Training to Enhance the Physiological Determinants of Long-Distance Running Performance

Can Valid Recommendations be Given to Runners and Coaches Based on Current Scientific Knowledge?

Abstract

This article investigates whether there is currently sufficient scientific knowledge for scientists to be able to give valid training recommendations to longdistance runners and their coaches on how to most effectively enhance the maximal oxygen uptake, lactate threshold and running economy. Relatively few training studies involving trained distance runners have been conducted, and these studies have often included methodological factors that make interpretation of the findings difficult. For example, the basis of most of the studies was to include one or more specific bouts of training in addition to the runners’ ‘normal training’, which was typically not described or only briefly described. The training status of the runners (e.g. off-season) during the study period was also typically not described. This inability to compare the runners’ training before and during the training intervention period is probably the main factor that hinders the interpretation of previous training studies. Arguably, the second greatest limitation is that only a few of the studies included more than one experimental group. Consequently, there is no comparison to allow the evaluation of the relative efficacy of the particular training intervention. Other factors include not controlling the runners’ training load during the study period, and employing small sample sizes that result in low statistical power. Much of the current knowledge relating to chronic adaptive responses to physical training has come from studies using sedentary individuals; however, directly applying this knowledge to formulate training recommendations for runners is unlikely to be valid. Therefore, it would be difficult to argue against the view that there is insufficient direct scientific evidence to formulate training recommendations based on the limited research. Although direct scientific evidence is limited, we believe that scientists can still formulate worthwhile training recommendations by integrating the information derived from training studies with other scientific knowledge. This knowledge includes the acute physiological responses in the various exercise domains, the structures and processes that limit the physiological determinants of long-distance running performance, and the adaptations associated with their enhancement. In the future, molecular biology may make an increasing contribution in identifying effective training methods, by identifying the genes that contribute to the variation in maximal oxygen uptake, the lactate threshold and running economy, as well as the biochemical and mechanical signals that induce these genes. Scientists should be cautious when giving training recommendations to runners and coaches based on the limited available scientific knowledge. This limited knowledge highlights that characterising the most effective training methods for long-distance runners is still a fruitful area for future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Table III
Table IV
Fig. 4

References

  1. 1.

    Billat V, Demarle A, Slawinski J, et al. Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc 2001; 33: 2089–97

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    Foster C. V? O2max and training indices as determinants of competitive running performance. J Sports Sci 1983; 1: 13–22

    Article  Google Scholar 

  3. 3.

    Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the VO2max test predicts running performance. J Sports Sci 1990; 8: 35–45

    PubMed  CAS  Article  Google Scholar 

  4. 4.

    Farrell PA, Wilmore JH, Coyle EF, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports Exerc 1979; 11: 338–44

    CAS  Google Scholar 

  5. 5.

    Tanaka K, Matsuura Y. Marathon performance, anaerobic threshold, and onset of blood lactate accumulation. J Appl Physiol 1984; 57: 640–3

    PubMed  CAS  Google Scholar 

  6. 6.

    Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 1980; 12: 357–60

    PubMed  CAS  Google Scholar 

  7. 7.

    Morgan DW, Baldini FD, Martin PE, et al. Ten kilometre performance and predicted velocity at VO2max among well-trained male runners. Med Sci Sports Exerc 1989; 21: 79–83

    Google Scholar 

  8. 8.

    di Prampero PE, Atchou G, Brückner JC, et al. The energetics of endurance running. Eur J Appl Physiol 1986; 55: 259–66

    Article  Google Scholar 

  9. 9.

    Rupert JL. The search for genotypes that underlie human performance phenotypes. Comp Biochem Physiol A 2003; 136: 191–203

    Article  CAS  Google Scholar 

  10. 10.

    Wolfarth B, Bray MS, Hagberg JM, et al. The human gene map for performance and health-related fitness phenotypes: the 2004 update. Med Sci Sports Exerc 2005; 37: 881–903

    PubMed  CAS  Google Scholar 

  11. 11.

    Hawley JA. State of the art training guidelines for endurance performance. S Afr J Sports Med 1995; 2: 7–12

    Google Scholar 

  12. 12.

    Unal M, Unal DO. Gene doping in sports. Sports Med 2004; 34: 357–62

    PubMed  Article  Google Scholar 

  13. 13.

    Hoffman RL. Effects of training at the ventilatory threshold on the ventilatory threshold and performance in trained distance runners. J Strength Cond Res 1999; 13: 118–23

    Google Scholar 

  14. 14.

    Priest JW, Hagan RD. The effects of maximum steady state pace training on running performance. Br J Sports Med 1987; 21: 18–21

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Yoshida T, Udo M, Chida M, et al. Specificity of physiological adaptation to endurance training in distance runners and competitive walkers. Eur J Appl Physiol 1990; 61: 197–201

    CAS  Article  Google Scholar 

  16. 16.

    Midgley AW, McNaughton LR, Wilkinson M. Is there an optitrainmal training intensity for enhancing the VO2max of distance runners? Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med 2006; 36: 117–32

    PubMed  Article  Google Scholar 

  17. 17.

    Londeree B. Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc 1997; 29: 837–43

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Pate RR, Branch JD. Training for endurance sport. Med Sci Sports Exerc 1992; 24 Suppl.: S340–3

    Google Scholar 

  19. 19.

    Berg K. Endurance training and performance in runners: research limitations and unanswered questions. Sports Med 2003; 33: 59–73

    PubMed  Article  Google Scholar 

  20. 20.

    Kurz MJ, Berg K, Latin R, et al. The relationship of training methods in NCAA division I cross-country runners and 10,000-meter performance. J Strength Cond Res 2000; 14: 196–201

    Google Scholar 

  21. 21.

    Hawley JA, Myburgh KH, Noakes TD, et al. Training techniques to improve fatigue resistance and endurance performance. J Sports Sci 1997; 15: 325–33

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Wells CL, Pate RR. Training for performance of prolonged exercise. In: Lamb DR, Murray R, editors. Perspectives in exercise science and sports medicine: volume 1, prolonged exercise. Indianapolis (IN): Benchmark Press, 1988, 357–91

    Google Scholar 

  23. 23.

    Billat V, Flechet B, Petit B, et al. Interval training at VO2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc 1999; 31: 156–63

    PubMed  CAS  Article  Google Scholar 

  24. 24.

    Sjödin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol 1982; 49: 45–57

    Article  Google Scholar 

  25. 25.

    Lehmann M, Dickhuth HH, Gendrisch G, et al. Training-over training: a prospective, experimental study with experienced middle-and long-distance runners. Br J Sports Med 1991; 12: 444–52

    CAS  Google Scholar 

  26. 26.

    Londeree BR. The use of laboratory test results with long distance runners. Sports Med 1986; 3: 201–13

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Hamilton RJ, Paton CD, Hopkins WG. Effect of high-intensity resistance training on performance of competitive distance runners. Int J Sports Physiol Perf 2006; 1: 40–9

    Google Scholar 

  28. 28.

    Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc 1989; 21: 563–8

    PubMed  CAS  Google Scholar 

  29. 29.

    Tanaka K, Watanabe H, Konishi Y, et al. Longitudinal associations between anaerobic threshold and distance running performance. Eur J Appl Physiol 1986; 55: 248–52

    CAS  Article  Google Scholar 

  30. 30.

    Daniels JT, Yarbrough RA, Foster C. Changes in VO2max and running performance with training. Eur J Appl Physiol 1978; 39: 249–54

    CAS  Article  Google Scholar 

  31. 31.

    Paavolainen L, Häkkinen K, Hämäläinen I, et al. Explosive strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol 1999; 86: 1527–33

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Smith TP, McNaughton LR, Marshall KJ. Effects of 4-wk training using Vmax/Tmax on VO2max and performance in athletes. Med Sci Sports Exerc 1999; 31: 892–6

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O2 uptake and the time for which this can be maintained. Eur J Appl Physiol 2003; 89: 337–43

    PubMed  Article  Google Scholar 

  34. 34.

    Slawinski J, Demarle A, Koralsztein JP, et al. Effect of supra-lactate training on the relationship between mechanical stride descriptors and aerobic energy cost in trained runners. Arch Physiol Biochem 2001; 109: 110–6

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Mikesell KA, Dudley GA. Influence of intense endurance training on aerobic power of competitive distance runners. Med Sci Sports Exerc 1984; 16: 371–5

    PubMed  CAS  Google Scholar 

  36. 36.

    Laffite LP, Mille-Hamard L, Koralstein JP, et al. The effect of interval training on oxygen pulse and performance in supra-threshold runs. Arch Physiol Biochem 2003; 111: 202–10

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Bickham DC, Bentley DJ, Le Rossignol PF, et al. The effects of short-term sprint training on MCT expression in moderately endurance-trained runners. Eur J Appl Physiol 2006; 96: 636–43

    PubMed  Article  Google Scholar 

  38. 38.

    Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol 2003; 89: 1–7

    PubMed  Article  Google Scholar 

  39. 39.

    Billat V, Sirvent P, Lepretre PM, et al. Training effect on performance, substrate balance and blood lactate concentration at maximal lactate steady state in master endurance runners. Pflugers Arch 2004; 447: 875–83

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Franch J, Madsen K, Djurhuus MS, et al. Improved running economy following intensified training correlates with reduced ventilatory demands. Med Sci Sports Exerc 1998; 30: 1250–6

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Johnston RE, Quinn TJ, Kertzer R, et al. Strength training in female distance runners: impact on running economy. J Strength Cond Res 1997; 11: 224–9

    Google Scholar 

  42. 42.

    Turner AM, Owings M, Schwane JA. Improvement in running economy after 6 weeks of plyometric training. J Strength Cond Res 2003; 17: 60–7

    PubMed  Google Scholar 

  43. 43.

    Olsen R, Berg K, Latin R, et al. Comparison of two intense interval training programs on maximal oxygen uptake and running performance. J Sports Med Phys Fitness 1988; 28: 158–64

    PubMed  CAS  Google Scholar 

  44. 44.

    Viru A. The mechanism of training effects: an hypothesis. Int J physiolSports Med 1984; 5: 219–27

    CAS  Article  Google Scholar 

  45. 45.

    Billat V, Demarle A, Paiva M, et al. Effect of training on the physiological factors of performance in elite marathon runners (males and runners). Int J Sports Med 2002; 23: 335–41

    Article  Google Scholar 

  46. 46.

    Pollock ML. The quantification of endurance training programs. Exerc Sport Sci Rev 1973; 1: 155–88

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Casaburi R, Storer TW, Sullivan CS, et al. Evaluation of blood lactate elevation as an intensity criterion for exercise testing. Med Sci Sports Exerc 1995; 27: 852–62

    PubMed  CAS  Google Scholar 

  48. 48.

    Saltin B, Essén B, Pederson PK. Intermittent exercise: its physiology and some practical applications. In: Jokl E, editor. Advances in exercise physiology. Basel: Karger, 1976: 23–51

    Google Scholar 

  49. 49.

    Smirnov M. Do we need a methodological reform? Mod Athl Coach 1998; 36 (2): 33–6

    Google Scholar 

  50. 50.

    Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med 2003; 33: 1103–26

    PubMed  Article  Google Scholar 

  51. 51.

    Hagan RD, Smith MG, Gettman LR. Marathon performance in relation to maximal aerobic power and training indices. Med Sci Sports Exerc 1981; 13: 185–9

    PubMed  CAS  Google Scholar 

  52. 52.

    Billat V, Lepretre PM, Heugas AM, et al. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc 2003; 35: 297–304

    PubMed  Article  Google Scholar 

  53. 53.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res 2001; 15: 109–15

    PubMed  CAS  Google Scholar 

  54. 54.

    Seiler KS, Kjerland GØ. Quantifying training intensity distribution in elite endurance athletes: is there evidence for an ‘optimal’ distribution. Scand J Med Sci Sports 2006; 16: 49–56

    PubMed  Article  Google Scholar 

  55. 55.

    Neumann G, Gohlitz D. Training control in running with event-specific endurance tests [in German]. Leistungssport 1996; 26 (1): 63–7

    Google Scholar 

  56. 56.

    Karboviak RJ. Using GPS technology to monitor intensity, speed, and training volume in outdoor athletes. Strength Cond J 2005; 27: 24–5

    Google Scholar 

  57. 57.

    Schutz Y, Herren R. Assessment of speed of human locomotion using a differential satellite global positioning system. Med Sci Sports Exerc 2000; 32: 642–6

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Weltman A, Snead D, Seip R, et al. Percentages of maximal heart rate, heart rate reserve and VO2max for determining endurance training intensity in male runners. Int J Sport Med 1990; 11: 218–22

    CAS  Article  Google Scholar 

  59. 59.

    Calvert TW, Banister EW, Savage MV, et al. A systems model of the effects of training on physical performance. IEEE Trans Syst Man Cybernet 1976; 6: 94–102

    Article  Google Scholar 

  60. 60.

    Morton RH. Fitz-Clarke, JR, Banister EW. Modeling human performance in running. J Appl Physiol 1990; 69: 1171–7

    PubMed  CAS  Google Scholar 

  61. 61.

    Garcin M, Fleury A, Ansart L, et al. Training content and potential impact on performance: a comparison of young male and female endurance–trained runners. Res Q 2006; 77: 351–61

    CAS  Google Scholar 

  62. 62.

    Jones AM, Doust JH. Limitations to submaximal exercise performance. In: Eston R, Reilly T, editors. Kinanthropometry and exercise physiology laboratory manual, vol. 2. London: Routledge, 2001: 235–62

    Google Scholar 

  63. 63.

    Wells JG, Balke B, van Fossan DD. Lactic acid accumulation during work: a suggested standardization of work classification. J Appl Physiol 1957; 10: 51–5

    PubMed  CAS  Google Scholar 

  64. 64.

    Jones AM. The physiology of the world record holder for the women’s marathon. Int J Sports Sci Coach 2006; 1: 101–16

    Article  Google Scholar 

  65. 65.

    Esteve-Lanao J, San Juan AF, Earnest CP, et al. How do endurance runners actually train? Relationships with competition performance. Med Sci Sports Exerc 2005; 37: 496–504

    PubMed  Article  Google Scholar 

  66. 66.

    Faria EW, Parker DL, Faria IE. The science of cycling: physiology and training–part 1. Sports Med 2005; 35: 285–312

    PubMed  Article  Google Scholar 

  67. 67.

    Fry RW, Morton AR, Keast D. Periodisation of training stress: a review. Can J Sport Sci 1992; 17: 234–40

    PubMed  CAS  Google Scholar 

  68. 68.

    Viru A, Viru M. Biochemical monitoring of sport training. Champaign (IL): Human Kinetics, 2001

  69. 69.

    Verhoshansky Y. Main features of a modern scientific sports training theory. New Stud Athlet 1998; 13: 9–20

    Google Scholar 

  70. 70.

    Hewson DJ, Hopkins WG. Prescribed and self–reported seasonal training of distance runners. J Sports Sci 1995; 13: 463–70

    PubMed  CAS  Article  Google Scholar 

  71. 71.

    Verhoshansky Y. The end of ‘periodization’ in the training of high–performance sport. Mod Athl Coach 1999; 37 (2): 14–8

    Google Scholar 

  72. 72.

    Karikosk O. Training volume in distance running. Mod Athl Coach 1984; 22 (2): 18–20

    Google Scholar 

  73. 73.

    Basset FA, Chouinard R, Boulay MR. Training profile counts for time–to–exhaustion performance. Can J Appl Physiol 2003; 28: 654–66

    PubMed  Article  Google Scholar 

  74. 74.

    Föhrenbach R, Mader A, Hollman W. Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int J Sports Med 1987; 8: 11–8

    PubMed  Article  Google Scholar 

  75. 75.

    Robinson DM, Robinson SM, Hume PA, et al. Training intensity of elite male distance runners. Med Sci Sports Exerc 1991; 23: 1078–82

    PubMed  CAS  Google Scholar 

  76. 76.

    Laursen PB, Jenkins DJ. The scientific basis of high–intensity interval training: optimising training programmes and maximising performance in highly trained athletes. Sports Med 2002; 32: 53–73

    PubMed  Article  Google Scholar 

  77. 77.

    Arrese AL, Ostáriz ES, Mallén JAC, et al. The changes in running performance and maximal oxygen uptake after long–term training in elite athletes. J Sports Med Phys Fitness 2005; 45: 435–40

    Google Scholar 

  78. 78.

    Berg K, Latin RW, Hendricks T. Physiological and physical performance changes in female runners during one year of training. Sports Med Training Rehab 1995; 5: 311–9

    Article  Google Scholar 

  79. 79.

    Daniels J. Running with Jim Ryan: a five year case study. Phys Sports Med 1974; 2: 63–7

    Google Scholar 

  80. 80.

    Jones AM. A five year physiological case study of an Olympic runner. Br J Sports Med 1998; 32: 39–43

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Martin EE, Vroon DH, May DF, et al. Physiological changes in elite male distance runners training. Phys Sports Med 1986; 14: 152–71

    Google Scholar 

  82. 82.

    Sjödin B, Svedenhag J. Applied physiology of marathon running. Sports Med 1985; 2: 83–99

    PubMed  Article  Google Scholar 

  83. 83.

    Fox EL, Bartels RL, Billings CE, et al. Intensity and distance of interval training and changes in aerobic power. Med Sci Sports 1973; 5: 18–22

    PubMed  CAS  Google Scholar 

  84. 84.

    Shephard RJ. Intensity, duration and frequency of exercise as determinants of the response to a training regime. Int Z Angew Physiol 1968; 26: 272–8

    PubMed  CAS  Google Scholar 

  85. 85.

    Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 1986; 3: 346–56

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Brisswalter J, Legros P. Variability in energy cost of running during one training season in high level runners. J Sports Med Phys Fitness 1994; 34: 135–40

    PubMed  CAS  Google Scholar 

  87. 87.

    Conley DL, Krahenbuhl GS, Burkett LN, et al. Following Steve Scott: physiological changes accompanying training. Phys Sports Med 1984; 12: 103–6

    Google Scholar 

  88. 88.

    Svedenhag J, Sjödin B. Physiological characteristics of elite male runners in and off–season. Can J Appl Sport Sci 1985; 10: 127–33

    PubMed  CAS  Google Scholar 

  89. 89.

    Wilcox AR, Bulbulian R. Changes in running economy to VO2max during a cross–country season. J Sports Med Phys Fitness 1984; 24: 321–6

    PubMed  CAS  Google Scholar 

  90. 90.

    Daniels J, Scardina N. Interval training and performance. Sports Med 1984; 1: 327–34

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Hill DW, Rowell AL. Responses to exercise at the velocity associated with VO2max. Med Sci Sports Exerc 1997; 29: 113–6

    PubMed  CAS  Google Scholar 

  92. 92.

    Laursen PB, Shing CM, Peake JM, et al. Interval training program optimisation in highly trained endurance cyclists. Med Sci Sports Exerc 2002; 34: 1801–7

    PubMed  Article  Google Scholar 

  93. 93.

    Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 1997; 29: 390–5

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Vuorimaa T, Karvonen J. Recovery time in interval training for increasing aerobic capacity. Ann Sports Med 1988; 3: 215–9

    Google Scholar 

  95. 95.

    Wenger HA, McNab RBJ. Endurance training: the effects of intensity, total work, duration and initial fitness. J Sports Med Phys Fitness 1975; 15: 199–211

    PubMed  CAS  Google Scholar 

  96. 96.

    Gledhill N, Cox D, Jamnik R. Endurance athletes’ stroke volume does not plateau: major advantage is diastolic function. Med Sci Sports Exerc 1994; 26: 1116–21

    PubMed  CAS  Google Scholar 

  97. 97.

    Zhou B, Conlee RK, Jensen R, et al. Stroke volume does not plateau during graded exercise in elite male distance runners. Med Sci Sports Exerc 2001; 33: 1849–54

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Clausen JP. Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev 1977; 57: 779–815

    PubMed  CAS  Google Scholar 

  99. 99.

    Cooper G. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med 1997; 48: 13–23

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Ouellet Y, Poh SC, Becklake MR. Circulatory factors limiting maximal aerobic exercise capacity. J Appl Physiol 1969; 27: 874–80

    PubMed  CAS  Google Scholar 

  101. 101.

    Saltin B, Rowell LB. Functional adaptations to physical activity and inactivity. Fed Proc 1980; 39: 1506–13

    PubMed  CAS  Google Scholar 

  102. 102.

    Billat VL. Interval training for performance: a scientific and empirical practice–special recommendations for middle–and long–distance running. Part I: aerobic interval training. Sports Med 2001; 3: 13–31

    Article  Google Scholar 

  103. 103.

    Midgley AW, McNaughton LR. Time at or near VO2max during continuous and intermittent running: a review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness 2006; 46: 1–14

    PubMed  CAS  Google Scholar 

  104. 104.

    Åstrand I, Åstrand PO, Christensen EH, et al. Intermittent muscular work. Acta Physiol Scand 1960; 48: 448–53

    PubMed  Article  Google Scholar 

  105. 105.

    MacDougall D, Sale D. Continuous vs interval training: a review for the athlete and the coach. Can J Appl Sport Sci 1981; 6: 93–7

    PubMed  CAS  Google Scholar 

  106. 106.

    Moffatt RJ, Stamford BA, Weltman A, et al. Effects of high intensity aerobic training on maximal oxygen uptake capacityand field test performance. J Sports Med Phys Fitness 1977; 17: 351–9

    PubMed  CAS  Google Scholar 

  107. 107.

    Demarie S, Koralsztein JP, Billat V. Time limit and time at VO2max, during a continuous and an intermittent run. J Sports Med Phys Fitness 2000; 40: 96–102

    PubMed  CAS  Google Scholar 

  108. 108.

    Billat VL, Slawinski J, Bocquet V, et al. Very short (15s–15s) interval–training around the critical velocity allows middle–aged runners to maintain V? O2max for 14 minutes. Int J Sports Med 2001; 22: 201–8

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Billat V, Slawinski J, Bocquet V, et al. Intermittent runs at the velocity associated with maximal oxygen uptake enables sub jects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 2000; 81: 188–96

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Midgley AW, McNaughton LR, Carroll S. Physiological determinants of time to exhaustion during intermittent treadmill running at VO2max. Int J Sports Med 2007; 28: 273–80

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Coyle EF. Very intense exercise–training is extremely potent and time efficient: a reminder. J Appl Physiol 2005; 98: 1983–4

    PubMed  Article  Google Scholar 

  112. 112.

    Paavolainen L, Nummela A, Rusko H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand J Med Sci Sports 2000; 10: 286–91

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Burleson Jr MA, O’Bryant HS, Stone MH, et al. Effect of weight training exercise and treadmill exercise on post–exercise oxygen consumption. Med Sci Sports Exerc 1998; 30: 518–22

    PubMed  Article  Google Scholar 

  114. 114.

    MacDougall JD, Sale DG, Moroz JR, et al. Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med Sci Sports Exerc 1979; 11: 164–6

    CAS  Google Scholar 

  115. 115.

    Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979; 58: 115–30

    PubMed  CAS  Google Scholar 

  116. 116.

    Bangsbo J, Juel C. Lactic acid accumulation is a disadvantage during muscle activity. J Appl Physiol 2006; 100: 1412–3

    PubMed  CAS  Google Scholar 

  117. 117.

    Cairns SP. Lactic acid and exercise performance: culprit or friend? Sports Med 2006; 36: 279–91

    PubMed  Article  Google Scholar 

  118. 118.

    Lamb GD, Stephenson DG. Lactic acid accumulation is an advantage during muscle activity. J Appl Physiol 2006; 100: 1410–2

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Billat VL. Use of blood lactate measurements for prediction of exercise performance and for control of training recommendations for long–distance running. Sports Med 1996; 22: 157–175.

    PubMed  CAS  Article  Google Scholar 

  120. 120.

    MacDougall JD. The anaerobic threshold: its significance for the endurance athlete. Can J Appl Sport Sci 1977; 2: 137–40

    Google Scholar 

  121. 121.

    Tanaka K. Lactate–related factors as a critical determinant of endurance. Ann Physiol Anthrop 1990; 9: 191–202

    CAS  Article  Google Scholar 

  122. 122.

    Anderson O. Lactate lift–off. Lansing (MI): SSS Publishing Inc., 1998

  123. 123.

    Ivy JL, Withers RT, Van Handel PJ, et al. Muscle respiratory capacity and fibre type as determinants of the lactate threshold. J Appl Physiol 1980; 48: 523–7

    PubMed  CAS  Google Scholar 

  124. 124.

    Coen B, Schwarz L, Urhausen A, et al. Control of training in middle–and long–distance running by means of the individual anaerobic threshold. Int J Sports Med 1991; 12: 519–24

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    Henritze J, Weltman A, Schurrer RL, et al. Effects of training at and above the lactate threshold on the lactate threshold and maximal oxygen uptake. Eur J Appl Physiol 1985; 54: 84–8

    CAS  Article  Google Scholar 

  126. 126.

    Weltman A, Seip RL, Snead D, et al. Exercise training at and above the lactate threshold in previously untrained women. Int J Sports Med 1992; 13: 257–63

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Belman MJ, Gaesser GA. Exercise training below and above the lactate threshold in the elderly. Med Sci Sports Exerc 1991; 23

    Google Scholar 

  128. 128.

    Ekblom B, Åstrand PO, Saltin B, et al. Effect of training on circulatory response to exercise. J Appl Physiol 1968; 24: 518–28

    PubMed  CAS  Google Scholar 

  129. 129.

    Boileau RA, Mayhew JL, Riner WF, et al. Physiological characteristics of elite middle and long distance runners. Can J Appl Sport Sci 1982; 7: 167–72

    PubMed  CAS  Google Scholar 

  130. 130.

    Sjödin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 1981; 2: 23–6

    PubMed  Article  Google Scholar 

  131. 131.

    Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 1974; 24: 45–57

    Google Scholar 

  132. 132.

    Anderson GS, Rhodes EC. A review of blood lactate and ventilatory methods of detecting transition thresholds. Sports Med 1989; 8: 43–55

    PubMed  Article  Google Scholar 

  133. 133.

    Mader A. Evaluation of the endurance performance of marathon runners and theoretical analysis of test results. J Sports Med Phys Fitness 1991; 31: 1–19

    PubMed  CAS  Google Scholar 

  134. 134.

    Rerych SK, Scholz PM, Sabiston DC, et al. Effects of exercise training on left ventricular function in normal subjects: a longitudinal study by radionuclide angiography. Am J Cardiol anthropo 1980; 45: 244–52

    CAS  Article  Google Scholar 

  135. 135.

    Blomqvist CG, Saltin B. Cardiovascular adaptations to physical training. Annu Rev Physiol 1983; 45: 169–89

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    Saltin B, Blomqvist G, Mitchell JH, et al. Response to exercise after bed rest and after training: a longitudinal study of adaptive changes in oxygen transport and body composition. Circulation 1968; 38 Suppl. 7: 1–78

    Google Scholar 

  137. 137.

    Hagberg JM, Goldberg AP, Lakatta L, et al. Expanded blood volumes contribute to the increased cardiovascular performance of endurance–trained older men. J Appl Physiol 1998; 85: 484–9

    PubMed  CAS  Google Scholar 

  138. 138.

    Warburton DER, Haykowsky MJ, Quinney HA, et al. Blood volume expansion and cardiorespiratory function: effects of training modality. Med Sci Sports Exerc 2004; 36: 991–1000

    PubMed  Article  Google Scholar 

  139. 139.

    Ingjer F. Effects of endurance training on muscle fibre ATP–ase activity, capillary supply and mitochondrial content in man. J Physiol 1979; 294: 419–32

    PubMed  CAS  Google Scholar 

  140. 140.

    Brodal P, Ingjer F, Hermansen L. Capillary supply of skeletal muscle fibres in untrained and endurance–trained men. Am J Physiol 1977; 232: H705–12

    PubMed  CAS  Google Scholar 

  141. 141.

    Hoppeler H, Howald H, Conley K, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 1985; 59: 320–7

    PubMed  CAS  Google Scholar 

  142. 142.

    Hoppeler H, Flück M. Plasticity of skeletal muscle mitochon dria: structure and function. Med Sci Sports Exerc 2003; 35: 95–104

    PubMed  CAS  Article  Google Scholar 

  143. 143.

    Harms SJ, Hickson RC. Skeletal muscle mitochondria and myoglobin, endurance, and intensity of training. J Appl Physiol 1983; 54: 798–802

    PubMed  CAS  Google Scholar 

  144. 144.

    Wittenberg JB, Wittenberg BA. Myoglobin function reassessed. J Exp Biol 2003; 206: 2011–20

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56: 831–8

    PubMed  CAS  Google Scholar 

  146. 146.

    Dubouchaud H, Butterfield GE, Wolfel EE, et al. Endurance catetraining, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am J Physiol 2000; 278: E571–9

    CAS  Google Scholar 

  147. 147.

    Marcinik EJ, Potts J, Schlabach G, et al. Effects of strength training on lactate threshold and endurance performance. Med Sci Sports Exerc 1991; 23: 739–43

    PubMed  CAS  Google Scholar 

  148. 148.

    Crow MT, Kushmerick MJ. Chemical energetics of slow–and fast–twitch muscles of the mouse. J Gen Physiol 1982; 79: 147–66

    PubMed  CAS  Article  Google Scholar 

  149. 149.

    Nelson RC, Gregor RJ. Biomechanics of distance running: a longitudinal study. Res Q 1976; 47: 417–428

    PubMed  CAS  Google Scholar 

  150. 150.

    Williams KR, Cavanagh PR. Relationship between distance running mechanics, running economy, and performance. J Appl Physiol 1987; 63: 1236–45

    PubMed  CAS  Google Scholar 

  151. 151.

    Craib MW, Mitchell VA, Fields KB, et al. The association between flexibility and running economy in sub–elite distance runners. Med Sci Sports Exerc 1996; 28: 737–43

    PubMed  CAS  Article  Google Scholar 

  152. 152.

    Bosquet L, Léger L, Legros P. Methods to determine aerobic endurance. Sports Med 2002; 32: 675–700

    PubMed  Article  Google Scholar 

  153. 153.

    Caird SJ, McKenzie AD, Sleivert GG. Biofeedback and relaxation techniques improve running economy in sub–elite long distance runners. Med Sci Sports Exerc 1999; 31: 717–22

    PubMed  CAS  Article  Google Scholar 

  154. 154.

    Morgan DW, Bransford DR, Costill DL, et al. Variation in the aerobic demand of running among trained and untrained subjects. Med Sci Sports Exerc 1995; 27: 404–9

    PubMed  CAS  Google Scholar 

  155. 155.

    Pate RR, Macera CA, Bailey SP, et al. Physiological, anthropometric, and training correlates of running economy. Med Sci Sports Exerc 1992; 24: 1128–33

    PubMed  CAS  Google Scholar 

  156. 156.

    Mayhew JL. Oxygen cost and energy expenditure of running in trained runners. Br J Sports Med 1977; 11: 116–21

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med 2000; 29: 373–86

    PubMed  CAS  Article  Google Scholar 

  158. 158.

    Morgan DW, Martin PE, Krahenbuhl GS. Factors affecting running economy. Sports Med 1989; 7: 310–30

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Abe T, Kojima K, Kearns CF, et al. Whole body muscle hypertrophy from resistance training: distribution and total mass. Br J Sports Med 2003; 37: 543–5

    PubMed  CAS  Article  Google Scholar 

  160. 160.

    Costill DL. The relationship between selected physiological variables and distance running performance. J Sports Med Phys Fitness 1967; 7: 61–6

    PubMed  CAS  Google Scholar 

  161. 161.

    Krause V. Marathon preparations. Mod Athl Coach 1989; 27 (2): 17–20

    Google Scholar 

  162. 162.

    Billat VL. Current perspectives on performance improvement in the marathon: from universalisation to training optimisation. New Stud Athl 2005; 3: 21–39

    Google Scholar 

  163. 163.

    Croker N. The body balance of female distance runners. In: Jarver J, editor. Long distances: contemporary theory, technique and training. Mountain View (CA): Tafnews Press 1995: 119-21

  164. 164.

    Jones AM. Running economy is negatively related to sit–and–reach test performance in international–standard runners. Int J Sports Med 2002; 23: 40–3

    PubMed  CAS  Article  Google Scholar 

  165. 165.

    Andersen JC. Stretching before and after exercise: effect on muscle soreness and injury risk. J Athl Train 2005; 40: 218–20

    PubMed  CAS  Google Scholar 

  166. 166.

    Beaudoin CM, Blum JW. Flexibility and running economy in female collegiate track athletes. J Sports Med Phys Fitness 2005; 45: 295–300

    PubMed  CAS  Google Scholar 

  167. 167.

    Nelson AG, Kokkonen J, Eldredge C, et al. Chronic stretching and running economy. Scand J Med Sci Sports 2001; 11: 260–5

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    Bailey SP, Pate RR. Feasibility of improving running economy. Sports Med 1991; 12: 228–36

    PubMed  CAS  Article  Google Scholar 

  169. 169.

    Podolin DA, Munger PA, Mazzeo RS. Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions. J Appl Physiol 1991; 71: 1427–33

    PubMed  CAS  Google Scholar 

  170. 170.

    Suslov F. How much strength is needed in endurance events? Mod Athl Coach 1997; 35 (4): 9–12

    Google Scholar 

  171. 171.

    Carpinelli RN, Otto RM, Winett RA. A critical analysis of the ACSM position stand on resistance training: insufficient evidence to support recommended training protocols. J Exerc Physiol 2004; 7: 1–60

    Google Scholar 

  172. 172.

    Bushman BA, Flynn MG, Andres FF, et al. Effect of deep water run training on running performance. Med Sci Sports Exerc 1997; 29: 694–9

    PubMed  CAS  Article  Google Scholar 

  173. 173.

    Wilber RL, Moffatt RJ, Scott BE, et al. Influence of water–run training on the maintenance of aerobic performance. Med Sci Sports Exerc 1996; 28: 1056–62

    PubMed  CAS  Article  Google Scholar 

  174. 174.

    Lydiard A. Training for running races. N Z Vet J 1979; 23: 260–1

    Article  Google Scholar 

  175. 175.

    Smith GC, Jones AM. The relationship between critical velocity, maximal lactate steady–state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol 2001; 85: 19–26

    PubMed  CAS  Article  Google Scholar 

  176. 176.

    Coffey VG, Hawley JA. Training for performance: insights from molecular biology. Int J Sports Physiol Perf 2006; 1: 284–92

    Google Scholar 

  177. 177.

    MacArthur DG, North KN. Genes and human elite performance. Hum Genet 2005; 116: 331–9

    PubMed  CAS  Article  Google Scholar 

  178. 178.

    Allen DL, Harrison BC, Leinwand LA. Molecular and genetic approaches to studying exercise performance and adaptation. Exerc Sport Sci Rev 2002; 30: 99–105

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Adrian W. Midgley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Midgley, A.W., McNaughton, L.R. & Jones, A.M. Training to Enhance the Physiological Determinants of Long-Distance Running Performance. Sports Med 37, 857–880 (2007). https://doi.org/10.2165/00007256-200737100-00003

Download citation

Keywords

  • Resistance Training
  • Training Intensity
  • Distance Runner
  • Lactate Threshold
  • Training Load