Michelson JD. Heel pain: when is it plantar fasciitis? J Musculoskelet Med 1995; 12: 22–26
Google Scholar
Taunton JE, Ryan MB, Clement DB, et al. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med 2002; 36: 95–101
PubMed
CAS
Article
Google Scholar
Rome K, Howe T, Haslock I. Risk factors associated with the development of plantar heel pain in athletes. Foot 2001; 11: 119–125
Article
Google Scholar
Rome K. Anthropometric and biomechanical risk factors in the development of plantar heel pain: a review of the literature. Phys Ther Rev 1997; 2: 123–134
Article
Google Scholar
Atkins D, Crawford F, Edwards J, et al. A systematic review of treatments for the painful heel. Rheumatology 1999; 38: 968–973
PubMed
CAS
Article
Google Scholar
O’Malley MJ, Page A, Cook R. Endoscopic plantar fasciotomy for chronic heel pain. Foot Ankle Int 2000; 21: 505–510
PubMed
Google Scholar
Davis PF, Severud E, Baxter DE. Painful heel syndrome: results of nonoperative treatment. Foot Ankle Int 1994; 15: 531–535
PubMed
CAS
Google Scholar
Wolgin M, Cook C, Graham C, et al. Conservative treatment of plantar heel pain: long-term follow-up. Foot Ankle Int 1994; 15: 97–102
PubMed
CAS
Google Scholar
Martin RL, Irrgang JJ, Conti SF. Outcome study of subjects with insertional plantar fasciitis. Foot Ankle Int 1998; 19: 803–811
PubMed
CAS
Google Scholar
Crawford F, Atkins D, Edwards J. Interventions for treating plantar heel pain. Cochrane Database Syst Rev 2000; (3): CD000416
PubMed
Google Scholar
Davies MS, Weiss GA, Saxby TS. Plantar fasciitis: how successful is surgical intervention? Foot Ankle Int 1999; 20: 803–807
PubMed
CAS
Google Scholar
Young CC, Rutherford DS, Niedfeldt MW. Treatment of plantar fasciitis. Am Fam Physician 2001; 63: 467–478
PubMed
CAS
Google Scholar
Gill LH. Plantar fasciitis: diagnosis and conservative management. J Am Acad Orthop Surg 1997; 5: 109–117
PubMed
Google Scholar
Gill LH, Kiebzak GM. Outcome of nonsurgical treatment for plantar fasciitis. Foot Ankle Int 1996; 17: 527–532
PubMed
CAS
Google Scholar
Pfeffer G, Bacchetti P, Deland J, et al. Comparison of custom and prefabricated orthoses in the initial treatment of proximal plantar fasciitis. Foot Ankle Int 1999; 20: 214–221
PubMed
CAS
Google Scholar
Selth CA, Francis BE. Review of non-functional plantar heel pain. Foot 2000; 10: 97–104
Article
Google Scholar
Barrett SL, O’Malley R. Plantar fasciitis and other causes of heel pain. Am Fam Physician 1999; 59: 2200–2206
PubMed
CAS
Google Scholar
Karr SD. Subcalcaneal heel pain. Orthop Clin North Am 1994; 25: 161–175
PubMed
CAS
Google Scholar
Tountas AA, Fornasier VL. Operative treatment of subcalcaneal pain. Clin Orthop 1996; 332: 170–178
PubMed
Article
Google Scholar
Singh D, Angel J, Bentley G, et al. Plantar Fasciitis. BMJ 1997; 315: 172–175
PubMed
CAS
Article
Google Scholar
Gibbon WW, Long G. Ultrasound of the plantar aponeurosis (fascia). Skeletal Radiol 1999; 28: 21–26
PubMed
CAS
Article
Google Scholar
Schroeder BM. American College of Foot and Ankle Surgeons: the diagnosis and treatment of heel pain. Am Fam Physician 2002; 65: 1686–1688
PubMed
Google Scholar
McGonagle D, Marzo-Ortega H, O’Connor P, et al. The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia en-thesopathy. Arthritis Rheum 2002; 46: 489–493
PubMed
Article
Google Scholar
Mitchell IR, Meyer C, Krueger WA. Deep fascia of the foot: anatomical and clinical considerations. J Am Podiatr Med Assoc 1991; 81: 373–378
PubMed
CAS
Google Scholar
Sarrafian SK. Anatomy of the foot and ankle: descriptive, topographic, functional. New York: JB Lippincott Company, 1983
Google Scholar
Newell SG, Miller SJ. Conservative treatment of plantar fascial strain. Phys Sportsmed 1977; 5: 68–73
Google Scholar
Hedrick MR. The plantar aponeurosis. Foot Ankle Int 1996; 17: 646–649
PubMed
CAS
Google Scholar
Kaya BK. Plantar fasciitis in athletes. J Sport Rehabil 1996; 5: 305–320
Google Scholar
Cralley JC, Schuberth JM, Fitch KL. The deep band of the plantar aponeurosis of the human foot. Anat Anz 1982; 152: 189–197
PubMed
CAS
Google Scholar
Hiramoto Y. Shape of the fibular part of the plantar aponeurosis in Japanese. Okajimas Folia Anat Jpn 1983; 60: 329–337
PubMed
CAS
Google Scholar
Dylevský I. Connective tissues of the hand and foot. Acta Univ Carol Med Monogr 1988; 127: 5–195
PubMed
Google Scholar
Draves DJ. Anatomy of the lower extremity. Baltimore (MD): Williams and Wilkins, 1986
Google Scholar
Pontious J, Flanigan KP, Hillstrom HJ. Role of the plantar fascia in digital stabilization: a case report. J Am Podiatr Med Assoc 1996; 86: 43–47
PubMed
CAS
Google Scholar
Waller Jr JF, Maddalo A. The foot and ankle linkage system. In: Nicholas JA, Hershman EB, editors. The lower extremity and spine in sports medicine. St Louis (MO): CV Mosby, 1986: 413
Google Scholar
Viel E, Esnault M. The effect of increased tension in the plantar fascia: a biomechanical analysis. Physiother Theory Pract 1989; 5: 69–73
Google Scholar
Snow SW, Bohne WH, DiCarlo E, et al. Anatomy of the Achilles tendon and plantar fascia in relation to the calcaneus in various age groups. Foot Ankle Int 1995; 16: 418–421
PubMed
CAS
Google Scholar
Hawkins BJ, Langermen RJ, Gibbons T, et al. An anatomic analysis of endoscopic plantar fascia release. Foot Ankle Int 1995; 16: 552–558
PubMed
CAS
Google Scholar
Thordarson DB, Kumar PJ, Hedman TP, et al. Effect of partial versus complete plantar fasciotomy on the windlass mechanism. Foot Ankle Int 1997; 18: 16–20
PubMed
CAS
Google Scholar
Bojsen-Møller F, Flagstad KE. Plantar aponeurosis and internal architecture of the ball of the foot. J Anat 1976; 121: 599–611
PubMed
Google Scholar
Stainsby GD. Pathological anatomy and dynamic effect of the displaced plantar plate and the importance of the integrity of the plantar plate-deep transverse metatarsal ligament tie-bar. Ann R Coll Surg Engl 1997; 79: 58–68
PubMed
CAS
Google Scholar
Deland JT, Lee KT, Sobel M, et al. Anatomy of the plantar plate and its attachments in the lesser metatarsal phalangeal joint. Foot Ankle Int 1995; 16: 480–486
PubMed
CAS
Google Scholar
Manoli A, Weber TG. Fasciotomy of the foot: an anatomical study with special reference to release of the calcaneal compartment. Foot Ankle 1990; 10: 267–275
PubMed
Google Scholar
Martin BF. Observations on the muscles and tendons of the medial aspect of the sole of the foot. J Anat 1964; 98: 437–453
PubMed
CAS
Google Scholar
Boabighi A, Kuhlmann JN, Luboinski J, et al. Aponeuroses and superficial fascia: mechanical and structural properties [in French]. Bull Assoc Anat (Nancy) 1993; 77: 3–7
CAS
Google Scholar
Wright DG, Rennels DC. A study of the elastic properties of plantar fascia. J Bone Joint Surg Am 1964; 46: 482–492
PubMed
CAS
Google Scholar
Amiel D, Frank C, Harwood F, et al. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1984; 1: 257–265
PubMed
CAS
Article
Google Scholar
Davis WH, Sobel M, DiCarlo EF, et al. Gross, histological, and microvascular anatomy and biomechanical testing of the spring ligament complex. Foot Ankle Int 1996; 17: 95–102
PubMed
CAS
Google Scholar
Contri MB, Guerra D, Vignali N, et al. Ultrastructural and immunocytochemical study on normal human palmar aponeuroses. Anat Rec 1994; 240: 314–321
PubMed
CAS
Article
Google Scholar
Waggett AD, Ralphs JR, Kwan AP, et al. Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol 1998; 16: 457–470
PubMed
CAS
Article
Google Scholar
Warren BL. Plantar fasciitis in runners: treatment and prevention. Sports Med 1990; 10: 338–345
PubMed
CAS
Article
Google Scholar
McNeilly CM, Banes AJ, Benjamin M, et al. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 1996; 189: 593–600
PubMed
Google Scholar
Ralphs JR, Benjamin M, Waggett AD, et al. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J Anat 1998; 193: 215–222
PubMed
CAS
Article
Google Scholar
Benjamin M, Ralphs JR. The cell and developmental biology of tendons and ligaments. Int Rev Cytol 2000; 196: 85–130
PubMed
CAS
Article
Google Scholar
Petrie S, Collins JG, Solomonow M, et al. Mechanoreceptors in the human elbow ligaments. J Hand Surg [Am] 1998; 23-A: 512–518
CAS
Article
Google Scholar
Zimny ML. Mechanoreceptors in articular tissues. Am J Anat 1988; 182: 16–32
PubMed
CAS
Article
Google Scholar
Petrie S, Collins J, Solomonow M, et al. Mechanoreceptors in the palmar wrist ligaments. J Bone Joint Surg Br 1997; 79: 494–496
PubMed
CAS
Article
Google Scholar
McDougall JJ, Bray RC, Sharkey KA. Morphological and immunohistochemical examination of nerves in normal and injured collateral ligaments of rat, rabbit, and human knee joints. Anat Rec 1997; 248: 29–39
PubMed
CAS
Article
Google Scholar
Butler DL, Sheh MY, Stouffer DC, et al. Surface strain variation in human patellar tendon and knee cruciate ligaments. J Biomech Eng 1990; 112: 38–45
PubMed
CAS
Article
Google Scholar
Noyes FR, Butler DL, Grood ES, et al. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 1984; 66: 344–352
PubMed
CAS
Google Scholar
Stouffer DC, Butler DL, Hosny D. The relationship between crimp pattern and mechanical response of human patellar tend on-bone units. J Biomech Eng 1985; 107: 158–165
PubMed
CAS
Article
Google Scholar
Coggeshall RE, Hong KA, Langford LA, et al. Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res 1983; 272: 185–188
PubMed
CAS
Article
Google Scholar
Biedert RM, Stauffer E, Friederich NF. Occurrence of free nerve endings in the soft tissue of the knee joint: a histologic investigation. Am J Sports Med 1992; 20: 430–433
PubMed
CAS
Article
Google Scholar
Hogervorst T, Brand RA. Mechanoreceptors in joint function. J Bone Joint Surg Am 1998; 80: 1365–1378
PubMed
CAS
Google Scholar
Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 1988; 24: 739–768
PubMed
CAS
Article
Google Scholar
Salo PT, Theriault E. Number, distribution and neuropeptide content of rat knee joint afferents. J Anat 1997; 190: 515–522
PubMed
CAS
Article
Google Scholar
Mosier SM, Lucas DR, Pomeroy G, et al. Pathology of the posterior tibial tendon in posterior tibial tendon insufficiency. Foot Ankle Int 1998; 19: 520–524
PubMed
CAS
Google Scholar
Benjamin M, Ralphs JR. Tendons and ligaments: an overview. Histol Histopathol 1997; 12: 1135–1144
PubMed
CAS
Google Scholar
Ahmed IM, Lagopoulos M, McConnell P, et al. Blood supply of the Achilles tendon. J Orthop Res 1998; 16: 591–596
PubMed
CAS
Article
Google Scholar
Frey C, Shereff M, Greenidge N. Vascularity of the posterior tibial tendon. J Bone Joint Surg Am 1990; 72: 884–888
PubMed
CAS
Google Scholar
Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments: an adaptation to compressive load. J Anat 1998; 193: 481–494
PubMed
Article
Google Scholar
Bray RC, Rangayyan RM, Frank CB. Normal and healing ligament vascularity: a quantitative histological assessment in the adult rabbit medial collateral ligament. J Anat 1996; 188: 87–95
PubMed
Google Scholar
Petersen W, Hohmann G, Stein V, et al. The blood supply of the posterior tibial tendon. J Bone Joint Surg Br 2002; 84: 141–144
PubMed
CAS
Article
Google Scholar
Chowdhury P, Matyas JR, Frank CB. The ‘epiligament’ of the rabbit medial collateral ligament: a quantitative morphological study. Connect Tissue Res 1991; 27: 33–50
PubMed
CAS
Article
Google Scholar
Åström M. Laser Doppler flowmetry in the assessment of tendon blood flow. Scand J Med Sci Sports 2000; 10: 365–367
PubMed
Article
Google Scholar
Petersen W, Bobka T, Stein V, et al. Blood supply of the peroneal tendons: injection and immunohistochemical studies of cadaver tendons. Acta Orthop Scand 2000; 71: 168–174
PubMed
CAS
Article
Google Scholar
Arnoczky SP, Rubin RM, Marshall JL. Microvasculature of the cruciate ligaments and its response to injury: an experimental study in dogs. J Bone Joint Surg Am 1979; 61: 1221–1229
PubMed
CAS
Google Scholar
Benjamin M, Evans EJ, Copp L. The histology of tendon attachments to bone in man. J Anat 1986; 149: 89–100
PubMed
CAS
Google Scholar
Scapinelli R. Vascular anatomy of the human cruciate ligaments and surrounding structures. Clin Anat 1997; 10: 151–162
PubMed
CAS
Article
Google Scholar
Carr AJ, Norris SH. The blood supply of the calcaneal tendon. J Bone Joint Surg Br 1989; 71: 100–101
PubMed
CAS
Google Scholar
Petersen W, Tillmann B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Erribryol 1999; 200: 325–334
CAS
Article
Google Scholar
Petersen W, Stein V, Bobka T. Structure of the human tibialis anterior tendon. J Anat 2000; 197: 617–625
PubMed
Article
Google Scholar
Brooks CH, Revell WJ, Heatley FW. A quantitative histological study of the vascularity of the rotator cuff tendon. J Bone Joint Surg Br 1992; 74: 151–153
PubMed
CAS
Google Scholar
Geppert MJ, Sobel M, Hannafin JA. Microvasculature of the tibialis anterior tendon. Foot Ankle 1993; 14: 261–264
PubMed
CAS
Google Scholar
Schneeberger AG, Masquelet AC. Arterial vascularization of the proximal extensor carpi radialis brevis tendon. Clin Orthop 2002; 398: 239–244
PubMed
Article
Google Scholar
Archambault JM, Wiley JP, Bray RC. Exercise loading of tendons and the development of overuse injuries: a review of current literature. Sports Med 1995; 20: 77–89
PubMed
CAS
Article
Google Scholar
Theodorou DJ, Theodorou SJ, Farooki S, et al. Disorders of the plantar aponeurosis: a spectrum of MR imaging findings. Am J Roentgenol 2001; 176: 97–104
CAS
Google Scholar
Woo S, Maynard J, Butler D, et al. Ligament, tendon, and joint capsule insertions to bone. In: Woo SL, Buckwalter JA, editors. Injury and repair of the musculoskeletal soft tissues. Park Ridge (IL): American Academy of Orthopedic Surgeons, 1987: 133–166
Google Scholar
Benjamin M, McGonagle D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat 2001; 199: 503–526
PubMed
CAS
Article
Google Scholar
McGonagle D, Marzo-Ortega H, O’Connor P, et al. Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis 2002; 61: 534–537
PubMed
CAS
Article
Google Scholar
Cooper RR, Misol S. Tendon and ligament insertion: a light and electron microscopic study. J Bone Joint Surg Am 1970; 52: 1–20
PubMed
CAS
Google Scholar
Rufai A, Ralphs JR, Benjamin M. Structure and histopathology of the insertional region of the human Achilles tendon. J Orthop Res 1995; 13: 585–593
PubMed
CAS
Article
Google Scholar
Merkel KH, Hess H, Kurtz M. Insertion tendopathy in athletes: a light microscopic, histochemical and electron microscopic examination. Pathol Res Pract 1982; 173: 303–309
PubMed
CAS
Article
Google Scholar
Rufai A, Ralphs JR, Benjamin M. Ultrastructure of fibrocartilages at the insertion of the rat Achilles tendon. J Anat 1996; 189: 185–191
PubMed
Google Scholar
Milz S, Rufai A, Buettner A, et al. Three-dimensional reconstructions of the Achilles tendon insertion in man. J Anat 2002; 200: 145–152
PubMed
CAS
Article
Google Scholar
Gao J, Messner K. Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint. J Anat 1996; 188: 367–373
PubMed
Google Scholar
Evans EJ, Benjamin M, Pemberton DJ. Variations in the amount of calcified tissue at the attachments of the quadriceps tendon and patellar ligament in man. J Anat 1991; 174: 145–151
PubMed
CAS
Google Scholar
Benjamin M, Evans EJ, Rao RD, et al. Quantitative differences in the histology of the attachment zones of the meniscal horns in the knee joint of man. J Anat 1991; 177: 127–134
PubMed
CAS
Google Scholar
Gao J, Rasanen T, Persliden J, et al. The morphology of ligament insertions after failure at low strain velocity: an evaluation of ligament entheses in the rabbit knee. J Anat 1996; 189: 127–133
PubMed
Google Scholar
Benjamin M, Newell RL, Evans EJ, et al. The structure of the insertions of the tendons of biceps brachii, triceps and brachial -is in elderly dissecting room cadavers. J Anat 1992; 180: 327–332
PubMed
Google Scholar
Mente PL, Lewis JL. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res 1994; 12: 637–647
PubMed
CAS
Article
Google Scholar
Shea JE, Hallows RK, Bloebaum RD. Experimental confirmation of the sheep model for studying the role of calcified fibrocartilage in hip fractures and tendon attachments. Anat Rec 2002; 266: 177–183
PubMed
Article
Google Scholar
Vajda EG, Bloebaum RD. Age-related hypermineralization in the female proximal human femur. Anat Rec 1999; 255: 202–211
PubMed
CAS
Article
Google Scholar
Boyde A, Jones SJ, Aerssens J, et al. Mineral density quantitation of the human cortical iliac crest by backscattered electron image analysis: variations with age, sex, and degree of osteoarthritis. Bone 1995; 16: 619–627
PubMed
CAS
Article
Google Scholar
Matheson GO, Maclntyre JG, Taunton JE, et al. Musculoskeletal injuries associated with physical activity in older adults. Med Sci Sports Exerc 1989; 21: 379–385
PubMed
CAS
Google Scholar
Evans EJ, Benjamin M, Pemberton DJ. Fibrocartilage in the attachment zones of the quadriceps tendon and patellar ligament of man. J Anat 1990; 171: 155–162
PubMed
CAS
Google Scholar
Frowen P, Benjamin M. Variations in the quality of uncalcified fibrocartilage at the insertions of the extrinsic calf muscles in the foot. J Anat 1995; 186: 417–421
PubMed
Google Scholar
Milz S, Putz R, Ralphs JR, et al. Fibrocartilage in the extensor tendons of the human metacarpophalangeal joints. Anat Rec 1999; 256: 139–145
PubMed
CAS
Article
Google Scholar
Benjamin M, Qin S, Ralphs JR. Fibrocartilage associated with human tendons and their pulleys. J Anat 1995; 187: 625–633
PubMed
Google Scholar
de Carvalho HF. Understanding the biomechanics of tendon fibrocartilages. J Theor Biol 1995; 172: 293–297
PubMed
Article
Google Scholar
Kumai T, Takakura Y, Rufai A, et al. The functional anatomy of the human anterior talofibular ligament in relation to ankle sprains. J Anat 2002; 200: 457–465
PubMed
CAS
Article
Google Scholar
Kitaoka HB, Luo ZP, Growney ES, et al. Material properties of the plantar aponeurosis. Foot Ankle Int 1994; 15: 557–560
PubMed
CAS
Google Scholar
Blevins FT, Hecker AT, Bigler GT, et al. The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med 1994; 22: 328–333
PubMed
CAS
Article
Google Scholar
Ker RF. Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J Exp Biol 1981; 93: 283–302
PubMed
CAS
Google Scholar
Woo SLY, Peterson RH, Ohland KJ, et al. The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study. J Orthop Res 1990; 8: 712–721
PubMed
CAS
Article
Google Scholar
Butler DL, Grood ES, Noyes FR, et al. On the interpretation of our anterior cruciate ligament data. Clin Orthop 1985; 196: 26–34
PubMed
Google Scholar
Johnson GA, Tramaglini DM, Levine RE, et al. Tensile and viscoelastic properties of human patellar tendon. J Orthop Res 1994; 12: 796–803
PubMed
CAS
Article
Google Scholar
Noyes FR, DeLucas JL, Torvik PJ. Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am 1974; 56: 236–253
PubMed
CAS
Google Scholar
Butler DL, Grood ES, Noyes FR, et al. Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 1984; 17: 579–596
PubMed
CAS
Article
Google Scholar
Wren TA, Yerby SA, Beaupre GS, et al. Mechanical properties of the human Achilles tendon. Clin Biomech 2001; 16: 245–251
CAS
Article
Google Scholar
Danto MI, Woo SL. The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res 1993; 11: 58–67
PubMed
CAS
Article
Google Scholar
Wren TA, Yerby SA, Beaupre GS, et al. Influence of bone mineral density, age, and strain rate on the failure mode of human Achilles tendons. Clin Biomech 2001; 16: 529–534
CAS
Article
Google Scholar
Ambrose CG, Kiebzak GM, Sabonghy EP, et al. Bio mechanical testing of cadaveric specimens: importance of bone mineral density assessment. Foot Ankle Int 2002; 23: 850–855
PubMed
Google Scholar
Woo SLY, Hollis JM, Adams DJ, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med 1991; 19: 217–225
PubMed
CAS
Article
Google Scholar
Haut Donahue TL, Gregersen C, Hull ML, et al. Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. J Biomech Eng 2001; 123: 162–169
Article
Google Scholar
Lewis G, Shaw KM. Tensile properties of human tendo achillis: effect of donor age and strain rate. J Foot Ankle Surg 1997; 36: 435–445
PubMed
CAS
Article
Google Scholar
Attarian DE, McCrackin HJ, DeVito DP, et al. Biomechanical characteristics of human ankle ligaments. Foot Ankle 1985; 6: 54–58
PubMed
CAS
Google Scholar
Harner CD, Xerogeanes JW, Livesay GA, et al. The human posterior cruciate ligament complex: an interdisciplinary study: ligament morphology and biomechanical evaluation. Am J Sports Med 1995; 23: 736–745
PubMed
CAS
Article
Google Scholar
Momersteeg TJ, Blankevoort L, Huiskes R, et al. The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness. J Biomech 1995; 28: 745–752
PubMed
CAS
Article
Google Scholar
Przybylski GJ, Carlin GJ, Patel PR, et al. Human anterior and posterior cervical longitudinal ligaments possess similar tensile properties. J Orthop Res 1996; 14: 1005–1008
PubMed
CAS
Article
Google Scholar
Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cmciate ligament. J Biomech 1994; 27: 13–24
PubMed
CAS
Article
Google Scholar
Siegler S, Block J, Schneck CD. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 1988: 8: 234–242
PubMed
CAS
Google Scholar
Hinton R, Jinnah RH, Johnson C, et al. A biomechanical analysis of solvent-dehydrated and freeze-dried human fascia lata allografts: a preliminary report. Am J Sports Med 1992; 20: 607–612
PubMed
CAS
Article
Google Scholar
Parry DA. The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem 1988; 29: 195–209
PubMed
CAS
Article
Google Scholar
Strocchi R, de Pasquale V, Gubellini P, et al. The human anterior cruciate ligament: histological and ultrastructural observations. J Anat 1992; 180: 515–519
PubMed
Google Scholar
Hurschler C, Vanderby R, Martinez DA, et al. Mechanical and biochemical analyses of tibial compartment fascia in chronic compartment syndrome. Ann Biomed Eng 1994; 22: 272–279
PubMed
CAS
Article
Google Scholar
Kura H, Luo ZP, Kitaoka HB, et al. Mechanical behavior of the Lisfranc and dorsal cuneometatarsal ligaments: in vitro biomechanical study. J Orthop Trauma 2001; 15: 107–110
PubMed
CAS
Article
Google Scholar
Bennett MB, Ker RF, Dimery NJ, et al. Mechanical properties of various mammalian tendons. J Zool 1986; 209: 537–548
Article
Google Scholar
Iaconis F, Steindler R, Marinozzi G. Measurements of cross-sectional area of collagen structures (knee ligaments) by means of an optical method. J Biomech 1987; 20: 1003–1010
PubMed
CAS
Article
Google Scholar
Race A, Amis AA. Cross-sectional area measurement of soft tissue: a new casting method. J Biomech 1996; 29: 1207–1212
PubMed
CAS
Article
Google Scholar
Woo SL, Danto MI, Ohland KJ, et al. The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: a comparative study with two existing methods. J Biomech Eng 1990; 112: 426–431
PubMed
CAS
Article
Google Scholar
Benedict JV, Walker LB, Harris EH. Stress-strain characteristics and tensile strength of unembalmed human tendon. J Biomech 1968; 1: 53–63
PubMed
CAS
Article
Google Scholar
Butler DL, Kay MD, Stouffer DC. Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech 1986; 19: 425–432
PubMed
CAS
Article
Google Scholar
Itoi E, Berglund LJ, Grabowski JJ, et al. Tensile properties of the supraspinatus tendon. J Orthop Res 1995; 13: 578–584
PubMed
CAS
Article
Google Scholar
Stäubli HU, Schatzmann L, Brunner P, et al. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 1999; 27: 27–34
PubMed
Google Scholar
Butler DL, Guan Y, Kay MD, et al. Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 1992; 25: 511–518
PubMed
CAS
Article
Google Scholar
Quapp KM, Weiss JA. Material characterization of human medial collateral ligament. J Biomech Eng 1998; 120: 757–763
PubMed
CAS
Article
Google Scholar
Kubo K, Kawakami Y, Kanehisa H, et al. Measurement of viscoelastic properties of tendon structures in vivo. Scand J Med Sci Sports 2002; 12: 3–8
PubMed
Article
Google Scholar
Haut RC, Powlison AC. The effects of test environment and cyclic stretching on the failure properties of human patellar tendons. J Orthop Res 1990; 8: 532–540
PubMed
CAS
Article
Google Scholar
Haut TL, Haut RC. The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. J Biomech 1997; 30: 79–81
PubMed
CAS
Article
Google Scholar
Thornton GM, Shrive NG, Frank CB. Altering ligament water content affects ligament pre-stress and creep behaviour. J Orthop Res 2001; 19: 845–851
PubMed
CAS
Article
Google Scholar
Flahiff CM, Brooks AT, Hollis JM, et al. Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 1995; 23: 354–358
PubMed
CAS
Article
Google Scholar
Haut RC, Lancaster RL, DeCamp CE. Mechanical properties of the canine patellar tendon: some correlations with age and the content of collagen. J Biomech 1992; 25: 163–173
PubMed
CAS
Article
Google Scholar
Hubbard RP, Soutas-Little RW. Mechanical properties of human tendon and their age dependence. J Biomech Eng 1984; 106: 144–150
PubMed
CAS
Article
Google Scholar
Lee TQ, Dettling J, Sandusky MD, et al. Age related biomechanical properties of the glenoid-anterior band of the inferior glenohumeral ligament-humerus complex. Clin Biomech 1999: 14: 471–476
CAS
Article
Google Scholar
Tuite DJ, Renstrom PA, O’Brien M. The aging tendon. Scand J Med Sci Sports 1997; 7: 72–77
PubMed
CAS
Article
Google Scholar
Kirkendall DT, Garrett WE. Function and biomechanics of tendons. Scand J Med Sci Sports 1997; 7: 62–66
PubMed
CAS
Article
Google Scholar
Maganaris CN, Narici MV, Almekinders LC, et al. Biomechanics and pathophysiology of overuse tendon injuries: ideas on insertional tendinopathy. Sports Med 2004; 34: 1005–1017
PubMed
Article
Google Scholar
Vasseur PB, Pool RR, Arnoczky SP, et al. Correlative biomechanical and histologic study of the cranial cruciate ligament in dogs. Am J Vet Res 1985; 46: 1842–1854
PubMed
CAS
Google Scholar
Sano H, Ishii H, Yeadon A, et al. Degeneration at the insertion weakens the tensile strength of the supraspinatus tendon: a comparative mechanical and histologic study of the bone-tendon complex. J Orthop Res 1997; 15: 719–726
PubMed
CAS
Article
Google Scholar
Soslowsky LJ, Thomopoulos S, Tun S, et al. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J Shoulder Elbow Surg 2000; 9: 79–84
PubMed
CAS
Article
Google Scholar
Kannus P, Józsa L. Histopathological changes preceding spontaneous rupture of a tendon: a controlled study of 891 patients. J Bone Joint Surg Am 1991; 73: 1507–1525
PubMed
CAS
Google Scholar
Ker RF, Bennett MB, Bibby SR, et al. The spring in the arch of the human foot. Nature 1987; 325: 147–149
PubMed
CAS
Article
Google Scholar
Murphy GA, Pneumaticos SG, Kamaric E, et al. Biomechanical consequences of sequential plantar fascia release. Foot Ankle Int 1998; 19: 149–152
PubMed
CAS
Google Scholar
Kitaoka HB, Luo ZP, An KN. Mechanical behavior of the foot and ankle after plantar fascia release in the unstable foot. Foot Ankle Int 1997; 18: 8–15
PubMed
CAS
Google Scholar
Thordarson DB, Hedman T, Lundquist D, et al. Effect of calcaneal osteotomy and plantar fasciotomy on arch configuration in a flatfoot model. Foot Ankle Int 1998; 19: 374–378
PubMed
CAS
Google Scholar
Kitaoka HB, Luo ZP, An KN. Effect of plantar fasciotomy on stability of arch of foot. Clin Orthop 1997; 344: 307–312
PubMed
Google Scholar
Kitaoka HB, Ahn TK, Luo ZP, et al. Stability of the arch of the foot. Foot Ankle Int 1997; 18: 644–648
PubMed
CAS
Google Scholar
Anderson DJ, Fallat LM, Savoy-Moore RT. Computer-assisted assessment of lateral column movement following plantar fascial release: a cadaveric study. J Foot Ankle Surg 2001; 40: 62–70
PubMed
CAS
Article
Google Scholar
Hicks JH. The foot as a support. Acta Anat 1955; 25: 34–45
PubMed
CAS
Article
Google Scholar
Sarrafian SK. Functional characteristics of the foot and plantar aponeurosis under tibiotalar loading. Foot Ankle 1987; 8: 4–18
PubMed
CAS
Google Scholar
Vogler HW, Bojsen-Moller F. Tarsal functions, movement, and stabilization mechanisms in foot, ankle and leg performance. J Am Podiatr Med Assoc 2000; 90: 112–125
PubMed
CAS
Google Scholar
Kogler GF, Solomonidis SE, Paul JP. In vitro method for quantifying the effectiveness of the longitudinal arch support mechanism of a foot orthosis. Clin Biomech 1995; 10: 245–252
Article
Google Scholar
Kogler GF, Solomonidis SE, Paul JP. Biomechanics of longitudinal arch support mechanisms in foot orthoses and their effect on plantar aponeurosis strain. Clin Biomech 1996; 11: 243–252
Article
Google Scholar
Kogler GF, Veer EB, Solomonidis SE, et al. The influence of medial and lateral placement of orthotic wedges on loading of the plantar aponeurosis. J Bone Joint Surg Am 1999; 81: 1403–1413
PubMed
CAS
Google Scholar
Huang CK, Kitaoka HB, An KN, et al. Biomechanical stability of the arch. Foot Ankle 1993; 14: 353–357
PubMed
CAS
Google Scholar
Arangio GA, Salathe EP. Medial displacement calcaneal osteotomy reduces the excess forces in the medial longitudinal arch of the flat foot. Clin Biomech 2001; 16: 535–539
CAS
Article
Google Scholar
Arangio GA, Chen C, Salathe EP. Effect of varying arch height with and without the plantar fascia on the mechanical properties of the foot. Foot Ankle Int 1998; 19: 705–709
PubMed
CAS
Google Scholar
Gefen A. Stress analysis of the standing foot following surgical plantar fascia release. J Biomech 2002; 35: 629–637
PubMed
Article
Google Scholar
Arangio GA, Chen C, Kim W. Effect of cutting the plantar fascia on mechanical properties of the foot. Clin Orthop 1997; 339: 227–231
PubMed
Article
Google Scholar
Kim W, Voloshin AS. Role of the plantar fascia in the load bearing capacity of the human foot. J Biomech 1995; 28: 1025–1033
PubMed
CAS
Article
Google Scholar
Carlsoo S, Wetzenstein H. Change of form of the foot and the foot skeleton upon momentary weight-bearing. Acta Orthop Scand 1968; 39: 413–423
PubMed
CAS
Article
Google Scholar
Salathe EP, Arangio GA, Salathe EP. A biomechanical model of the foot. J Biomech 1986; 19: 989–1001
PubMed
Article
Google Scholar
Williams A, Vedi V, Singh D, et al. Hick’s revisited: a weightbearing in vivo study of the biomechanics of the plantar fascia employing dynamic M.R.I. J Bone Joint Surg Br 1999; 81: 381
Article
Google Scholar
Vedi V, Williams A, Singh D, et al. Hick’s revisited: a weightbearing in vivo study of the biomechanics of the plantar fascia employing ‘dynamic’ MRI [abstract]. J Bone Joint Surg Br 1999; 81: 156
Article
Google Scholar
Hicks JH. The mechanics of the foot: the plantar aponeurosis and the arch. J Anat 1954; 88: 25–30
PubMed
CAS
Google Scholar
Rush SM, Christensen JC, Johnson CH. Biomechanics of the first ray, part 2: metatarsus primus vams as a cause of hypermobility - a three dimensional kinematic analysis in a cadaver model. J Foot Ankle Surg 2000; 39: 68–75
PubMed
CAS
Article
Google Scholar
Bojsen-Moller F. Calcaneocuboid joint and stability of the longitudinal arch of the foot at high and low gear push off. J Anat 1979; 129: 165–176
PubMed
CAS
Google Scholar
Hicks JH. The mechanics of the foot: the j oints. J Anat 1953; 87: 345–357
PubMed
CAS
Google Scholar
Thordarson DB, Schmotzer H, Chon J, et al. Dynamic support of the human longitudinal arch: a biomechanical evaluation. Clin Orthop 1995; 316: 165–172
PubMed
Google Scholar
Kappel-Bargas A, Woolf RD, Cornwall MW, et al. The windlass mechanism during normal walking and passive first metatarsalphalangeal joint extension. Clin Biomech 1998; 13: 190–194
Article
Google Scholar
Hetherington VJ, Carnett J, Patterson BA. Motion of the first metatarsophalangeal joint. J Foot Surg 1989; 28: 13–19
PubMed
CAS
Google Scholar
Shereff MJ, Bejjani FJ, Kummer FJ. Kinematics of the first metatarsophalangeal joint. J Bone Joint Surg Am 1986; 68: 392–398
PubMed
CAS
Google Scholar
Kogler GF, Veer EB, Verhulst SJ, et al. The effect of heel elevation on strain within the plantar aponeurosis: in vitro study. Foot Ankle Int 2001; 22: 433–439
PubMed
CAS
Google Scholar
Winson IG, Lundberg A, Bylund C. The pattern of motion of the longitudinal arch. Foot 1994; 4: 151–154
Article
Google Scholar
Sharkey NA, Ferris L, Donahue SW. Biomechanical consequences of plantar fascial release or rupture during gait, part I: disruptions in longitudinal arch conformation. Foot Ankle Int 1998; 19: 812–820
PubMed
CAS
Google Scholar
Carlson RE, Fleming LL, Hutton WC. The biomechanical relationship between the tendoachilles, plantar fascia and metatarsophalangeal joint dorsiflexi on angle. Foot Ankle Int 2000; 21: 18–25
PubMed
CAS
Google Scholar
Kitaoka HB, Luo ZP, An KN. Effect of the posterior tibial tendon on the arch of the foot during simulated weightbearing: biomechanical analysis. Foot Ankle Int 1997; 18: 43–46
PubMed
CAS
Google Scholar
Donn AW, Nicol AC. Ligament strain measurements in cadaveric feet during simulated functional activities. In: Hakkinen K, editor. 15th Congress of the International Society of Biomechanics; 1995 Jul 2–6; Jyvaskyla, Finland: 1995: 226–227
Hamel AJ, Donahue SW, Sharkey NA. Contributions of active and passive toe flexion to forefoot loading. Clin Orthop 2001; 393: 326–334
PubMed
Article
Google Scholar
Tansey PA, Briggs PJ. Active and passive mechanisms in the control of heel supination. J Foot Ankle Surg 2001; 7: 131–136
Article
Google Scholar
Salathe EP, Arangio GP. A biomechanical model of the foot: the role of muscles, tendons, and ligaments. J Biomech Eng 2002; 124: 281–287
PubMed
Article
Google Scholar
Duranti R, Galletti R, Pantaleo T. Electromyographic observations in patients with foot pain syndromes. Am J Phys Med 1985; 64: 295–304
PubMed
CAS
Google Scholar
Basmajian JV, Stecko G. The role of muscles in arch support of the foot: an electromyographic study. J Bone Joint Surg Am 1963; 45: 1184–1190
PubMed
CAS
Google Scholar
Reeser LA, Susman RL, Stern JT. Electromyographic studies of the human foot: experimental approaches to hominid evolution. Foot Ankle 1983; 3: 391–407
PubMed
CAS
Google Scholar
Mann R, Inman VT. Phasic activity of intrinsic muscles of the foot. J Bone Joint Surg Am 1964; 46: 469–481
PubMed
CAS
Google Scholar
Kayano J. Dynamic function of medial foot arch. Nippon Seikeigeka Gakkai Zasshi 1986; 60: 1147–1156
CAS
Google Scholar
Sharkey NA, Donahue SW, Ferris L. Biomechanical consequences of plantar fascial release or rupture during gait, part II: alterations in forefoot loading. Foot Ankle Int 1999; 20: 86–96
PubMed
CAS
Google Scholar
Harton FM, Weiskopf SA, Goecker RM. Sectioning the plantar fascia: effect on first metatarsophalangeal joint motion. J Am Podiatr Med Assoc 2002; 92: 532–536
PubMed
Google Scholar
Pardiwala A, Henry APJ. Traumatic rupture of the plantar fascia leading to development of claw toe deformity: two case reports. J Foot Ankle Surg 2001; 7: 197–200
Article
Google Scholar
Mann R, Poppen NK, O’Konski M. Amputation of the great toe: a clinical and biomechanical study. Clin Orthop 1988; 226: 192–205
PubMed
Google Scholar
Wearing SC, Urry SR, Smeathers JE. Ground reaction forces at discrete sites of the foot derived from pressure plate measurements. Foot Ankle Int 2001; 22: 653–661
PubMed
CAS
Google Scholar
Hughes J, Clark P, Klenerman L. The importance of the toes in walking. J Bone Joint Surg Br 1990; 72: 245–251
PubMed
CAS
Google Scholar
Cornwall MW, McPoil TG. Motion of the calcaneus, navicular, and first metatarsal during the stance phase of walking. J Am Podiatr Med Assoc 2002: 92: 67–76
PubMed
Google Scholar
Scott SH, Winter DA. Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J Biomech 1993; 26: 1091–1104
PubMed
CAS
Article
Google Scholar
Leardini A, Benedetti MG, Catani F, et al. An anatomically based protocol for the description of foot segment kinematics during gait. Clin Biomech 1999; 14: 528–536
CAS
Article
Google Scholar
Wearing SC, Urry S, Perlman P, et al. Sagittal plane motion of the human arch during gait: a videofluoroscopic analysis. Foot Ankle Int 1998; 19: 738–742
PubMed
CAS
Google Scholar
Yang SM, Kayamo J, Norimatsu T, et al. Dynamic changes of the arches of the foot during walking. In: Winter DA, Norman RW, Wells RP, et al., editors. Biomechanics IX: international series on biomechanics. Champaign (IL): Human Kinetics, 1985: 417–422
Google Scholar
Wearing SC, Smeathers JE, Yates B, et al. Sagittal movement of the medial longitudinal arch is unchanged in plantar fasciitis. Med Sci Sports Exerc 2004; 36: 1761–1767
PubMed
Article
Google Scholar
Hunt AE, Smith RM, Torode M. Extrinsic muscle activity, foot motion and ankle joint moments during the stance phase of walking. Foot Ankle Int 2001; 22: 31–41
PubMed
CAS
Google Scholar
Hunt AE, Smith RM, Torode M, et al. Inter-segment foot motion and ground reaction forces over the stance phase of walking. Clin Biomech 2001; 16: 592–600
CAS
Article
Google Scholar
Cashmere T, Smith R, Hunt A. Medial longitudinal arch of the foot: stationary versus walking measures. Foot Ankle Int 1999; 20: 112–118
PubMed
CAS
Google Scholar
Phillips RD, Law EA, Ward ED. Functional motion of the medial column joints of the foot during propulsion. J Am Podiatr Med Assoc 1996; 86: 474–486
PubMed
CAS
Google Scholar
Kameyama O, Ogawa R, Okamoto T, et al. Electric discharge patterns of ankle muscles during the normal gait cycle. Arch Phys Med Rehabil 1990; 71: 969–974
PubMed
CAS
Google Scholar
Blanc Y, Baimer C, Landis T, et al. Temporal parameters and patterns of the foot roll over during walking: normative data for healthy adults. Gait Posture 1999; 10: 97–108
PubMed
CAS
Article
Google Scholar
Sutherland DH, Kaufman KR, Moitoza JR. Kinematics of normal human walking. In: Rose J, Gamble JG, editors. Human walking. Sydney: Williams & Wilkins, 1994: 23–44
Google Scholar
Andriacchi TP, Alexander EJ. Studies of human locomotion: past, present and future. J Biomech 2000; 33: 1217–1224
PubMed
CAS
Article
Google Scholar
Maslen BA, Ackland TR. Radiographic study of the skin displacement errors in the foot and ankle during standing. Clin Biomech 1994; 9: 291–296
Article
Google Scholar
Giddings VL, Beaupre GS, Whalen RT, et al. Calcaneal loading during walking and running. Med Sci Sports Exerc 2000; 32: 627–634
PubMed
CAS
Article
Google Scholar
Scott SH, Winter DA. Internal forces of chronic running injury sites. Med Sci Sports Exerc 1990; 22: 357–369
PubMed
CAS
Google Scholar
Gefen A. The in vivo elastic properties of the plantar fascia during the contact phase of walking. Foot Ankle Int 2003; 24: 238–244
PubMed
Google Scholar
Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol 1999; 521: 307–313
PubMed
CAS
Article
Google Scholar
Magnusson SP, Aagaard P, Dyhre-Poulsen P, et al. Load-displacement properties of the human triceps surae aponeurosis in vivo. J Physiol 2001; 531: 277–288
PubMed
CAS
Article
Google Scholar
Muramatsu T, Muraoka T, Takeshita D, et al. Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. J Appl Physiol 2001; 90: 1671–1678
PubMed
CAS
Google Scholar
Rosager S, Aagaard P, Dyhre-Poulsen P, et al. Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners. Scand J Med Sci Sports 2002; 12: 90–98
PubMed
CAS
Article
Google Scholar
Erdemir A, Hamel AJ, Fauth AR, et al. Dynamic loading of the plantar aponeurosis in walking. J Bone Joint Surg Am 2004; 86: 546–552
PubMed
Google Scholar
Malaviya P, Butler DL, Korvick DL, et al. In vivo tendon forces correlate with activity level and remain bounded: evidence in a rabbit flexor tendon model. J Biomech 1998; 31: 1043–1049
PubMed
CAS
Article
Google Scholar
Grasel RP, Schweitzer ME, Kovalovich AM, et al. MR imaging of plantar fasciitis: edema, tears, and occult marrow abnormalities correlated with outcome. Am J Roentgenol 1999; 173: 699–701
CAS
Google Scholar
Schepsis AA, Leach RE, Gorzyca J. Plantar fasciitis: etiology, treatment, surgical results, and review of the literature. Clin Orthop 1991; 266: 185–196
PubMed
Google Scholar
Snider MP, Clancy WG, McBeath AA. Plantar fascia release for chronic plantar fasciitis in runners. Am J Sports Med 1983; 11: 215–219
PubMed
CAS
Article
Google Scholar
LeMelle DP, Kisilewicz P, Janis LR. Chronic plantar fascial inflammation and fibrosis. Clin Podiatr Med Surg 1990; 7: 385–389
PubMed
CAS
Google Scholar
Clancy Jr WG. Tendinitis and plantar fasciitis in runners. Orthop 1983; 6: 217–233
Google Scholar
Józsa LG, Kannus P. Human tendons: anatomy, physiology and pathology. Champaign (IL): Human Kinetics, 1997
Google Scholar
Chard MD, Cawston TE, Riley GP, et al. Rotator cuff degeneration and lateral epicondylitis: a comparative histological study. Ann Rheum Dis 1994; 53: 30–34
PubMed
CAS
Article
Google Scholar
Åström M, Rausing A. Chronic Achilles tendinopathy: a survey of surgical and histopathologic findings. Clin Orthop 1995; 316: 151–164
PubMed
Google Scholar
Leach RF, Seavey MS, Salter DK. Results of surgery in athletes with plantar fasciitis. Foot Ankle 1986; 7: 156–161
PubMed
CAS
Google Scholar
LemontH, Ammirati KM, Usen N. Plantar fasciitis: a degenerative process (fasciosis) without inflammation. J Am Podiatr Med Assoc 2003; 93: 234–237
PubMed
Google Scholar
Kumagai J, Sarkar K, Uhthoff HK. The collagen types in the attachment zone of rotator cuff tendons in the elderly: an immunohistochemical study. J Rheumatol 1994; 21: 2096–2100
PubMed
CAS
Google Scholar
Kumai T, Benjamin M. Heel spur formation and the subcalcaneal enthesis of the plantar fascia. J Rheumatol 2002; 29: 1957–1964
PubMed
Google Scholar
Ogata S, Uhthoff HK. Acromial enthesopathy and rotator cuff tear: a radiologic and histologic postmortem investigation of the coracoacromial arch. Clin Orthop 1990; 254: 39–48
PubMed
Google Scholar
Abreu MR, Chung CB, Mendes L, et al. Plantar calcaneal enthesophytes: new observations regarding sites of origin based on radiographic, MR imaging, anatomic, and paleopathology analysis. Skeletal Radiol 2003; 32: 13–21
PubMed
CAS
Article
Google Scholar
Skedros JG, Bloebaum RD, Mason MW, et al. Analysis of a tension/compression skeletal system: possible strain-specific differences in the hierarchical organization of bone. Anat Rec 1994; 239: 396–404
PubMed
CAS
Article
Google Scholar
Wainwright AM, Kelly AJ, Winson G. Calcaneal spurs and plantar fasciitis. Foot 1995; 5: 123–126
Article
Google Scholar
Shaibani A, Workman R, Rothschild BM. The significance of enthesopathy as a skeletal phenomenon. Clin Exp Rheumatol 1993: 11: 399–403
PubMed
CAS
Google Scholar
Khan KM, Cook JL, Taunton JE, et al. Ovemse tendinosis, not tendinitis: part 1: a new paradigm for a difficult clinical problem. Phys Sportsmed 2000; 28: 38–48
PubMed
CAS
Article
Google Scholar
Maffulli N, Khan KM, Puddu G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 1998; 14: 840–843
PubMed
CAS
Article
Google Scholar
Almekinders LC, Temple JD. Etiology, diagnosis, and treatment of tendonitis: an analysis of the literature. Med Sci Sports Exerc 1998; 30: 1183–1190
PubMed
CAS
Article
Google Scholar
Mosier SM, Pomeroy G, Manoli A. Pathoanatomy and etiology of posterior tibial tendon dysfunction. Clin Orthop 1999; 365: 12–22
PubMed
Article
Google Scholar
Hess GP, Cappiello WL, Poole RM, et al. Prevention and treatment of overuse tendon injuries. Sports Med 1989; 8: 371–384
PubMed
CAS
Article
Google Scholar
Backman C, Boquist L, Fridén J, et al. Chronic achilles paratenonitis with tendinosis: an experimental model in the rabbit. J Orthop Res 1990; 8: 541–547
PubMed
CAS
Article
Google Scholar
Enwemeka CS. Inflammation, cellularity, and fibrillogenesis in regenerating tendon: implications for tendon rehabilitation. Phys Ther 1989; 69: 816–825
PubMed
CAS
Google Scholar
Herrick RT, Herrick S. Rupture of the plantar fascia in a middle-aged tennis player: a case report. Am J Sports Med 1983; 11: 95
PubMed
CAS
Article
Google Scholar
Lun V, Meeuwisse W, Vellet D. Spontaneous rupture of plantar fascia. Clin J Sport Med 1999; 9: 48–49
PubMed
CAS
Article
Google Scholar
Rolf C, Guntner P, Ericsater J, et al. Plantar fascia rupture: diagnosis and treatment. J Foot Ankle Surg 1997; 36: 112–114
PubMed
CAS
Article
Google Scholar
Józsa L, Réffy A, Kannus P, et al. Pathological alterations in human tendons. Arch Orthop Trauma Surg 1990; 110: 15–21
PubMed
Article
Google Scholar
Kannus P, Natri A. Etiology and pathophysiology of tendon ruptures in sports. Scand J Med Sci Sports 1997; 7: 107–112
PubMed
CAS
Article
Google Scholar
Carpenter JE, Flanagan CL, Thomopoulos S, et al. The effects of overuse combined with intrinsic or extrinsic alterations in an animal model of rotator cuff tendinosis. Am J Sports Med 1998; 26: 801–807
PubMed
CAS
Google Scholar
Archambault JM, Herzog W, Hart DA. Acute and chronic tendon overuse in a rabbit model. 23rd Annual Meeting of the American Society of Biomechanics; 1999 Oct 21–23; Pittsburgh (PA)
Google Scholar
Kannus P. Etiology and pathophysiology of chronic tendon disorders in sports. Scand J Med Sci Sports 1997; 7: 78–85
PubMed
CAS
Article
Google Scholar
Kraus-Hansen AE, Fackelman GE, Becker C, et al. Preliminary studies on the vascular anatomy of the equine superficial digital flexor tendon. Equine Vet J 1992; 24: 46–51
PubMed
CAS
Article
Google Scholar
Wilson AM, Goodship AE. Exercise-induced hyperthermia as a possible mechanism for tendon degeneration. J Biomech 1994; 27: 899–905
PubMed
CAS
Article
Google Scholar
Józsa L, Kvist M, Balint BJ, et al. The role of recreational sport activity in Achilles tendon rupture: a clinical, pathoanatomical, and sociological study of 292 cases. Am J Sports Med 1989; 17: 338–343
PubMed
Article
Google Scholar
Józsa L, Balint JB, Kannus P, et al. Distribution of blood groups in patients with tendon rupture: an analysis of 832 cases. J Bone Joint Surg Br 1989; 71: 272–274
PubMed
Google Scholar
Kujala UM, Jarvinen M, Natri A, et al. ABO blood groups and musculoskeletal injuries. Injury 1992; 23: 131–133
PubMed
CAS
Article
Google Scholar
Maffulli N, Reaper JA, Waterston SW, et al. ABO blood groups and achilles tendon rupture in the Grampian Region of Scotland. Clin J Sport Med 2000; 10: 269–271
PubMed
CAS
Article
Google Scholar
Leppilahti J, Puranen J, Orava S. ABO blood group and Achilles tendon rupture. Ann Chir Gynaecol 1996; 85: 369–371
PubMed
CAS
Google Scholar
Chandler TJ, Kibler WB. A biomechanical approach to the prevention, treatment, and rehabilitation of plantar fasciitis. Sports Med 1993; 15: 344–352
PubMed
CAS
Article
Google Scholar
Cornwall MW, McPoil TG. Plantar fasciitis: etiology and treatment. J Orthop Sports Phys Ther 1999; 29: 756–760
PubMed
CAS
Google Scholar
Murphy DF, Connolly DAJ, Beynnon BD. Risk factors for lower extremity injury: a review of the literature. Br J Sports Med 2002; 37: 13–29
Article
Google Scholar
James SL, Bates BT, Osternig LR. Injuries to runners. Am J Sports Med 1978; 6: 40–50
PubMed
CAS
Article
Google Scholar
Taunton JE, Clement DB, McNicol K. Plantar fasciitis in runners. Can J Appl Sport Sci 1982; 7: 41–44
PubMed
CAS
Google Scholar
Kibler WB, Goldberg C, Chandler J. Functional biomechanical deficits in running athletes with plantar fasciitis. Am J Sports Med 1991; 19: 66–71
PubMed
CAS
Article
Google Scholar
Warren BL. Anatomical factors associated with predicting plantar fasciitis in long-distance runners. Med Sci Sports Exerc 1984; 16: 60–63
PubMed
CAS
Google Scholar
Warren BL, Jones CJ. Predicting plantar fasciitis in runners. Med Sci Sports Exerc 1987; 19: 71–73
PubMed
CAS
Google Scholar
Messier SP, Pittala KA. Etiologic factors associated with selected running injuries. Med Sci Sports Exerc 1988; 20: 501–505
PubMed
CAS
Google Scholar
Hill JJ, Cutting PJ. Heel pain and body weight. Foot Ankle 1989; 9: 254–256
PubMed
Google Scholar
Prichasuk S. The heel pad in plantar heel pain. J Bone Joint Surg Br 1994; 76: 140–142
PubMed
CAS
Google Scholar
Turgut A, GokturkE, Kose N, et al. The relationship of heel pad elasticity and plantar heel pain. Clin Orthop 1999; 360: 191–196
PubMed
Article
Google Scholar
Tsai WC, Wang CL, Hsu TC, et al. The mechanical properties of the heel pad in unilateral plantar heel pain syndrome. Foot Ankle Int 1999; 20: 663–668
PubMed
CAS
Google Scholar
Wilk BR, Fisher KL, Gutierrez W. Defective running shoes as a contributing factor in plantar fasciitis in a triathlete. J Orthop Sports Phys Ther 2000; 30: 21–28
PubMed
CAS
Google Scholar
Rano JA, Fallet LM, Savoy-Moore RT. Correlation of heel pain with body mass index and other characteristics of heel pain. J Foot Ankle Surg 2001; 40: 351–356
PubMed
CAS
Google Scholar
Rome K, Campbell R, Hint A, et al. Heel pad thickness: a contributing factor associated with plantar heel pain in young adults. Foot Ankle Int 2002; 23: 142–174
PubMed
Google Scholar
Whittle MW. Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture 1999; 10: 264–275
PubMed
CAS
Article
Google Scholar
Spears IR, Miller-Young JE, Waters M, et al. The effect of loading conditions on stress in the barefooted heel pad. Med Sci Sports Exerc 2005; 37: 1030–1036
PubMed
Google Scholar
Liddle D, Rome K, Howe T. Vertical ground reaction forces in patients with unilateral plantar heel pain: a pilot study. Gait Posture 2000: 11: 62–66
PubMed
CAS
Article
Google Scholar
Katoh Y, Chao EYS, Laughman RK, et al. Biomechanical analysis of foot function during gait and clinical applications. Clin Orthop 1983; 177: 23–33
PubMed
Google Scholar
Katoh Y, Chao EYS, Morrey BF, et al. Objective technique for evaluating painful heel syndrome and its treatment. Foot Ankle 1983; 3: 227–237
PubMed
CAS
Google Scholar
Daly PJ, Kitaoka HB, Chao EYS. Plantar fasciotomy for intractable plantar fasciitis: clinical results and biomechanical evaluation. Foot Ankle 1992; 13: 188–195
PubMed
CAS
Google Scholar
Wearing SC, Smeathers JE, Urry SR. The effect of plantar fasciitis on vertical foot-ground reaction force. Clin Orthop 2003; 409: 175–185
PubMed
Article
Google Scholar
Katoh Y, Chao EYS, Morrey BF, et al. Objective evaluation of painful heel syndrome by gait analysis. In: Matsui H, Kobayashi K, editors. Biomechanics VIII: proceedings of the 8th International Congress of Biomechanics. Champaign (IL): Human Kinetics, 1981: 490–497
Google Scholar
Kelly AJ, Wainwright AM, Winson IG. Plantar pressures are normal in plantar fasciitis. Foot Dis 1995; 11: 129–132
Google Scholar
Bedi HS, Love BRT. Differences in impulse distribution patterns in patients with plantar fasciitis. Foot Ankle Int 1998; 19: 153–156
PubMed
CAS
Google Scholar
Kanatli U, Yetkin H, Simsek A, et al. The relationship of the heel pad compressibility and plantar pressure distribution. Foot Ankle Int 2001; 22: 662–665
PubMed
CAS
Google Scholar
Kwong PK, Kay D, Voner RT, et al. Plantar fasciitis: mechanics and pathomechanics of treatment. Clin Sports Med 1988; 7: 119–126
PubMed
CAS
Google Scholar
Huang YC, Wang LY, Wang HC, et al. The relationship between the flexible flatfoot and plantar fasciitis: ultrasonographic evaluation. Chang Gung Med J 2004; 27: 443–448
PubMed
Google Scholar
Kosmahl EM, Kosmahl HE. Painful plantar heel, plantar fasciitis and calcaneal spur: etiology and treatment. J Orthop Sports Phys Ther 1987; 9: 17–24
PubMed
CAS
Google Scholar
Ross M. Use of the tissue stress model as a paradigm for developing an examination and management plan for a patient with plantar fasciitis. J Am Podiatr Med Assoc 2002; 92: 499–506
PubMed
Google Scholar
Prichasuk S, Subhadrabandhu T. The relationship of pes planus and calcaneal spur to plantar heel pain. Clin Orthop 1994; 306: 192–196
PubMed
Google Scholar
Shama SS, Kominsky SJ, Lemont H. Prevalence of non painful heel spur and its relation to postural foot position. J Am Podiatry Assoc 1983; 73: 122–123
PubMed
CAS
Google Scholar
Lyman J, Weinhold PS, Almekinders LC. Strain behavior of the distal achilles tendon: implications for insertional achilles tendinopathy. Am J Sports Med 2004; 32: 457–461
PubMed
Article
Google Scholar
Almekinders LC, Vellema JH, Weinhold PS. Strain patterns in the patellar tendon and the implications for patellar tendinopathy. Knee Surg Sports Traumatol Arthrosc 2002; 10: 2–5
PubMed
Article
Google Scholar
Almekinders LC, Weinhold PS, Maffulli N. Compression etiology in tendinopathy. Clin Sports Med 2003; 22: 703–710
PubMed
Article
Google Scholar