): 339–44

    PubMed  CAS  Google Scholar 

  66. 66.

    Deitrick RW. Physiological responses of typical versus heavy weight triathletes to treadmill and bicycle exercise. J Sports Med Phys Fitness 1991 Sep; 31 (3): 367–75

    PubMed  CAS  Google Scholar 

  67. 67.

    Medelli J, Maingourd Y, Bouferrache B, et al. Maximal oxygen uptake and aerobic-anaerobic transition on treadmill and bicycle in triathletes. Jpn J Physiol 1993; 43(3): 347–60

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Sleivert GG, Wenger HA. Physiological predictors of short-course triathlon performance. Med Sci Sports Exerc 1993 Jul; 25 (7): 871–6

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Miura H, Ishiko T. Cardiorespiratory responses during a simulated triathlon. International council for health, physical education and recreation (ICHPER) 36th World Congress; 1993; Yokohama: 157–61

    Google Scholar 

  70. 70.

    Murdoch SD, Bazzarre TL, Snider IP, et al. Differences in the effects of carbohydrate food form on endurance performance to exhaustion. Int J Sport Nutr 1993 Mar; 3 (1): 41–54

    PubMed  CAS  Google Scholar 

  71. 71.

    Miura H, Kitagawa K, Ishiko T, et al. Characteristics of VO2max and ventilatory threshold in triathletes. Jpn J Exerc Sports Physiol 1994; 1 (1): 99–106

    Google Scholar 

  72. 72.

    Zhou S, Robson SJ, King MJ, et al. Correlations between short-course triathlon performance and physiological variables determined in laboratory cycle and treadmill tests. J Sports Med Phys Fitness 1997 Jun; 37 (2): 122–30

    PubMed  CAS  Google Scholar 

  73. 73.

    Roberts A, McElligott M. The relationship between strength and endurance in female triathletes. NSRC Scientific Report. Canberra (ACT): University of Canberra, 1995

    Google Scholar 

  74. 74.

    Ruby B, Robergs R, Leadbetter G, et al. Cross-training between cycling and running in untrained females. J Sports Med Phys Fitness 1996 Dec; 36 (4): 246–54

    PubMed  CAS  Google Scholar 

  75. 75.

    Kerr CG, Trappe TA, Starling RD, et al. Hyperthermia during Olympic triathlon: influence of body heat storage during the swimming stage. Med Sci Sports Exerc 1998 Jan; 30 (1): 99–104

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Derman KD, Hawley JA, Noakes TD, et al. Fuel kinetics during intense running and cycling when fed carbohydrate. Eur J Appl Physiol Occup Physiol 1996; 74 (1-2): 36–43

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Miura H, Kitagawa K, Ishiko T. Economy during a simulated laboratory test triathlon is highly related to Olympic distance triathlon. Int J Sports Med 1997 May; 18 (4): 276–80

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Hue O, Le Gallais D, Chollet D, et al. The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. Eur J Appl Physiol Occup Physiol 1998; 77 (1-2): 98–105

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Hue O, Le Gallais D, Boussana A, et al. Ventilatory responses during experimental cycle-run transition in triathletes. Med Sci Sports Exerc 1999 Oct; 31 (10): 1422–8

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Miura H, Kitagawa K, Ishiko T. Characteristic feature of oxygen cost at simulated laboratory triathlon test intrained triathletes. J Sports Med Phys Fitness 1999 Jun; 39(2): 101–6

    PubMed  CAS  Google Scholar 

  81. 81.

    Schabort EJ, Killian SC, St Clair Gibson A, et al. Prediction of triathlon race time from laboratory testing in national triathletes. Med Sci Sports Exerc 2000 Apr; 32 (4): 844–9

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Hue O, Le Gallais D, Boussana A, et al. Performance level and cardiopulmonary responses during a cycle-run trial. Int J Sports Med 2000 May; 21 (4): 250–5

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Toraa M, Friemel F. Fatigue of the respiratory muscles due to maximal exercise on 2 different ergometers. Can J Appl Physiol 2000 Apr; 25 (2): 87–101

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Hue O, Le Gallais D, Boussana A, et al. Catecholamine, blood lactate and ventilatory responses to multi-cycle-run blocks. Med Sci Sports Exerc 2000 Sep; 32 (9): 1582–6

    PubMed  CAS  Google Scholar 

  85. 85.

    Hue O, Le Gallais D, Prefaut C. Specific pulmonary responses during the cycle-run succession in triathletes. Scand J Med Sci Sports 2001 Dec; 11 (6): 355–61

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Hue O, Galy O, Le Gallais D, et al. Pulmonary responses during the cycle-run succession in elite and competitive triathletes. Can J Appl Physiol 2001 Dec; 26 (6): 559–73

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Vercruyssen F, Brisswalter J, Hausswirth C, et al. Influence of cycling cadence on subsequent running performance in triathletes. Med Sci Sports Exerc 2002 Mar; 34 (3): 530–6

    PubMed  Article  Google Scholar 

  88. 88.

    Basset F, Boulay MR. Treadmill and cycle ergometer tests are interchangeable to monitor triathletes annual training. J Sports Sci Med 2003; 2 (3): 110–6

    Google Scholar 

  89. 89.

    Vercruyssen F, Suriano R, Bishop D, et al. Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue. Br J Sports Med 2005 May; 39 (5): 267–72

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Schneider DA, Pollack J. Ventilatory threshold and maximal oxygen uptake during cycling and running in female triathletes. Int J Sports Med 1991 Aug; 12 (4): 379–83

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    O’Toole ML, Douglas PS. Applied physiology of triathlon. Sports Med 1995 Apr; 19 (4): 251–67

    PubMed  Article  Google Scholar 

  92. 92.

    Miura H, Kitagawa K, Ishiko T. Characteristics of cardiorespiratory responses to the latter stage of a simulated triathlon. Jpn J Phys Fitness Sports Med 1994; 43: 381–8

    Google Scholar 

  93. 93.

    De Vito G, Bernardi M, Sproviero E, et al. Decrease of endurance performance during Olympic triathlon. Int J Sports Med 1995 Jan; 16 (1): 24–8

    PubMed  Article  Google Scholar 

  94. 94.

    Billat VL, Mille-Hamard L, Petit B, et al. The role of cadence on the VO2 slow component in cycling andrunning in triathletes. Int J Sports Med 1999 Oct; 20 (7): 429–37

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Bernard T, Vercruyssen F, Grego F, et al. Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes. Br J Sports Med 2003 Apr; 37 (2): 154-18; discussion 9

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Galy O, Hue O, Boussana A, et al. Effects of the order of running and cycling of similar intensity and duration on pulmonary diffusing capacity in triathletes. Eur J Appl Physiol 2003 Nov; 90 (5-6): 489–95

    PubMed  Article  Google Scholar 

  97. 97.

    Millet GP, Bentley DJ. The physiological responses to running after cycling in elite junior and senior triathletes. Int J Sports Med 2004 Apr; 25 (3): 191–7

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Galy O, Manetta J, Coste O, et al. Maximal oxygen uptake and power of lower limbs during a competitive season in triathletes. Scand J Med Sci Sports 2003 Jun; 13 (3): 185–93

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Bassett Jr DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 2000 Jan; 32 (1): 70–84

    PubMed  Google Scholar 

  100. 100.

    Sloniger MA, Cureton KJ, Prior BM, et al. Lower extremity muscle activation during horizontal and uphill running. J Appl Physiol 1997 Dec; 83 (6): 2073–9

    PubMed  CAS  Google Scholar 

  101. 101.

    Bolognesi M. Ventilatory threshold and maximal oxygen uptake during cycling and running in duathletes. Med Sport 1997; 50: 209–16

    Google Scholar 

  102. 102.

    Vleck VE, Bentley DJ, Millet GP, et al. Pacing during an elite Olympic distance triathlon: comparison between male and female competitors. J Sci Med Sport 2008; 11(4): 424–32

    PubMed  Article  Google Scholar 

  103. 103.

    Roecker K, Striegel H, Dickhuth HH. Heart-rate recommendations: transfer between running and cycling exercise? Int J Sports Med 2003 Apr; 24 (3): 173–8

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    DiCarlo LJ, Sparling PB, Millard-Stafford ML, et al. Peak heart rates during maximal running and swimming: implications for exercise prescription. Int J Sports Med 1991 Jun; 12 (3): 309–12

    Article  Google Scholar 

  105. 105.

    O’Toole ML, Douglas PS, Hiller WD. Use of heart rate monitors by endurance athletes: lessons from triathletes. J Sports Med Phys Fitness 1998 Sep; 38 (3): 181–7

    PubMed  Google Scholar 

  106. 106.

    Ray CA, Cureton KJ, Ouzts HG. Postural specificity of cardiovascular adaptations to exercise training. J Appl Physiol 1990 Dec; 69 (6): 2202–8

    PubMed  CAS  Google Scholar 

  107. 107.

    Kenny GP, Reardon FD, Marion A, et al. A comparative analysis of physiological responses at submaximal workloads during different laboratory simulations of field cycling. Eur J Appl Physiol Occup Physiol 1995; 71 (5): 409–15

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Gilman MB. The use of heart rate to monitor the intensity of endurance training. Sports Med 1996 Feb; 21 (2): 73–9

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Foster C, Lucia A. Running economy: the forgotten factor in elite performance. Sports Med 2007; 37 (4-5): 316–9

    PubMed  Article  Google Scholar 

  110. 110.

    Saunders PU, Pyne DB, Telford RD, et al. Factors affecting running economy in trained distance runners. Sports Med 2004; 34 (7): 465–85

    PubMed  Article  Google Scholar 

  111. 111.

    Hausswirth C, Bigard AX, Berthelot M, et al. Variability in energy cost of running at the end of a triathlon and a marathon. Int J Sports Med 1996 Nov; 17 (8): 572–9

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Hausswirth C, Bigard AX, Guezennec CY. Relationships between running mechanics and energy cost of running at the end of a triathlon and a marathon. Int J Sports Med 1997 Jul; 18 (5): 330–9

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Hausswirth C, Brisswalter J, Vallier JM, et al. Evolution of electromyographic signal, running economy, and perceived exertion during different prolonged exercises. Int J Sports Med 2000 Aug; 21 (6): 429–36

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Hausswirth C, Lehenaff D. Physiological demands of running during long distance runs and triathlons. Sports Med 2001; 31 (9): 679–89

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Guezennec CY, Vallier JM, Bigard AX, et al. Increase in energy cost of running at the end of a triathlon. Eur J Appl Physiol Occup Physiol 1996; 73 (5): 440–5

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Millet GP, Millet GY, Hofmann MD, et al. Alterations in running economy and mechanics after maximal cycling in triathletes: influence of performance level. Int J Sports Med 2000 Feb; 21 (2): 127–32

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Boone T, Kreider RB. Bicycle exercise before running: effect on performance. Ann Sports Med 1986; 3: 25–9

    Google Scholar 

  118. 118.

    Millet GP, Vleck VE. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training. Br J Sports Med 2000 Oct; 34 (5): 384–90

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Millet GP, Millet GY, Candau RB. Duration and seriousness of running mechanics alterations after maximal cycling in triathletes: influence of the performance level. J Sports Med Phys Fitness 2001 Jun; 41 (2): 147–53

    PubMed  CAS  Google Scholar 

  120. 120.

    Jones AM. The physiology of the world record holder for the women’s marathon. Int J Sports Sci Coaching 2006; 1 (2): 101–15

    Article  Google Scholar 

  121. 121.

    Lucia A, Esteve-Lanao J, Olivan J, et al. Physiological characteristics of the best Eritrean runners-exceptional running economy. Appl Physiol Nutr Metab 2006 Oct; 31 (5): 530–40

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    Lucia A, Olivan J, Bravo J, et al. The key to top-level endurance running performance: a unique example. Br J Sports Med 2008; 42 (3): 172–4

    PubMed  Article  Google Scholar 

  123. 123.

    Billat V, Lepretre PM, Heugas AM, et al. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc 2003 Feb; 35 (2): 297–304; discussion 5-6

    PubMed  Article  Google Scholar 

  124. 124.

    Billat VL, Demarle A, Slawinski J, et al. Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc 2001 Dec; 33 (12): 2089–97

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    Conley DL, Krahenbuhl GS, Burkett LN, et al. Following Steve Scott: physiological changes accompanying training. Phys Sportsmed 1984; 12: 103–6

    Google Scholar 

  126. 126.

    Saltin B, Larsen H, Terrados N, et al. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports 1995 Aug; 5 (4): 209–21

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Saltin B, Kim CK, Terrados N, et al. Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian runners. Scand J Med Sci Sports 1995 Aug; 5 (4): 222–30

    PubMed  CAS  Article  Google Scholar 

  128. 128.

    Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 1996; 24: 35–71

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    Bijker KE, De Groot G, Hollander AP. Delta efficiencies of running and cycling. Med Sci Sports Exerc 2001 Sep; 33 (9): 1546–51

    PubMed  CAS  Article  Google Scholar 

  130. 130.

    Asmussen E, Bonde-Petersen F. Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiol Scand 1974 Dec; 92 (4): 537–45

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    Zacks RM. The mechanical efficiencies of running and bicycling against a horizontal impeding force. Int Z Angew Physiol 1973 Jul 20; 31 (4): 249–58

    PubMed  CAS  Google Scholar 

  132. 132.

    Avela J, Kyrolainen H, Komi PV, et al. Reduced reflex sensitivity persists several days after long-lasting stretch-shortening cycle exercise. J Appl Physiol 1999 Apr; 86 (4): 1292–300

    PubMed  CAS  Google Scholar 

  133. 133.

    Farley CT, Gonzalez O. Leg stiffness and stride frequency in human running. J Biomech 1996 Feb; 29 (2): 181–6

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Kram R. Muscular force or work: what determines the metabolic energy cost of running? Exerc Sport Sci Rev 2000 Jul; 28 (3): 138–43

    PubMed  CAS  Google Scholar 

  135. 135.

    Kram R, Taylor CR. Energetics of running: a new perspective. Nature 1990 Jul 19; 346 (6281): 265–7

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    Richardson RS, Harms CA, Grassi B, et al. Skeletal muscle: master or slave of the cardiovascular system? Med Sci Sports Exerc 2000 Jan; 32 (1): 89–93

    PubMed  CAS  Google Scholar 

  137. 137.

    di Prampero PE. Factors limiting maximal performance in humans. Eur J Appl Physiol 2003 Oct; 90 (3-4): 420–9

    PubMed  Article  Google Scholar 

  138. 138.

    Noakes TD. Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal. Med Sci Sports Exerc 1998 Sep; 30 (9): 1381–98

    PubMed  CAS  Google Scholar 

  139. 139.

    Levine BD. VO2max: what do we know, and what do we still need to know? J Physiol 2008; 586: 25–34

    PubMed  CAS  Article  Google Scholar 

  140. 140.

    Prefaut C, Durand F, Mucci P, et al. Exercise-induced arterial hypoxaemia in athletes: a review. Sports Med 2000 Jul; 30 (1): 47–61

    PubMed  CAS  Article  Google Scholar 

  141. 141.

    Galy O, Le Gallais D, Hue O, et al. Is exercise-induced arterial hypoxemia in triathletes dependent on exercise modality? Int J Sports Med 2005 Nov; 26 (9): 719–26

    PubMed  CAS  Article  Google Scholar 

  142. 142.

    Powers SK, Lawler J, Dempsey JA, et al. Effects of incomplete pulmonary gas exchange on VO2 max. J Appl Physiol 1989 Jun; 66 (6): 2491–5

    PubMed  CAS  Google Scholar 

  143. 143.

    Green HJ, Carter S, Grant S, et al. Vascular volumes and hematology in male and female runners and cyclists. Eur J Appl Physiol Occup Physiol 1999 Feb; 79 (3): 244–50

    PubMed  CAS  Article  Google Scholar 

  144. 144.

    Galy O, Hue O, Boussana A, et al. Blood rheological responses to running and cycling: a potential effect on the arterial hypoxemia of highly trained athletes? Int J Sports Med 2005 Jan-Feb; 26 (1): 9–15

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Boussana A, Galy O, Hue O, et al. The effects of prior cycling and a successive run on respiratory muscle performance in triathletes. Int J Sports Med 2003 Jan; 24(1): 63–70

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Boussana A, Hue O, Matecki S, et al. The effect of cycling followed by running on respiratory muscle performance inelite and competition triathletes. Eur J Appl Physiol 2002 Aug; 87 (4-5): 441–7

    PubMed  CAS  Article  Google Scholar 

  147. 147.

    Boussana A, Matecki S, Galy O, et al. The effect of exercise modality on respiratory muscle performance in triathletes. Med Sci Sports Exerc 2001 Dec; 33 (12): 2036–43

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    Hue O, Boussana A, Le Gallais D, et al. Pulmonary function during cycling and running in triathletes. J Sports Med Phys Fitness 2003 Mar; 43 (1): 44–50

    PubMed  CAS  Google Scholar 

  149. 149.

    Smith TB, Hopkins WG, Taylor NA. Respiratory responses of elite oarsmen, former oarsmen, and highly trained non-rowers during rowing, cycling and running. Eur J Appl Physiol Occup Physiol 1994; 69 (1): 44–9

    PubMed  CAS  Article  Google Scholar 

  150. 150.

    Gavin TP, Stager JM. The effect of exercise modality on exercise-induced hypoxemia. Respir Physiol 1999 May 3; 115 (3): 317–23

    PubMed  CAS  Article  Google Scholar 

  151. 151.

    Hopkins SR, Barker RC, Brutsaert TD, et al. Pulmonary gas exchange during exercise in women: effects of exercise type and work increment. J Appl Physiol 2000 Aug; 89 (2): 721–30

    PubMed  CAS  Google Scholar 

  152. 152.

    Hill NS, Jacoby C, Farber HW. Effect of an endurance triathlon on pulmonary function. Med Sci Sports Exerc 1991 Nov; 23 (11): 1260–4

    PubMed  CAS  Google Scholar 

  153. 153.

    Bonsignore MR, Morici G, Abate P, et al. Ventilation and entrainment of breathing during cycling and running in triathletes. Med Sci Sports Exerc 1998 Feb; 30 (2): 239–45

    PubMed  CAS  Article  Google Scholar 

  154. 154.

    Ekblom B. Effect of physical training on oxygen transport system in man. Acta Physiol Scand Suppl 1968; 328: 1–45

    PubMed  CAS  Google Scholar 

  155. 155.

    Saltin B, Blomqvist G, Mitchell JH, et al. Response to exercise after bed rest and after training. Circulation 1968 Nov; 38 (5 Suppl.): VII1–78

    Google Scholar 

  156. 156.

    Delp MD, Laughlin MH. Regulation of skeletal muscle perfusion during exercise. Acta Physiol Scand 1998 Mar; 162 (3): 411–9

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    Laaksonen MS, Kivela R, Kyrolainen H, et al. Effects of exhaustive stretch-shortening cycle exercise on muscleblood flow during exercise. Acta Physiol (Oxf) 2006 Apr; 186 (4): 261–70

    CAS  Article  Google Scholar 

  158. 158.

    Rowland TW. The circulatory response to exercise: role of the peripheral pump. Int J Sports Med 2001 Nov; 22 (8): 558–65

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Sheriff DD. Muscle pump function during locomotion: mechanical coupling of stride frequency and muscle blood flow. Am J Physiol Heart Circ Physiol 2003 Jun; 284 (6): H2185–91

    Google Scholar 

  160. 160.

    Noakes TD, St Clair Gibson A. Logical limitations to the “catastrophe” models of fatigue during exercise in humans. Br J Sports Med 2004 Oct; 38 (5): 648–9

    PubMed  CAS  Article  Google Scholar 

  161. 161.

    St Clair Gibson A, Noakes TD. Evidence for complex system integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans. Br J Sports Med 2004 Dec; 38 (6): 797–806

    PubMed  CAS  Article  Google Scholar 

  162. 162.

    Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984 Apr; 56 (4): 831–8

    PubMed  CAS  Google Scholar 

  163. 163.

    Coyle EF, Feltner ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991 Jan; 23 (1): 93–107

    PubMed  CAS  Google Scholar 

  164. 164.

    Weston AR, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol 1997; 75 (1): 7–13

    PubMed  CAS  Article  Google Scholar 

  165. 165.

    Green HJ, Patla AE. Maximal aerobic power: neuromuscular and metabolic considerations. Med Sci Sports Exerc 1992 Jan; 24 (1): 38–46

    PubMed  CAS  Google Scholar 

  166. 166.

    Aunola S, Marniemi J, Alanen E, et al. Muscle metabolic profile and oxygen transport capacity as determinants ofaerobic and anaerobic thresholds. Eur J Appl Physiol Occup Physiol 1988; 57 (6): 726–34

    PubMed  CAS  Article  Google Scholar 

  167. 167.

    Ivy JL, Costill DL, Maxwell BD. Skeletal muscle determinants of maximum aerobic power in man. Eur J Appl Physiol Occup Physiol 1980; 44 (1): 1–8

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    Coyle EF, Sidossis LS, Horowitz JF, et al. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc 1992 Jul; 24 (7): 782–8

    PubMed  CAS  Google Scholar 

  169. 169.

    Horowitz JF, Sidossis LS, Coyle EF. High efficiency of type I muscle fibers improves performance. Int J Sports Med 1994 Apr; 15 (3): 152–7

    PubMed  CAS  Article  Google Scholar 

  170. 170.

    Parkhouse WS, McKenzie DC, Hochachka PW, et al. Buffering capacity of deproteinized human vastus lateralis muscle. J Appl Physiol 1985 Jan; 58 (1): 14–7

    PubMed  CAS  Google Scholar 

  171. 171.

    Bijker KE, de Groot G, Hollander AP. Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol 2002 Oct; 87 (6): 556–61

    PubMed  CAS  Article  Google Scholar 

  172. 172.

    Marcinik EJ, Potts J, Schlabach G, et al. Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc 1991 Jun; 23 (6): 739–43

    PubMed  CAS  Google Scholar 

  173. 173.

    Chapman AR, Vicenzino B, Blanch P, et al. Does cycling effect motor coordination of the leg during running in elite triathletes? J Sci Med Sport 2008; 11 (4): 371–80

    PubMed  Article  Google Scholar 

  174. 174.

    Borg G, Van den Burg M, Hassmen P. Relationships between perceived exertion, HR and HLa in cycling, running and walking. Scand J Sports Sci 1987; 9: 69–77

    Google Scholar 

  175. 175.

    Marsh AP, Martin PE. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Med Sci Sports Exerc 1997 Sep; 29 (9): 1225–32

    PubMed  CAS  Article  Google Scholar 

  176. 176.

    Patterson RP, Moreno MI. Bicycle pedalling forces as a function of pedalling rate and power output. Med Sci Sports Exerc 1990 Aug; 22 (4): 512–6

    PubMed  CAS  Google Scholar 

  177. 177.

    Takaishi T, Yasuda Y, Ono T, et al. Optimal pedaling rate estimated from neuromuscular fatigue for cyclists. Med Sci Sports Exerc 1996 Dec; 28 (12): 1492–7

    PubMed  CAS  Article  Google Scholar 

  178. 178.

    Lucia A, Hoyos J, Chicharro JL. Preferred pedalling cadence in professional cycling. Med Sci Sports Exerc 2001 Aug; 33 (8): 1361–6

    PubMed  CAS  Article  Google Scholar 

  179. 179.

    Marsh AP, Martin PE, Foley KO. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Med Sci Sports Exerc 2000 Sep; 32 (9): 1630–4

    PubMed  CAS  Google Scholar 

  180. 180.

    Marsh AP, Martin PE. The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Med Sci Sports Exerc 1995 Feb; 27 (2): 217–25

    PubMed  CAS  Google Scholar 

  181. 181.

    Lepers R, Hausswirth C, Maffiuletti N, et al. Evidence of neuromuscular fatigue after prolonged cycling exercise. Med Sci Sports Exerc 2000 Nov; 32 (11): 1880–6

    PubMed  CAS  Article  Google Scholar 

  182. 182.

    Vercruyssen F, Hausswirth C, Smith D, et al. Effect of exercise duration on optimal pedaling rate choice in triathletes. Can J Appl Physiol 2001 Feb; 26 (1): 44–54

    PubMed  CAS  Google Scholar 

  183. 183.

    Brisswalter J, Hausswirth C, Smith D, et al. Energetically optimal cadence vs. freely-chosen cadence during cycling:effect of exercise duration. Int J Sports Med 2000 Jan; 21 (1): 60–4

    PubMed  CAS  Article  Google Scholar 

  184. 184.

    Gottschall JS, Palmer BM. The acute effects of prior cycling cadence on running performance and kinematics. Med Sci Sports Exerc 2002 Sep; 34 (9): 1518–22

    PubMed  Article  Google Scholar 

  185. 185.

    Bentley DJ, Millet GP, Vleck VE, et al. Specific aspects of contemporary triathlon: implications for physiological analysis and performance. Sports Med 2002; 32 (6): 345–59

    PubMed  Article  Google Scholar 

  186. 186.

    Bernard T, Vercruyssen F, Mazure C, et al. Constant versus variable-intensity during cycling: effects on subsequent running performance. Eur J Appl Physiol 2007 Jan; 99 (2): 103–11

    PubMed  Article  Google Scholar 

  187. 187.

    Vleck VE, Burgi A, Bentley DJ. The consequences of swim, cycle, and run performance on overall result in eliteolympic distance triathlon. Int J Sports Med 2006 Jan; 27 (1): 43–8

    PubMed  CAS  Article  Google Scholar 

  188. 188.

    Millet GY, Lepers R. Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 2004; 34 (2): 105–16

    PubMed  Article  Google Scholar 

  189. 189.

    Millet GY, Lepers R, Maffiuletti NA, et al. Alterations of neuromuscular function after an ultra marathon. J Appl Physiol 2002 Feb; 92 (2): 486–92

    PubMed  CAS  Google Scholar 

  190. 190.

    Millet GY, Martin V, Lattier G, et al. Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol 2003 Jan; 94 (1): 193–8

    PubMed  CAS  Google Scholar 

  191. 191.

    Lepers R, Maffiuletti NA, Rochette L, et al. Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 2002 Apr; 92 (4): 1487–93

    PubMed  Google Scholar 

  192. 192.

    Lepers R, Millet GY, Maffiuletti NA. Effect of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc 2001 Nov; 33 (11): 1882–8

    PubMed  CAS  Article  Google Scholar 

  193. 193.

    Racinais S, Girard O, Micallef JP, et al. Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 2007 Jan; 97 (1): 596–603

    PubMed  CAS  Article  Google Scholar 

  194. 194.

    Millet GY, Millet GP, Lattier G, et al. Alteration of neuromuscular function after a prolonged road cycling race. Int J Sports Med 2003 Apr; 24 (3): 190–4

    PubMed  CAS  Article  Google Scholar 

  195. 195.

    Bentley DJ, Smith PA, Davie AJ, et al. Muscle activation of the knee extensors following high intensity endurance exercise in cyclists. Eur J Appl Physiol 2000 Mar; 81 (4): 297–302

    PubMed  CAS  Article  Google Scholar 

  196. 196.

    Takaishi T, Yasuda Y, Moritani T. Neuromuscular fatigue during prolonged pedalling exercise at different pedalling rates. Eur J Appl Physiol Occup Physiol 1994; 69 (2): 154–8

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this article. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Gregoire P. Millet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Millet, G.P., Vleck, V.E. & Bentley, D.J. Physiological Differences Between Cycling and Running. Sports Med 39, 179–206 (2009). https://doi.org/10.2165/00007256-200939030-00002

Download citation

Keywords

  • Anaerobic Threshold
  • Lactate Threshold
  • Exercise Mode
  • Cycle Ergometry
  • Central Fatigue