Skip to main content

Altering the Length-Tension Relationship with Eccentric Exercise

Implications for Performance and Injury

Abstract

The effects of eccentric exercise on muscle injury prevention and athletic performance are emerging areas of interest to researchers. Of particular interest are the adaptations that occur after a single bout, or multiple bouts of eccentric exercise. It has been established that after certain types of eccentric exercise, the optimum length of tension development in muscle can be shifted to longer muscle lengths. Altering the length-tension relationship can have a profound influence on human movements. It is thought that the length-tension relationship is influenced by the structural makeup of muscle. However, the mechanism responsible for the shift in optimum length is not readily agreed upon. Despite the conflict, several studies have reported a shift in optimum length after eccentric exercise. Unfortunately, very few of these studies have been randomised, controlled training studies, and the duration of the shift has not yet been established. Nonetheless, this adaptation may result in greater structural stability at longer muscle lengths and consequently may have interesting implications for injury prevention and athletic performance. Both contentions remain relatively unexplored and provide the focus of this review.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Table I
Table II
Table III

References

  1. Allen D. Eccentric muscle damage: mechanisms of early reduction of force. Acta Physiol Scand 2001; 171 (3): 311–9

    Article  Google Scholar 

  2. Proske U, Allen T. Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev 2005; 33 (2): 89–104

    Google Scholar 

  3. Clarkson P, Hubal M. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 2002; 81 (11 Suppl.): S52–69

    PubMed  Article  Google Scholar 

  4. Morgan D, Allen D. Early events in stretch-induced muscle damage. J Appl Physiol 1999; 87: 2007–15

    PubMed  CAS  Google Scholar 

  5. MacIntyre D, Reid W, McKenzie D, et al. Delayed muscle soreness: the inflammatory response to muscle injury and its clinical implications. Sports Med 1995; 20: 24–40

    PubMed  Article  CAS  Google Scholar 

  6. Newham D, Jones D, Clarkson P, et al. Repeated high-force eccentric exercise: effects on muscle pain and damage. J Appl Physiol 1987; 63 (4): 1381–6

    PubMed  CAS  Google Scholar 

  7. McHugh M. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Physiol 1993; 468: 487–99

    Google Scholar 

  8. Proske U, Morgan D. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 2001; 537 (2): 333–45

    PubMed  Article  CAS  Google Scholar 

  9. Proske U, Morgan D, Brockett C, et al. Identifying athletes at risk of hamstring strains and how to protect them. Clin Exper Pharmacol Physiol 2004; 31 (8): 546–50

    Article  CAS  Google Scholar 

  10. Morgan D, Proske U. Popping sarcomere hypothesis explains stretch-induced muscle damage. Clin Exper Pharmacol Physiol 2004; 31 (8): 541–5

    Article  CAS  Google Scholar 

  11. Lindstedt S, Lastayo P, Reich T, et al. When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol Sci 2001; 16: 256–61

    PubMed  CAS  Google Scholar 

  12. Lindstedt S, Reich T, Keim P, et al. Do muscles function as adaptable locomotor springs? J Exper Biol 2002; 205 (Pt 15): 2211–6

    Google Scholar 

  13. Lastayo P, Woolf J, Lewek M, et al. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther 2003; 33 (10): 557–71

    PubMed  Google Scholar 

  14. Katz B. The relation between force and speed in muscular contraction. J Physiol 1939; 96: 45–64

    PubMed  CAS  Google Scholar 

  15. Bigland-Ritchie B, Woods J. Integrated electromyogram and oxygen uptake during positive and negative work. J Physiol 1976; 260 (2): 267–77

    PubMed  CAS  Google Scholar 

  16. Lastayo P, Reich T, Urquhart M, et al. Chronic eccentric exercise: improvements in muscle strength can occur with little demand for oxygen. Am J Physiol 1999; 276 (2 Pt 2): R611–15

    PubMed  CAS  Google Scholar 

  17. Newham D, Jones D, Ghosh G, et al. Muscle fatigue and pain after eccentric contractions at long and short length. Clin Sci 1988; 74: 553–7

    PubMed  CAS  Google Scholar 

  18. Clarkson P, Tremblay I. Exercise-induced muscle damage, repair, and adaptation in humans. J Appl Physiol 1988; 65 (1): 1–6

    PubMed  CAS  Google Scholar 

  19. Ebbeling C, Clarkson P. Exercise-induced muscle damage and adaptation. Sports Med 1989; 7: 207–34

    PubMed  Article  CAS  Google Scholar 

  20. Lieber R, Schmitz M, Mishra D, et al. Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions. J Appl Physiol 1994; 77 (4): 1926–34

    PubMed  CAS  Google Scholar 

  21. Lieber R, Thornell L, Friden J, et al. Muscle cytoskeletal disruption occurs within the first 15 min of cyclic eccentric contraction. J Appl Physiol 1996; 80 (1): 278–84

    PubMed  Article  CAS  Google Scholar 

  22. Friden J, Lieber R. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand 2001; 171 (3): 321–6

    PubMed  Article  CAS  Google Scholar 

  23. MacIntyre D, Reid W, Lyster D, et al. Presence of WBC, decreased strength, and delayed soreness in muscle after eccentric exercise. J Appl Physiol 1995; 80 (3): 1006–13

    Google Scholar 

  24. Nosaka K, Clarkson P. Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc 1996; 28 (8): 953–61

    PubMed  Article  CAS  Google Scholar 

  25. Ingalls C, Warren G, Williams J, et al. E-C coupling failure in mouse EDL muscle after in vivo eccentric contractions. J Appl Physiol 1998; 85 (1): 58–67

    PubMed  CAS  Google Scholar 

  26. Warren G, Ingalls C, Lowe D, et al. Excitation-contraction uncoupling: major role in contraction-induced muscle injury. Exerc Sport Sci Rev 2001; 29 (2): 82–7

    PubMed  Article  CAS  Google Scholar 

  27. Warren G, Lowe D, Sayes D, et al. Excitation failure in eccentric contraction-induced injury of mouse soleus muscle. J Sports 2003; 13 (2): 88–97

    Google Scholar 

  28. Bobbert M, Van Soest A. Why do people jump the way they do? Exerc Sport Sci Rev 2001; 29 (3): 95–102

    PubMed  Article  CAS  Google Scholar 

  29. Leiber L. Skeletal muscle structure, function and plasticity. 2nd ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002

  30. Gordon A, Huxley A, Julian F, et al. The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol 1966; 184: 170–92

    PubMed  CAS  Google Scholar 

  31. Enoka R. Neuromechanics of human movement. 3rd ed. Champaign (IL): Human Kinetics, 2002

  32. Rassier D, Macintosh B, Herzon W, et al. Length dependence of active force production in skeletal muscle. J Appl Physiol 1999; 86 (5): 1445–57

    PubMed  CAS  Google Scholar 

  33. Talbot J, Morgan D. Quantitative analysis of sarcomere non-uniformities in active muscle following a stretch. J Muscle Res Cell Motility 1996; 17 (2): 261–8

    Article  CAS  Google Scholar 

  34. Wood S, Morgan D, Proske U, et al. Effects of repeated eccentric contractions on structure and mechanical properties of toad sartorius muscle. Am J Physiol 1993; 265 (3 Pt 1): C792–800

    PubMed  CAS  Google Scholar 

  35. Morgan D, Claflin D, Julian F, et al. The effects of repeated active stretches on tension generation and myoplasmic calcium in frog single muscle fibres. J Physiol 1996; 497 (Pt 3): 665–74

    PubMed  CAS  Google Scholar 

  36. Butterfield T, Herzog W. Is the force-length relationship a useful indicator of contractile element damage following eccentric exercise? J Biomech 2005; 38 (9): 1932–7

    PubMed  Article  Google Scholar 

  37. Brockett C, Morgan D, Gregory J, et al. Damage to different motor units from active lengthening of the medial gastrocnemius muscle of the cat. J Appl Physiol 2002; 92 (3): 1104–10

    PubMed  CAS  Google Scholar 

  38. Jones C, Allen T, Talbot J, et al. Changes in the mechanical properties of human and amphibian muscle after eccentricexercise. Eur J Appl Physiol Occup Physiol 1997; 76 (1): 21–31

    PubMed  Article  CAS  Google Scholar 

  39. Whitehead N, Allen T, Morgan D, et al. Damage to human muscle from eccentric exercise after training with concentric exercise. J Physiol 1998; 512 (Pt 2): 615–20

    PubMed  Article  CAS  Google Scholar 

  40. Whitehead N, Weerakkody N, Gregory J, et al. Changes in passive tension of muscle in humans and animals after eccentric exercise. J Physiol 2001; 533 (2): 593–604

    PubMed  Article  CAS  Google Scholar 

  41. Saxton J, Donnelly A. Length-specific impairment of skeletal muscle contractile function after eccentric muscle actions in man. Clin Sci 1996; 90 (2): 119–25

    PubMed  CAS  Google Scholar 

  42. Bowers E, Morgan D, Proske U, et al. Damage to the human quadriceps muscle from eccentric exercise and the training effect. J Sports Sci 2004; 22 (11-12): 1005–14

    PubMed  Article  CAS  Google Scholar 

  43. Byrne C, Eston R, Edwards R, et al. Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scand J Med Sci Sports 2001; 11: 134–40

    PubMed  Article  CAS  Google Scholar 

  44. Pettitt R, Symons D, Eisenman P, et al. Eccentric strain at long muscle length evokes the repeated bout effect. J Strength Cond Res 2005; 19 (4): 918–24

    PubMed  Google Scholar 

  45. Philippou A, Bogdanis G, Nevill A, et al. Changes in the angle force curve of human elbow flexors following eccentric and isometric exercise. Eur J Appl Physiol 2004; 93 (1-2): 237–44

    PubMed  Article  Google Scholar 

  46. Prasartwuth O, Allen T, Butler J, et al. Length-dependent changes in voluntary activation, maximum voluntary torque and twitch responses after eccentric damage in humans. J Physiol 2006; 571 (Pt 1): 243–52

    PubMed  CAS  Google Scholar 

  47. Brockett C, Morgan D, Proske U, et al. Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc 2001; 33 (5): 783–90

    PubMed  CAS  Google Scholar 

  48. Clark R, Bryant A, Culgan J, et al. The effects of hamstring strength training on dynamic jumping performance and isokinetic strength parameters. Phys Ther Sport 2005; 6: 67–73

    Article  Google Scholar 

  49. Askling C, Karlsson J, Thorstensson A, et al. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports 2003; 13 (4): 244–50

    PubMed  Article  CAS  Google Scholar 

  50. Brockett C, Morgan D, Proske U, et al. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc 2004; 36 (3): 379–87

    PubMed  Article  Google Scholar 

  51. McHugh M, Tetro D. Changes in the relationship between joint angle and torque production associated with the repeated bout effect. J Sports Sci 2003; 21 (11): 927–32

    PubMed  Article  Google Scholar 

  52. Balnave C, Allen D. Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J Physiol 1995; 488 (Pt 1): 25–36

    PubMed  CAS  Google Scholar 

  53. Morgan D. New insights into the behavior of muscle during active lengthening. Biophys J 1990; 57: 209–21

    PubMed  Article  CAS  Google Scholar 

  54. Newham D, Mills K, Quigley B, et al. Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci 1983; 55–62

    Google Scholar 

  55. Friden J, Sjostrom M, Ekblom B, et al. A morphological study of delayed muscle soreness. Experientia 1981; 37: 506–7

    PubMed  Article  CAS  Google Scholar 

  56. Reich T, Lindstedt S, Lastayo P, et al. Is the spring quality of muscle plastic? Am J Physiol Regul Integr Comp Physiol 2000; 278 (6): R1661–6

    PubMed  CAS  Google Scholar 

  57. Leiber L, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 2000; 23: 1647–66

    Article  Google Scholar 

  58. Herzog W, ter Keurs H. Force-length relation of in-vivo human rectus femoris muscles. Eur J Physiol 1988; 11 (6): 642–7

    Article  Google Scholar 

  59. Herzog W, Guimaraes A, Anton MG, et al. Moment-length relations of rectus femoris muscles of speed skaters/cyclists and runners. Med Sci Sports Exerc 1991; 23 (11): 1289–96

    PubMed  CAS  Google Scholar 

  60. Lynn R, Morgan D. Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J Appl Physiol 1994; 77 (3): 1439–44

    PubMed  CAS  Google Scholar 

  61. Lynn R, Talbot J, Morgan D, et al. Differences in rat skeletal muscles after incline and decline running. J Appl Physiol 1998; 85 (1): 98–104

    PubMed  CAS  Google Scholar 

  62. Butterfield T, Herzog W. The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise. Eur J Physiol 2006; 451 (5): 688–700

    Article  CAS  Google Scholar 

  63. Butterfield T, Leonard T, Herzog W, et al. Differential serial comere number adaptations in knee extensor muscles of rats is contraction type dependent. J Appl Physiol 2005; 99 (4): 1352–8

    PubMed  Article  Google Scholar 

  64. Koh T, Herzog W. Eccentric training does not increase sarcomere number in rabbit dorsiflexor muscles. J Biomech 1998; 31 (5): 499–501

    PubMed  Article  CAS  Google Scholar 

  65. Trappe T, Carrithers J, White F, et al. Titin and nebulin content in human skeletal muscle following eccentric resistance exercise. Muscle Nerve 2002; 25: 289–92

    PubMed  Article  CAS  Google Scholar 

  66. Barash I, Peters D, Friden J, et al. Desmin cytoskeletal modifications after a bout of eccentric exercise in the rat. Am J Physiol Regul Integr Comp Physiol 2002; 284 (4): R958–63

    Google Scholar 

  67. Wang K, McCarter R, Wright J, et al. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci 1991; 88: 7101–5

    PubMed  Article  CAS  Google Scholar 

  68. Spiers I, Akster H, Granzier H, et al. Expression of titin isoforms in red and white muscle fibres of carp exposed to different sarcomere strains during swimming. J Comp Physiol 1997; 167: 543–51

    Google Scholar 

  69. McBride J, Triplett-McBride T, Davie A, et al. Characteristics of titin in strength and power athletes. Eur J Appl Physiol 2003; 88 (6): 553–7

    PubMed  Article  CAS  Google Scholar 

  70. McGuigan M, Sharman M, Newton R, et al. Effect of explosive resistance training on titin and myosin heavy chain isoforms in trained subjects. J Strength Cond Res 2003; 17 (4): 645–51

    PubMed  Google Scholar 

  71. Pousson M, van Hoeche J, Goubel F, et al. Changes in elastic characteristics of human muscle induced by eccentric exercise. J Biomech 1990; 23: 343–8

    PubMed  Article  CAS  Google Scholar 

  72. Benn C, Forman K, Mathewson D, et al. The effects of serial stretch loading on stretch work and stretch-shortening performance in the knee musculature. J Orthop Sports Phys Ther 1998; 27: 412–22

    PubMed  CAS  Google Scholar 

  73. Labeit D, Watanabe K, Witt C, et al. Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci 2003; 100 (23): 13716–21

    PubMed  Article  CAS  Google Scholar 

  74. Labeit S, Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 1995; 270 (5234): 293–6

    PubMed  Article  CAS  Google Scholar 

  75. Árnaso Á, Sigurdsson S, Gudmundsson Á, et al. Risk factors for injuries in football. Am J Sports Med 2004; 32 Suppl. 1: 5–16

    Article  Google Scholar 

  76. Woods C, Hawkins R, Maltby S, et al. The Football Association Medical Research Programme: an audit of injuries in professional football-analysis of hamstring injuries. Br J Sports Med 2004; 38: 36–41

    PubMed  Article  CAS  Google Scholar 

  77. Meeuwisse W, Sellmer R, Hagel B, et al. Rates and risks of injury during intercollegiate basketball. Am J Sports Med 2003; 31: 379–85

    PubMed  Google Scholar 

  78. Orchard J, James T, Alcott E, et al. Injuries in Australian cricket at first class level 1995/1996 to 2000/2001. Br J Sports Med 2002; 36: 270–5

    PubMed  Article  CAS  Google Scholar 

  79. Brooks J, Fuller C, Kemp S, et al. Epidemiology of injuries in English professional rugby union, part 1: match injuries. Br J Sports Med 2005; 39: 757–66

    PubMed  Article  CAS  Google Scholar 

  80. Brooks J, Fuller C, Kemp S, et al. Epidemiology of injuries in English professional rugby union, part 2: training injuries. Br J Sports Med 2005; 39: 767–75

    PubMed  Article  CAS  Google Scholar 

  81. Crosier J. Factors associated with recurrent hamstring injuries. Sports Med 2004; 34: 681–95

    Article  Google Scholar 

  82. Garrett W. Muscle strain injuries. Am J Sports Med 1996; 24: S2–8

    PubMed  Article  Google Scholar 

  83. Thelen D, Chumanov D, Hoerth M, et al. Hamstring muscle kinematics during treadmill sprinting. Med Sci Sports Exerc 2005; 38: 108–14

    Google Scholar 

  84. Verrall G, Slavotinek J, Barnes P, et al. Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging. Br J Sports Med 2001; 35 (6): 435–9

    PubMed  Article  CAS  Google Scholar 

  85. Nosaka K, Clarkson P. Muscle damage following repeated bouts of high force eccentric exercise. Med Sci Sports Exerc 1995; 27 (9): 1263–9

    PubMed  CAS  Google Scholar 

  86. Gabbe B, Branson R, Bennell K. A pilot randomised controlled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football. J Sci Med Sport 2006; 9 (1–2): 103–9

    PubMed  Article  CAS  Google Scholar 

  87. Brooks J, Fuller C, Kemp S, et al. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med 2006; 34 (8): 1297–306

    PubMed  Article  Google Scholar 

  88. Colliander E, Tesch P. Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol Scand 1990; 140: 31–9

    PubMed  Article  CAS  Google Scholar 

  89. Mjolsnes R, Arnason A, Osthagen T, et al. A 10-week randomized trial comparing eccentric vs concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports 2004; 14 (5): 311–7

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors received no funding for the preparation of this article and have no conflicts of interest directly relevant to its contents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Brughelli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brughelli, M., Cronin, J. Altering the Length-Tension Relationship with Eccentric Exercise. Sports Med 37, 807–826 (2007). https://doi.org/10.2165/00007256-200737090-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200737090-00004

Keywords

  • Peak Torque
  • Eccentric Exercise
  • Optimum Length
  • Sarcomere Length
  • Eccentric Contraction