The Pathomechanics of Plantar Fasciitis

Abstract

Plantar fasciitis is a musculoskeletal disorder primarily affecting the fascial enthesis. Although poorly understood, the development of plantar fasciitis is thought to have a mechanical origin. In particular, pes planus foot types and lower-limb biomechanics that result in a lowered medial longitudinal arch are thought to create excessive tensile strain within the fascia, producing microscopic tears and chronic inflammation. However, contrary to clinical doctrine, histological evidence does not support this concept, with inflammation rarely observed in chronic plantar fasciitis. Similarly, scientific support for the role of arch mechanics in the development of plantar fasciitis is equivocal, despite an abundance of anecdotal evidence indicating a causal link between arch function and heel pain. This may, in part, reflect the difficulty in measuring arch mechanics in vivo. However, it may also indicate that tensile failure is not a predominant feature in the pathomechanics of plantar fasciitis. Alternative mechanisms including ‘stress-shielding’, vascular and metabolic disturbances, the formation of free radicals, hyperthermia and genetic factors have also been linked to degenerative change in connective tissues. Further research is needed to ascertain the importance of such factors in the development of plantar fasciitis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Table II
Table III

References

  1. 1.

    Michelson JD. Heel pain: when is it plantar fasciitis? J Musculoskelet Med 1995; 12: 22–26

    Google Scholar 

  2. 2.

    Taunton JE, Ryan MB, Clement DB, et al. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med 2002; 36: 95–101

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Rome K, Howe T, Haslock I. Risk factors associated with the development of plantar heel pain in athletes. Foot 2001; 11: 119–125

    Article  Google Scholar 

  4. 4.

    Rome K. Anthropometric and biomechanical risk factors in the development of plantar heel pain: a review of the literature. Phys Ther Rev 1997; 2: 123–134

    Article  Google Scholar 

  5. 5.

    Atkins D, Crawford F, Edwards J, et al. A systematic review of treatments for the painful heel. Rheumatology 1999; 38: 968–973

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    O’Malley MJ, Page A, Cook R. Endoscopic plantar fasciotomy for chronic heel pain. Foot Ankle Int 2000; 21: 505–510

    PubMed  Google Scholar 

  7. 7.

    Davis PF, Severud E, Baxter DE. Painful heel syndrome: results of nonoperative treatment. Foot Ankle Int 1994; 15: 531–535

    PubMed  CAS  Google Scholar 

  8. 8.

    Wolgin M, Cook C, Graham C, et al. Conservative treatment of plantar heel pain: long-term follow-up. Foot Ankle Int 1994; 15: 97–102

    PubMed  CAS  Google Scholar 

  9. 9.

    Martin RL, Irrgang JJ, Conti SF. Outcome study of subjects with insertional plantar fasciitis. Foot Ankle Int 1998; 19: 803–811

    PubMed  CAS  Google Scholar 

  10. 10.

    Crawford F, Atkins D, Edwards J. Interventions for treating plantar heel pain. Cochrane Database Syst Rev 2000; (3): CD000416

    PubMed  Google Scholar 

  11. 11.

    Davies MS, Weiss GA, Saxby TS. Plantar fasciitis: how successful is surgical intervention? Foot Ankle Int 1999; 20: 803–807

    PubMed  CAS  Google Scholar 

  12. 12.

    Young CC, Rutherford DS, Niedfeldt MW. Treatment of plantar fasciitis. Am Fam Physician 2001; 63: 467–478

    PubMed  CAS  Google Scholar 

  13. 13.

    Gill LH. Plantar fasciitis: diagnosis and conservative management. J Am Acad Orthop Surg 1997; 5: 109–117

    PubMed  Google Scholar 

  14. 14.

    Gill LH, Kiebzak GM. Outcome of nonsurgical treatment for plantar fasciitis. Foot Ankle Int 1996; 17: 527–532

    PubMed  CAS  Google Scholar 

  15. 15.

    Pfeffer G, Bacchetti P, Deland J, et al. Comparison of custom and prefabricated orthoses in the initial treatment of proximal plantar fasciitis. Foot Ankle Int 1999; 20: 214–221

    PubMed  CAS  Google Scholar 

  16. 16.

    Selth CA, Francis BE. Review of non-functional plantar heel pain. Foot 2000; 10: 97–104

    Article  Google Scholar 

  17. 17.

    Barrett SL, O’Malley R. Plantar fasciitis and other causes of heel pain. Am Fam Physician 1999; 59: 2200–2206

    PubMed  CAS  Google Scholar 

  18. 18.

    Karr SD. Subcalcaneal heel pain. Orthop Clin North Am 1994; 25: 161–175

    PubMed  CAS  Google Scholar 

  19. 19.

    Tountas AA, Fornasier VL. Operative treatment of subcalcaneal pain. Clin Orthop 1996; 332: 170–178

    PubMed  Article  Google Scholar 

  20. 20.

    Singh D, Angel J, Bentley G, et al. Plantar Fasciitis. BMJ 1997; 315: 172–175

    PubMed  CAS  Article  Google Scholar 

  21. 21.

    Gibbon WW, Long G. Ultrasound of the plantar aponeurosis (fascia). Skeletal Radiol 1999; 28: 21–26

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Schroeder BM. American College of Foot and Ankle Surgeons: the diagnosis and treatment of heel pain. Am Fam Physician 2002; 65: 1686–1688

    PubMed  Google Scholar 

  23. 23.

    McGonagle D, Marzo-Ortega H, O’Connor P, et al. The role of biomechanical factors and HLA-B27 in magnetic resonance imaging-determined bone changes in plantar fascia en-thesopathy. Arthritis Rheum 2002; 46: 489–493

    PubMed  Article  Google Scholar 

  24. 24.

    Mitchell IR, Meyer C, Krueger WA. Deep fascia of the foot: anatomical and clinical considerations. J Am Podiatr Med Assoc 1991; 81: 373–378

    PubMed  CAS  Google Scholar 

  25. 25.

    Sarrafian SK. Anatomy of the foot and ankle: descriptive, topographic, functional. New York: JB Lippincott Company, 1983

    Google Scholar 

  26. 26.

    Newell SG, Miller SJ. Conservative treatment of plantar fascial strain. Phys Sportsmed 1977; 5: 68–73

    Google Scholar 

  27. 27.

    Hedrick MR. The plantar aponeurosis. Foot Ankle Int 1996; 17: 646–649

    PubMed  CAS  Google Scholar 

  28. 28.

    Kaya BK. Plantar fasciitis in athletes. J Sport Rehabil 1996; 5: 305–320

    Google Scholar 

  29. 29.

    Cralley JC, Schuberth JM, Fitch KL. The deep band of the plantar aponeurosis of the human foot. Anat Anz 1982; 152: 189–197

    PubMed  CAS  Google Scholar 

  30. 30.

    Hiramoto Y. Shape of the fibular part of the plantar aponeurosis in Japanese. Okajimas Folia Anat Jpn 1983; 60: 329–337

    PubMed  CAS  Google Scholar 

  31. 31.

    Dylevský I. Connective tissues of the hand and foot. Acta Univ Carol Med Monogr 1988; 127: 5–195

    PubMed  Google Scholar 

  32. 32.

    Draves DJ. Anatomy of the lower extremity. Baltimore (MD): Williams and Wilkins, 1986

    Google Scholar 

  33. 33.

    Pontious J, Flanigan KP, Hillstrom HJ. Role of the plantar fascia in digital stabilization: a case report. J Am Podiatr Med Assoc 1996; 86: 43–47

    PubMed  CAS  Google Scholar 

  34. 34.

    Waller Jr JF, Maddalo A. The foot and ankle linkage system. In: Nicholas JA, Hershman EB, editors. The lower extremity and spine in sports medicine. St Louis (MO): CV Mosby, 1986: 413

    Google Scholar 

  35. 35.

    Viel E, Esnault M. The effect of increased tension in the plantar fascia: a biomechanical analysis. Physiother Theory Pract 1989; 5: 69–73

    Google Scholar 

  36. 36.

    Snow SW, Bohne WH, DiCarlo E, et al. Anatomy of the Achilles tendon and plantar fascia in relation to the calcaneus in various age groups. Foot Ankle Int 1995; 16: 418–421

    PubMed  CAS  Google Scholar 

  37. 37.

    Hawkins BJ, Langermen RJ, Gibbons T, et al. An anatomic analysis of endoscopic plantar fascia release. Foot Ankle Int 1995; 16: 552–558

    PubMed  CAS  Google Scholar 

  38. 38.

    Thordarson DB, Kumar PJ, Hedman TP, et al. Effect of partial versus complete plantar fasciotomy on the windlass mechanism. Foot Ankle Int 1997; 18: 16–20

    PubMed  CAS  Google Scholar 

  39. 39.

    Bojsen-Møller F, Flagstad KE. Plantar aponeurosis and internal architecture of the ball of the foot. J Anat 1976; 121: 599–611

    PubMed  Google Scholar 

  40. 40.

    Stainsby GD. Pathological anatomy and dynamic effect of the displaced plantar plate and the importance of the integrity of the plantar plate-deep transverse metatarsal ligament tie-bar. Ann R Coll Surg Engl 1997; 79: 58–68

    PubMed  CAS  Google Scholar 

  41. 41.

    Deland JT, Lee KT, Sobel M, et al. Anatomy of the plantar plate and its attachments in the lesser metatarsal phalangeal joint. Foot Ankle Int 1995; 16: 480–486

    PubMed  CAS  Google Scholar 

  42. 42.

    Manoli A, Weber TG. Fasciotomy of the foot: an anatomical study with special reference to release of the calcaneal compartment. Foot Ankle 1990; 10: 267–275

    PubMed  Google Scholar 

  43. 43.

    Martin BF. Observations on the muscles and tendons of the medial aspect of the sole of the foot. J Anat 1964; 98: 437–453

    PubMed  CAS  Google Scholar 

  44. 44.

    Boabighi A, Kuhlmann JN, Luboinski J, et al. Aponeuroses and superficial fascia: mechanical and structural properties [in French]. Bull Assoc Anat (Nancy) 1993; 77: 3–7

    CAS  Google Scholar 

  45. 45.

    Wright DG, Rennels DC. A study of the elastic properties of plantar fascia. J Bone Joint Surg Am 1964; 46: 482–492

    PubMed  CAS  Google Scholar 

  46. 46.

    Amiel D, Frank C, Harwood F, et al. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1984; 1: 257–265

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Davis WH, Sobel M, DiCarlo EF, et al. Gross, histological, and microvascular anatomy and biomechanical testing of the spring ligament complex. Foot Ankle Int 1996; 17: 95–102

    PubMed  CAS  Google Scholar 

  48. 48.

    Contri MB, Guerra D, Vignali N, et al. Ultrastructural and immunocytochemical study on normal human palmar aponeuroses. Anat Rec 1994; 240: 314–321

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Waggett AD, Ralphs JR, Kwan AP, et al. Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol 1998; 16: 457–470

    PubMed  CAS  Article  Google Scholar 

  50. 50.

    Warren BL. Plantar fasciitis in runners: treatment and prevention. Sports Med 1990; 10: 338–345

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    McNeilly CM, Banes AJ, Benjamin M, et al. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 1996; 189: 593–600

    PubMed  Google Scholar 

  52. 52.

    Ralphs JR, Benjamin M, Waggett AD, et al. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J Anat 1998; 193: 215–222

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Benjamin M, Ralphs JR. The cell and developmental biology of tendons and ligaments. Int Rev Cytol 2000; 196: 85–130

    PubMed  CAS  Article  Google Scholar 

  54. 54.

    Petrie S, Collins JG, Solomonow M, et al. Mechanoreceptors in the human elbow ligaments. J Hand Surg [Am] 1998; 23-A: 512–518

    CAS  Article  Google Scholar 

  55. 55.

    Zimny ML. Mechanoreceptors in articular tissues. Am J Anat 1988; 182: 16–32

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Petrie S, Collins J, Solomonow M, et al. Mechanoreceptors in the palmar wrist ligaments. J Bone Joint Surg Br 1997; 79: 494–496

    PubMed  CAS  Article  Google Scholar 

  57. 57.

    McDougall JJ, Bray RC, Sharkey KA. Morphological and immunohistochemical examination of nerves in normal and injured collateral ligaments of rat, rabbit, and human knee joints. Anat Rec 1997; 248: 29–39

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Butler DL, Sheh MY, Stouffer DC, et al. Surface strain variation in human patellar tendon and knee cruciate ligaments. J Biomech Eng 1990; 112: 38–45

    PubMed  CAS  Article  Google Scholar 

  59. 59.

    Noyes FR, Butler DL, Grood ES, et al. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 1984; 66: 344–352

    PubMed  CAS  Google Scholar 

  60. 60.

    Stouffer DC, Butler DL, Hosny D. The relationship between crimp pattern and mechanical response of human patellar tend on-bone units. J Biomech Eng 1985; 107: 158–165

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Coggeshall RE, Hong KA, Langford LA, et al. Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res 1983; 272: 185–188

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Biedert RM, Stauffer E, Friederich NF. Occurrence of free nerve endings in the soft tissue of the knee joint: a histologic investigation. Am J Sports Med 1992; 20: 430–433

    PubMed  CAS  Article  Google Scholar 

  63. 63.

    Hogervorst T, Brand RA. Mechanoreceptors in joint function. J Bone Joint Surg Am 1998; 80: 1365–1378

    PubMed  CAS  Google Scholar 

  64. 64.

    Holzer P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 1988; 24: 739–768

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Salo PT, Theriault E. Number, distribution and neuropeptide content of rat knee joint afferents. J Anat 1997; 190: 515–522

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Mosier SM, Lucas DR, Pomeroy G, et al. Pathology of the posterior tibial tendon in posterior tibial tendon insufficiency. Foot Ankle Int 1998; 19: 520–524

    PubMed  CAS  Google Scholar 

  67. 67.

    Benjamin M, Ralphs JR. Tendons and ligaments: an overview. Histol Histopathol 1997; 12: 1135–1144

    PubMed  CAS  Google Scholar 

  68. 68.

    Ahmed IM, Lagopoulos M, McConnell P, et al. Blood supply of the Achilles tendon. J Orthop Res 1998; 16: 591–596

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Frey C, Shereff M, Greenidge N. Vascularity of the posterior tibial tendon. J Bone Joint Surg Am 1990; 72: 884–888

    PubMed  CAS  Google Scholar 

  70. 70.

    Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments: an adaptation to compressive load. J Anat 1998; 193: 481–494

    PubMed  Article  Google Scholar 

  71. 71.

    Bray RC, Rangayyan RM, Frank CB. Normal and healing ligament vascularity: a quantitative histological assessment in the adult rabbit medial collateral ligament. J Anat 1996; 188: 87–95

    PubMed  Google Scholar 

  72. 72.

    Petersen W, Hohmann G, Stein V, et al. The blood supply of the posterior tibial tendon. J Bone Joint Surg Br 2002; 84: 141–144

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Chowdhury P, Matyas JR, Frank CB. The ‘epiligament’ of the rabbit medial collateral ligament: a quantitative morphological study. Connect Tissue Res 1991; 27: 33–50

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Åström M. Laser Doppler flowmetry in the assessment of tendon blood flow. Scand J Med Sci Sports 2000; 10: 365–367

    PubMed  Article  Google Scholar 

  75. 75.

    Petersen W, Bobka T, Stein V, et al. Blood supply of the peroneal tendons: injection and immunohistochemical studies of cadaver tendons. Acta Orthop Scand 2000; 71: 168–174

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Arnoczky SP, Rubin RM, Marshall JL. Microvasculature of the cruciate ligaments and its response to injury: an experimental study in dogs. J Bone Joint Surg Am 1979; 61: 1221–1229

    PubMed  CAS  Google Scholar 

  77. 77.

    Benjamin M, Evans EJ, Copp L. The histology of tendon attachments to bone in man. J Anat 1986; 149: 89–100

    PubMed  CAS  Google Scholar 

  78. 78.

    Scapinelli R. Vascular anatomy of the human cruciate ligaments and surrounding structures. Clin Anat 1997; 10: 151–162

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Carr AJ, Norris SH. The blood supply of the calcaneal tendon. J Bone Joint Surg Br 1989; 71: 100–101

    PubMed  CAS  Google Scholar 

  80. 80.

    Petersen W, Tillmann B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat Erribryol 1999; 200: 325–334

    CAS  Article  Google Scholar 

  81. 81.

    Petersen W, Stein V, Bobka T. Structure of the human tibialis anterior tendon. J Anat 2000; 197: 617–625

    PubMed  Article  Google Scholar 

  82. 82.

    Brooks CH, Revell WJ, Heatley FW. A quantitative histological study of the vascularity of the rotator cuff tendon. J Bone Joint Surg Br 1992; 74: 151–153

    PubMed  CAS  Google Scholar 

  83. 83.

    Geppert MJ, Sobel M, Hannafin JA. Microvasculature of the tibialis anterior tendon. Foot Ankle 1993; 14: 261–264

    PubMed  CAS  Google Scholar 

  84. 84.

    Schneeberger AG, Masquelet AC. Arterial vascularization of the proximal extensor carpi radialis brevis tendon. Clin Orthop 2002; 398: 239–244

    PubMed  Article  Google Scholar 

  85. 85.

    Archambault JM, Wiley JP, Bray RC. Exercise loading of tendons and the development of overuse injuries: a review of current literature. Sports Med 1995; 20: 77–89

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Theodorou DJ, Theodorou SJ, Farooki S, et al. Disorders of the plantar aponeurosis: a spectrum of MR imaging findings. Am J Roentgenol 2001; 176: 97–104

    CAS  Google Scholar 

  87. 87.

    Woo S, Maynard J, Butler D, et al. Ligament, tendon, and joint capsule insertions to bone. In: Woo SL, Buckwalter JA, editors. Injury and repair of the musculoskeletal soft tissues. Park Ridge (IL): American Academy of Orthopedic Surgeons, 1987: 133–166

    Google Scholar 

  88. 88.

    Benjamin M, McGonagle D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat 2001; 199: 503–526

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    McGonagle D, Marzo-Ortega H, O’Connor P, et al. Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis 2002; 61: 534–537

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Cooper RR, Misol S. Tendon and ligament insertion: a light and electron microscopic study. J Bone Joint Surg Am 1970; 52: 1–20

    PubMed  CAS  Google Scholar 

  91. 91.

    Rufai A, Ralphs JR, Benjamin M. Structure and histopathology of the insertional region of the human Achilles tendon. J Orthop Res 1995; 13: 585–593

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Merkel KH, Hess H, Kurtz M. Insertion tendopathy in athletes: a light microscopic, histochemical and electron microscopic examination. Pathol Res Pract 1982; 173: 303–309

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Rufai A, Ralphs JR, Benjamin M. Ultrastructure of fibrocartilages at the insertion of the rat Achilles tendon. J Anat 1996; 189: 185–191

    PubMed  Google Scholar 

  94. 94.

    Milz S, Rufai A, Buettner A, et al. Three-dimensional reconstructions of the Achilles tendon insertion in man. J Anat 2002; 200: 145–152

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Gao J, Messner K. Quantitative comparison of soft tissue-bone interface at chondral ligament insertions in the rabbit knee joint. J Anat 1996; 188: 367–373

    PubMed  Google Scholar 

  96. 96.

    Evans EJ, Benjamin M, Pemberton DJ. Variations in the amount of calcified tissue at the attachments of the quadriceps tendon and patellar ligament in man. J Anat 1991; 174: 145–151

    PubMed  CAS  Google Scholar 

  97. 97.

    Benjamin M, Evans EJ, Rao RD, et al. Quantitative differences in the histology of the attachment zones of the meniscal horns in the knee joint of man. J Anat 1991; 177: 127–134

    PubMed  CAS  Google Scholar 

  98. 98.

    Gao J, Rasanen T, Persliden J, et al. The morphology of ligament insertions after failure at low strain velocity: an evaluation of ligament entheses in the rabbit knee. J Anat 1996; 189: 127–133

    PubMed  Google Scholar 

  99. 99.

    Benjamin M, Newell RL, Evans EJ, et al. The structure of the insertions of the tendons of biceps brachii, triceps and brachial -is in elderly dissecting room cadavers. J Anat 1992; 180: 327–332

    PubMed  Google Scholar 

  100. 100.

    Mente PL, Lewis JL. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res 1994; 12: 637–647

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Shea JE, Hallows RK, Bloebaum RD. Experimental confirmation of the sheep model for studying the role of calcified fibrocartilage in hip fractures and tendon attachments. Anat Rec 2002; 266: 177–183

    PubMed  Article  Google Scholar 

  102. 102.

    Vajda EG, Bloebaum RD. Age-related hypermineralization in the female proximal human femur. Anat Rec 1999; 255: 202–211

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Boyde A, Jones SJ, Aerssens J, et al. Mineral density quantitation of the human cortical iliac crest by backscattered electron image analysis: variations with age, sex, and degree of osteoarthritis. Bone 1995; 16: 619–627

    PubMed  CAS  Article  Google Scholar 

  104. 104.

    Matheson GO, Maclntyre JG, Taunton JE, et al. Musculoskeletal injuries associated with physical activity in older adults. Med Sci Sports Exerc 1989; 21: 379–385

    PubMed  CAS  Google Scholar 

  105. 105.

    Evans EJ, Benjamin M, Pemberton DJ. Fibrocartilage in the attachment zones of the quadriceps tendon and patellar ligament of man. J Anat 1990; 171: 155–162

    PubMed  CAS  Google Scholar 

  106. 106.

    Frowen P, Benjamin M. Variations in the quality of uncalcified fibrocartilage at the insertions of the extrinsic calf muscles in the foot. J Anat 1995; 186: 417–421

    PubMed  Google Scholar 

  107. 107.

    Milz S, Putz R, Ralphs JR, et al. Fibrocartilage in the extensor tendons of the human metacarpophalangeal joints. Anat Rec 1999; 256: 139–145

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Benjamin M, Qin S, Ralphs JR. Fibrocartilage associated with human tendons and their pulleys. J Anat 1995; 187: 625–633

    PubMed  Google Scholar 

  109. 109.

    de Carvalho HF. Understanding the biomechanics of tendon fibrocartilages. J Theor Biol 1995; 172: 293–297

    PubMed  Article  Google Scholar 

  110. 110.

    Kumai T, Takakura Y, Rufai A, et al. The functional anatomy of the human anterior talofibular ligament in relation to ankle sprains. J Anat 2002; 200: 457–465

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Kitaoka HB, Luo ZP, Growney ES, et al. Material properties of the plantar aponeurosis. Foot Ankle Int 1994; 15: 557–560

    PubMed  CAS  Google Scholar 

  112. 112.

    Blevins FT, Hecker AT, Bigler GT, et al. The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med 1994; 22: 328–333

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Ker RF. Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J Exp Biol 1981; 93: 283–302

    PubMed  CAS  Google Scholar 

  114. 114.

    Woo SLY, Peterson RH, Ohland KJ, et al. The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study. J Orthop Res 1990; 8: 712–721

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Butler DL, Grood ES, Noyes FR, et al. On the interpretation of our anterior cruciate ligament data. Clin Orthop 1985; 196: 26–34

    PubMed  Google Scholar 

  116. 116.

    Johnson GA, Tramaglini DM, Levine RE, et al. Tensile and viscoelastic properties of human patellar tendon. J Orthop Res 1994; 12: 796–803

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Noyes FR, DeLucas JL, Torvik PJ. Biomechanics of anterior cruciate ligament failure: an analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am 1974; 56: 236–253

    PubMed  CAS  Google Scholar 

  118. 118.

    Butler DL, Grood ES, Noyes FR, et al. Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J Biomech 1984; 17: 579–596

    PubMed  CAS  Article  Google Scholar 

  119. 119.

    Wren TA, Yerby SA, Beaupre GS, et al. Mechanical properties of the human Achilles tendon. Clin Biomech 2001; 16: 245–251

    CAS  Article  Google Scholar 

  120. 120.

    Danto MI, Woo SL. The mechanical properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res 1993; 11: 58–67

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    Wren TA, Yerby SA, Beaupre GS, et al. Influence of bone mineral density, age, and strain rate on the failure mode of human Achilles tendons. Clin Biomech 2001; 16: 529–534

    CAS  Article  Google Scholar 

  122. 122.

    Ambrose CG, Kiebzak GM, Sabonghy EP, et al. Bio mechanical testing of cadaveric specimens: importance of bone mineral density assessment. Foot Ankle Int 2002; 23: 850–855

    PubMed  Google Scholar 

  123. 123.

    Woo SLY, Hollis JM, Adams DJ, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med 1991; 19: 217–225

    PubMed  CAS  Article  Google Scholar 

  124. 124.

    Haut Donahue TL, Gregersen C, Hull ML, et al. Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. J Biomech Eng 2001; 123: 162–169

    Article  Google Scholar 

  125. 125.

    Lewis G, Shaw KM. Tensile properties of human tendo achillis: effect of donor age and strain rate. J Foot Ankle Surg 1997; 36: 435–445

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Attarian DE, McCrackin HJ, DeVito DP, et al. Biomechanical characteristics of human ankle ligaments. Foot Ankle 1985; 6: 54–58

    PubMed  CAS  Google Scholar 

  127. 127.

    Harner CD, Xerogeanes JW, Livesay GA, et al. The human posterior cruciate ligament complex: an interdisciplinary study: ligament morphology and biomechanical evaluation. Am J Sports Med 1995; 23: 736–745

    PubMed  CAS  Article  Google Scholar 

  128. 128.

    Momersteeg TJ, Blankevoort L, Huiskes R, et al. The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness. J Biomech 1995; 28: 745–752

    PubMed  CAS  Article  Google Scholar 

  129. 129.

    Przybylski GJ, Carlin GJ, Patel PR, et al. Human anterior and posterior cervical longitudinal ligaments possess similar tensile properties. J Orthop Res 1996; 14: 1005–1008

    PubMed  CAS  Article  Google Scholar 

  130. 130.

    Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cmciate ligament. J Biomech 1994; 27: 13–24

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    Siegler S, Block J, Schneck CD. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 1988: 8: 234–242

    PubMed  CAS  Google Scholar 

  132. 132.

    Hinton R, Jinnah RH, Johnson C, et al. A biomechanical analysis of solvent-dehydrated and freeze-dried human fascia lata allografts: a preliminary report. Am J Sports Med 1992; 20: 607–612

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Parry DA. The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys Chem 1988; 29: 195–209

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Strocchi R, de Pasquale V, Gubellini P, et al. The human anterior cruciate ligament: histological and ultrastructural observations. J Anat 1992; 180: 515–519

    PubMed  Google Scholar 

  135. 135.

    Hurschler C, Vanderby R, Martinez DA, et al. Mechanical and biochemical analyses of tibial compartment fascia in chronic compartment syndrome. Ann Biomed Eng 1994; 22: 272–279

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    Kura H, Luo ZP, Kitaoka HB, et al. Mechanical behavior of the Lisfranc and dorsal cuneometatarsal ligaments: in vitro biomechanical study. J Orthop Trauma 2001; 15: 107–110

    PubMed  CAS  Article  Google Scholar 

  137. 137.

    Bennett MB, Ker RF, Dimery NJ, et al. Mechanical properties of various mammalian tendons. J Zool 1986; 209: 537–548

    Article  Google Scholar 

  138. 138.

    Iaconis F, Steindler R, Marinozzi G. Measurements of cross-sectional area of collagen structures (knee ligaments) by means of an optical method. J Biomech 1987; 20: 1003–1010

    PubMed  CAS  Article  Google Scholar 

  139. 139.

    Race A, Amis AA. Cross-sectional area measurement of soft tissue: a new casting method. J Biomech 1996; 29: 1207–1212

    PubMed  CAS  Article  Google Scholar 

  140. 140.

    Woo SL, Danto MI, Ohland KJ, et al. The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: a comparative study with two existing methods. J Biomech Eng 1990; 112: 426–431

    PubMed  CAS  Article  Google Scholar 

  141. 141.

    Benedict JV, Walker LB, Harris EH. Stress-strain characteristics and tensile strength of unembalmed human tendon. J Biomech 1968; 1: 53–63

    PubMed  CAS  Article  Google Scholar 

  142. 142.

    Butler DL, Kay MD, Stouffer DC. Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech 1986; 19: 425–432

    PubMed  CAS  Article  Google Scholar 

  143. 143.

    Itoi E, Berglund LJ, Grabowski JJ, et al. Tensile properties of the supraspinatus tendon. J Orthop Res 1995; 13: 578–584

    PubMed  CAS  Article  Google Scholar 

  144. 144.

    Stäubli HU, Schatzmann L, Brunner P, et al. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am J Sports Med 1999; 27: 27–34

    PubMed  Google Scholar 

  145. 145.

    Butler DL, Guan Y, Kay MD, et al. Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 1992; 25: 511–518

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Quapp KM, Weiss JA. Material characterization of human medial collateral ligament. J Biomech Eng 1998; 120: 757–763

    PubMed  CAS  Article  Google Scholar 

  147. 147.

    Kubo K, Kawakami Y, Kanehisa H, et al. Measurement of viscoelastic properties of tendon structures in vivo. Scand J Med Sci Sports 2002; 12: 3–8

    PubMed  Article  Google Scholar 

  148. 148.

    Haut RC, Powlison AC. The effects of test environment and cyclic stretching on the failure properties of human patellar tendons. J Orthop Res 1990; 8: 532–540

    PubMed  CAS  Article  Google Scholar 

  149. 149.

    Haut TL, Haut RC. The state of tissue hydration determines the strain-rate-sensitive stiffness of human patellar tendon. J Biomech 1997; 30: 79–81

    PubMed  CAS  Article  Google Scholar 

  150. 150.

    Thornton GM, Shrive NG, Frank CB. Altering ligament water content affects ligament pre-stress and creep behaviour. J Orthop Res 2001; 19: 845–851

    PubMed  CAS  Article  Google Scholar 

  151. 151.

    Flahiff CM, Brooks AT, Hollis JM, et al. Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 1995; 23: 354–358

    PubMed  CAS  Article  Google Scholar 

  152. 152.

    Haut RC, Lancaster RL, DeCamp CE. Mechanical properties of the canine patellar tendon: some correlations with age and the content of collagen. J Biomech 1992; 25: 163–173

    PubMed  CAS  Article  Google Scholar 

  153. 153.

    Hubbard RP, Soutas-Little RW. Mechanical properties of human tendon and their age dependence. J Biomech Eng 1984; 106: 144–150

    PubMed  CAS  Article  Google Scholar 

  154. 154.

    Lee TQ, Dettling J, Sandusky MD, et al. Age related biomechanical properties of the glenoid-anterior band of the inferior glenohumeral ligament-humerus complex. Clin Biomech 1999: 14: 471–476

    CAS  Article  Google Scholar 

  155. 155.

    Tuite DJ, Renstrom PA, O’Brien M. The aging tendon. Scand J Med Sci Sports 1997; 7: 72–77

    PubMed  CAS  Article  Google Scholar 

  156. 156.

    Kirkendall DT, Garrett WE. Function and biomechanics of tendons. Scand J Med Sci Sports 1997; 7: 62–66

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    Maganaris CN, Narici MV, Almekinders LC, et al. Biomechanics and pathophysiology of overuse tendon injuries: ideas on insertional tendinopathy. Sports Med 2004; 34: 1005–1017

    PubMed  Article  Google Scholar 

  158. 158.

    Vasseur PB, Pool RR, Arnoczky SP, et al. Correlative biomechanical and histologic study of the cranial cruciate ligament in dogs. Am J Vet Res 1985; 46: 1842–1854

    PubMed  CAS  Google Scholar 

  159. 159.

    Sano H, Ishii H, Yeadon A, et al. Degeneration at the insertion weakens the tensile strength of the supraspinatus tendon: a comparative mechanical and histologic study of the bone-tendon complex. J Orthop Res 1997; 15: 719–726

    PubMed  CAS  Article  Google Scholar 

  160. 160.

    Soslowsky LJ, Thomopoulos S, Tun S, et al. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J Shoulder Elbow Surg 2000; 9: 79–84

    PubMed  CAS  Article  Google Scholar 

  161. 161.

    Kannus P, Józsa L. Histopathological changes preceding spontaneous rupture of a tendon: a controlled study of 891 patients. J Bone Joint Surg Am 1991; 73: 1507–1525

    PubMed  CAS  Google Scholar 

  162. 162.

    Ker RF, Bennett MB, Bibby SR, et al. The spring in the arch of the human foot. Nature 1987; 325: 147–149

    PubMed  CAS  Article  Google Scholar 

  163. 163.

    Murphy GA, Pneumaticos SG, Kamaric E, et al. Biomechanical consequences of sequential plantar fascia release. Foot Ankle Int 1998; 19: 149–152

    PubMed  CAS  Google Scholar 

  164. 164.

    Kitaoka HB, Luo ZP, An KN. Mechanical behavior of the foot and ankle after plantar fascia release in the unstable foot. Foot Ankle Int 1997; 18: 8–15

    PubMed  CAS  Google Scholar 

  165. 165.

    Thordarson DB, Hedman T, Lundquist D, et al. Effect of calcaneal osteotomy and plantar fasciotomy on arch configuration in a flatfoot model. Foot Ankle Int 1998; 19: 374–378

    PubMed  CAS  Google Scholar 

  166. 166.

    Kitaoka HB, Luo ZP, An KN. Effect of plantar fasciotomy on stability of arch of foot. Clin Orthop 1997; 344: 307–312

    PubMed  Google Scholar 

  167. 167.

    Kitaoka HB, Ahn TK, Luo ZP, et al. Stability of the arch of the foot. Foot Ankle Int 1997; 18: 644–648

    PubMed  CAS  Google Scholar 

  168. 168.

    Anderson DJ, Fallat LM, Savoy-Moore RT. Computer-assisted assessment of lateral column movement following plantar fascial release: a cadaveric study. J Foot Ankle Surg 2001; 40: 62–70

    PubMed  CAS  Article  Google Scholar 

  169. 169.

    Hicks JH. The foot as a support. Acta Anat 1955; 25: 34–45

    PubMed  CAS  Article  Google Scholar 

  170. 170.

    Sarrafian SK. Functional characteristics of the foot and plantar aponeurosis under tibiotalar loading. Foot Ankle 1987; 8: 4–18

    PubMed  CAS  Google Scholar 

  171. 171.

    Vogler HW, Bojsen-Moller F. Tarsal functions, movement, and stabilization mechanisms in foot, ankle and leg performance. J Am Podiatr Med Assoc 2000; 90: 112–125

    PubMed  CAS  Google Scholar 

  172. 172.

    Kogler GF, Solomonidis SE, Paul JP. In vitro method for quantifying the effectiveness of the longitudinal arch support mechanism of a foot orthosis. Clin Biomech 1995; 10: 245–252

    Article  Google Scholar 

  173. 173.

    Kogler GF, Solomonidis SE, Paul JP. Biomechanics of longitudinal arch support mechanisms in foot orthoses and their effect on plantar aponeurosis strain. Clin Biomech 1996; 11: 243–252

    Article  Google Scholar 

  174. 174.

    Kogler GF, Veer EB, Solomonidis SE, et al. The influence of medial and lateral placement of orthotic wedges on loading of the plantar aponeurosis. J Bone Joint Surg Am 1999; 81: 1403–1413

    PubMed  CAS  Google Scholar 

  175. 175.

    Huang CK, Kitaoka HB, An KN, et al. Biomechanical stability of the arch. Foot Ankle 1993; 14: 353–357

    PubMed  CAS  Google Scholar 

  176. 176.

    Arangio GA, Salathe EP. Medial displacement calcaneal osteotomy reduces the excess forces in the medial longitudinal arch of the flat foot. Clin Biomech 2001; 16: 535–539

    CAS  Article  Google Scholar 

  177. 177.

    Arangio GA, Chen C, Salathe EP. Effect of varying arch height with and without the plantar fascia on the mechanical properties of the foot. Foot Ankle Int 1998; 19: 705–709

    PubMed  CAS  Google Scholar 

  178. 178.

    Gefen A. Stress analysis of the standing foot following surgical plantar fascia release. J Biomech 2002; 35: 629–637

    PubMed  Article  Google Scholar 

  179. 179.

    Arangio GA, Chen C, Kim W. Effect of cutting the plantar fascia on mechanical properties of the foot. Clin Orthop 1997; 339: 227–231

    PubMed  Article  Google Scholar 

  180. 180.

    Kim W, Voloshin AS. Role of the plantar fascia in the load bearing capacity of the human foot. J Biomech 1995; 28: 1025–1033

    PubMed  CAS  Article  Google Scholar 

  181. 181.

    Carlsoo S, Wetzenstein H. Change of form of the foot and the foot skeleton upon momentary weight-bearing. Acta Orthop Scand 1968; 39: 413–423

    PubMed  CAS  Article  Google Scholar 

  182. 182.

    Salathe EP, Arangio GA, Salathe EP. A biomechanical model of the foot. J Biomech 1986; 19: 989–1001

    PubMed  Article  Google Scholar 

  183. 183.

    Williams A, Vedi V, Singh D, et al. Hick’s revisited: a weightbearing in vivo study of the biomechanics of the plantar fascia employing dynamic M.R.I. J Bone Joint Surg Br 1999; 81: 381

    Article  Google Scholar 

  184. 184.

    Vedi V, Williams A, Singh D, et al. Hick’s revisited: a weightbearing in vivo study of the biomechanics of the plantar fascia employing ‘dynamic’ MRI [abstract]. J Bone Joint Surg Br 1999; 81: 156

    Article  Google Scholar 

  185. 185.

    Hicks JH. The mechanics of the foot: the plantar aponeurosis and the arch. J Anat 1954; 88: 25–30

    PubMed  CAS  Google Scholar 

  186. 186.

    Rush SM, Christensen JC, Johnson CH. Biomechanics of the first ray, part 2: metatarsus primus vams as a cause of hypermobility - a three dimensional kinematic analysis in a cadaver model. J Foot Ankle Surg 2000; 39: 68–75

    PubMed  CAS  Article  Google Scholar 

  187. 187.

    Bojsen-Moller F. Calcaneocuboid joint and stability of the longitudinal arch of the foot at high and low gear push off. J Anat 1979; 129: 165–176

    PubMed  CAS  Google Scholar 

  188. 188.

    Hicks JH. The mechanics of the foot: the j oints. J Anat 1953; 87: 345–357

    PubMed  CAS  Google Scholar 

  189. 189.

    Thordarson DB, Schmotzer H, Chon J, et al. Dynamic support of the human longitudinal arch: a biomechanical evaluation. Clin Orthop 1995; 316: 165–172

    PubMed  Google Scholar 

  190. 190.

    Kappel-Bargas A, Woolf RD, Cornwall MW, et al. The windlass mechanism during normal walking and passive first metatarsalphalangeal joint extension. Clin Biomech 1998; 13: 190–194

    Article  Google Scholar 

  191. 191.

    Hetherington VJ, Carnett J, Patterson BA. Motion of the first metatarsophalangeal joint. J Foot Surg 1989; 28: 13–19

    PubMed  CAS  Google Scholar 

  192. 192.

    Shereff MJ, Bejjani FJ, Kummer FJ. Kinematics of the first metatarsophalangeal joint. J Bone Joint Surg Am 1986; 68: 392–398

    PubMed  CAS  Google Scholar 

  193. 193.

    Kogler GF, Veer EB, Verhulst SJ, et al. The effect of heel elevation on strain within the plantar aponeurosis: in vitro study. Foot Ankle Int 2001; 22: 433–439

    PubMed  CAS  Google Scholar 

  194. 194.

    Winson IG, Lundberg A, Bylund C. The pattern of motion of the longitudinal arch. Foot 1994; 4: 151–154

    Article  Google Scholar 

  195. 195.

    Sharkey NA, Ferris L, Donahue SW. Biomechanical consequences of plantar fascial release or rupture during gait, part I: disruptions in longitudinal arch conformation. Foot Ankle Int 1998; 19: 812–820

    PubMed  CAS  Google Scholar 

  196. 196.

    Carlson RE, Fleming LL, Hutton WC. The biomechanical relationship between the tendoachilles, plantar fascia and metatarsophalangeal joint dorsiflexi on angle. Foot Ankle Int 2000; 21: 18–25

    PubMed  CAS  Google Scholar 

  197. 197.

    Kitaoka HB, Luo ZP, An KN. Effect of the posterior tibial tendon on the arch of the foot during simulated weightbearing: biomechanical analysis. Foot Ankle Int 1997; 18: 43–46

    PubMed  CAS  Google Scholar 

  198. 198.

    Donn AW, Nicol AC. Ligament strain measurements in cadaveric feet during simulated functional activities. In: Hakkinen K, editor. 15th Congress of the International Society of Biomechanics; 1995 Jul 2–6; Jyvaskyla, Finland: 1995: 226–227

  199. 199.

    Hamel AJ, Donahue SW, Sharkey NA. Contributions of active and passive toe flexion to forefoot loading. Clin Orthop 2001; 393: 326–334

    PubMed  Article  Google Scholar 

  200. 200.

    Tansey PA, Briggs PJ. Active and passive mechanisms in the control of heel supination. J Foot Ankle Surg 2001; 7: 131–136

    Article  Google Scholar 

  201. 201.

    Salathe EP, Arangio GP. A biomechanical model of the foot: the role of muscles, tendons, and ligaments. J Biomech Eng 2002; 124: 281–287

    PubMed  Article  Google Scholar 

  202. 202.

    Duranti R, Galletti R, Pantaleo T. Electromyographic observations in patients with foot pain syndromes. Am J Phys Med 1985; 64: 295–304

    PubMed  CAS  Google Scholar 

  203. 203.

    Basmajian JV, Stecko G. The role of muscles in arch support of the foot: an electromyographic study. J Bone Joint Surg Am 1963; 45: 1184–1190

    PubMed  CAS  Google Scholar 

  204. 204.

    Reeser LA, Susman RL, Stern JT. Electromyographic studies of the human foot: experimental approaches to hominid evolution. Foot Ankle 1983; 3: 391–407

    PubMed  CAS  Google Scholar 

  205. 205.

    Mann R, Inman VT. Phasic activity of intrinsic muscles of the foot. J Bone Joint Surg Am 1964; 46: 469–481

    PubMed  CAS  Google Scholar 

  206. 206.

    Kayano J. Dynamic function of medial foot arch. Nippon Seikeigeka Gakkai Zasshi 1986; 60: 1147–1156

    CAS  Google Scholar 

  207. 207.

    Sharkey NA, Donahue SW, Ferris L. Biomechanical consequences of plantar fascial release or rupture during gait, part II: alterations in forefoot loading. Foot Ankle Int 1999; 20: 86–96

    PubMed  CAS  Google Scholar 

  208. 208.

    Harton FM, Weiskopf SA, Goecker RM. Sectioning the plantar fascia: effect on first metatarsophalangeal joint motion. J Am Podiatr Med Assoc 2002; 92: 532–536

    PubMed  Google Scholar 

  209. 209.

    Pardiwala A, Henry APJ. Traumatic rupture of the plantar fascia leading to development of claw toe deformity: two case reports. J Foot Ankle Surg 2001; 7: 197–200

    Article  Google Scholar 

  210. 210.

    Mann R, Poppen NK, O’Konski M. Amputation of the great toe: a clinical and biomechanical study. Clin Orthop 1988; 226: 192–205

    PubMed  Google Scholar 

  211. 211.

    Wearing SC, Urry SR, Smeathers JE. Ground reaction forces at discrete sites of the foot derived from pressure plate measurements. Foot Ankle Int 2001; 22: 653–661

    PubMed  CAS  Google Scholar 

  212. 212.

    Hughes J, Clark P, Klenerman L. The importance of the toes in walking. J Bone Joint Surg Br 1990; 72: 245–251

    PubMed  CAS  Google Scholar 

  213. 213.

    Cornwall MW, McPoil TG. Motion of the calcaneus, navicular, and first metatarsal during the stance phase of walking. J Am Podiatr Med Assoc 2002: 92: 67–76

    PubMed  Google Scholar 

  214. 214.

    Scott SH, Winter DA. Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking. J Biomech 1993; 26: 1091–1104

    PubMed  CAS  Article  Google Scholar 

  215. 215.

    Leardini A, Benedetti MG, Catani F, et al. An anatomically based protocol for the description of foot segment kinematics during gait. Clin Biomech 1999; 14: 528–536

    CAS  Article  Google Scholar 

  216. 216.

    Wearing SC, Urry S, Perlman P, et al. Sagittal plane motion of the human arch during gait: a videofluoroscopic analysis. Foot Ankle Int 1998; 19: 738–742

    PubMed  CAS  Google Scholar 

  217. 217.

    Yang SM, Kayamo J, Norimatsu T, et al. Dynamic changes of the arches of the foot during walking. In: Winter DA, Norman RW, Wells RP, et al., editors. Biomechanics IX: international series on biomechanics. Champaign (IL): Human Kinetics, 1985: 417–422

    Google Scholar 

  218. 218.

    Wearing SC, Smeathers JE, Yates B, et al. Sagittal movement of the medial longitudinal arch is unchanged in plantar fasciitis. Med Sci Sports Exerc 2004; 36: 1761–1767

    PubMed  Article  Google Scholar 

  219. 219.

    Hunt AE, Smith RM, Torode M. Extrinsic muscle activity, foot motion and ankle joint moments during the stance phase of walking. Foot Ankle Int 2001; 22: 31–41

    PubMed  CAS  Google Scholar 

  220. 220.

    Hunt AE, Smith RM, Torode M, et al. Inter-segment foot motion and ground reaction forces over the stance phase of walking. Clin Biomech 2001; 16: 592–600

    CAS  Article  Google Scholar 

  221. 221.

    Cashmere T, Smith R, Hunt A. Medial longitudinal arch of the foot: stationary versus walking measures. Foot Ankle Int 1999; 20: 112–118

    PubMed  CAS  Google Scholar 

  222. 222.

    Phillips RD, Law EA, Ward ED. Functional motion of the medial column joints of the foot during propulsion. J Am Podiatr Med Assoc 1996; 86: 474–486

    PubMed  CAS  Google Scholar 

  223. 223.

    Kameyama O, Ogawa R, Okamoto T, et al. Electric discharge patterns of ankle muscles during the normal gait cycle. Arch Phys Med Rehabil 1990; 71: 969–974

    PubMed  CAS  Google Scholar 

  224. 224.

    Blanc Y, Baimer C, Landis T, et al. Temporal parameters and patterns of the foot roll over during walking: normative data for healthy adults. Gait Posture 1999; 10: 97–108

    PubMed  CAS  Article  Google Scholar 

  225. 225.

    Sutherland DH, Kaufman KR, Moitoza JR. Kinematics of normal human walking. In: Rose J, Gamble JG, editors. Human walking. Sydney: Williams & Wilkins, 1994: 23–44

    Google Scholar 

  226. 226.

    Andriacchi TP, Alexander EJ. Studies of human locomotion: past, present and future. J Biomech 2000; 33: 1217–1224

    PubMed  CAS  Article  Google Scholar 

  227. 227.

    Maslen BA, Ackland TR. Radiographic study of the skin displacement errors in the foot and ankle during standing. Clin Biomech 1994; 9: 291–296

    Article  Google Scholar 

  228. 228.

    Giddings VL, Beaupre GS, Whalen RT, et al. Calcaneal loading during walking and running. Med Sci Sports Exerc 2000; 32: 627–634

    PubMed  CAS  Article  Google Scholar 

  229. 229.

    Scott SH, Winter DA. Internal forces of chronic running injury sites. Med Sci Sports Exerc 1990; 22: 357–369

    PubMed  CAS  Google Scholar 

  230. 230.

    Gefen A. The in vivo elastic properties of the plantar fascia during the contact phase of walking. Foot Ankle Int 2003; 24: 238–244

    PubMed  Google Scholar 

  231. 231.

    Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol 1999; 521: 307–313

    PubMed  CAS  Article  Google Scholar 

  232. 232.

    Magnusson SP, Aagaard P, Dyhre-Poulsen P, et al. Load-displacement properties of the human triceps surae aponeurosis in vivo. J Physiol 2001; 531: 277–288

    PubMed  CAS  Article  Google Scholar 

  233. 233.

    Muramatsu T, Muraoka T, Takeshita D, et al. Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. J Appl Physiol 2001; 90: 1671–1678

    PubMed  CAS  Google Scholar 

  234. 234.

    Rosager S, Aagaard P, Dyhre-Poulsen P, et al. Load-displacement properties of the human triceps surae aponeurosis and tendon in runners and non-runners. Scand J Med Sci Sports 2002; 12: 90–98

    PubMed  CAS  Article  Google Scholar 

  235. 235.

    Erdemir A, Hamel AJ, Fauth AR, et al. Dynamic loading of the plantar aponeurosis in walking. J Bone Joint Surg Am 2004; 86: 546–552

    PubMed  Google Scholar 

  236. 236.

    Malaviya P, Butler DL, Korvick DL, et al. In vivo tendon forces correlate with activity level and remain bounded: evidence in a rabbit flexor tendon model. J Biomech 1998; 31: 1043–1049

    PubMed  CAS  Article  Google Scholar 

  237. 237.

    Grasel RP, Schweitzer ME, Kovalovich AM, et al. MR imaging of plantar fasciitis: edema, tears, and occult marrow abnormalities correlated with outcome. Am J Roentgenol 1999; 173: 699–701

    CAS  Google Scholar 

  238. 238.

    Schepsis AA, Leach RE, Gorzyca J. Plantar fasciitis: etiology, treatment, surgical results, and review of the literature. Clin Orthop 1991; 266: 185–196

    PubMed  Google Scholar 

  239. 239.

    Snider MP, Clancy WG, McBeath AA. Plantar fascia release for chronic plantar fasciitis in runners. Am J Sports Med 1983; 11: 215–219

    PubMed  CAS  Article  Google Scholar 

  240. 240.

    LeMelle DP, Kisilewicz P, Janis LR. Chronic plantar fascial inflammation and fibrosis. Clin Podiatr Med Surg 1990; 7: 385–389

    PubMed  CAS  Google Scholar 

  241. 241.

    Clancy Jr WG. Tendinitis and plantar fasciitis in runners. Orthop 1983; 6: 217–233

    Google Scholar 

  242. 242.

    Józsa LG, Kannus P. Human tendons: anatomy, physiology and pathology. Champaign (IL): Human Kinetics, 1997

    Google Scholar 

  243. 243.

    Chard MD, Cawston TE, Riley GP, et al. Rotator cuff degeneration and lateral epicondylitis: a comparative histological study. Ann Rheum Dis 1994; 53: 30–34

    PubMed  CAS  Article  Google Scholar 

  244. 244.

    Åström M, Rausing A. Chronic Achilles tendinopathy: a survey of surgical and histopathologic findings. Clin Orthop 1995; 316: 151–164

    PubMed  Google Scholar 

  245. 245.

    Leach RF, Seavey MS, Salter DK. Results of surgery in athletes with plantar fasciitis. Foot Ankle 1986; 7: 156–161

    PubMed  CAS  Google Scholar 

  246. 246.

    LemontH, Ammirati KM, Usen N. Plantar fasciitis: a degenerative process (fasciosis) without inflammation. J Am Podiatr Med Assoc 2003; 93: 234–237

    PubMed  Google Scholar 

  247. 247.

    Kumagai J, Sarkar K, Uhthoff HK. The collagen types in the attachment zone of rotator cuff tendons in the elderly: an immunohistochemical study. J Rheumatol 1994; 21: 2096–2100

    PubMed  CAS  Google Scholar 

  248. 248.

    Kumai T, Benjamin M. Heel spur formation and the subcalcaneal enthesis of the plantar fascia. J Rheumatol 2002; 29: 1957–1964

    PubMed  Google Scholar 

  249. 249.

    Ogata S, Uhthoff HK. Acromial enthesopathy and rotator cuff tear: a radiologic and histologic postmortem investigation of the coracoacromial arch. Clin Orthop 1990; 254: 39–48

    PubMed  Google Scholar 

  250. 250.

    Abreu MR, Chung CB, Mendes L, et al. Plantar calcaneal enthesophytes: new observations regarding sites of origin based on radiographic, MR imaging, anatomic, and paleopathology analysis. Skeletal Radiol 2003; 32: 13–21

    PubMed  CAS  Article  Google Scholar 

  251. 251.

    Skedros JG, Bloebaum RD, Mason MW, et al. Analysis of a tension/compression skeletal system: possible strain-specific differences in the hierarchical organization of bone. Anat Rec 1994; 239: 396–404

    PubMed  CAS  Article  Google Scholar 

  252. 252.

    Wainwright AM, Kelly AJ, Winson G. Calcaneal spurs and plantar fasciitis. Foot 1995; 5: 123–126

    Article  Google Scholar 

  253. 253.

    Shaibani A, Workman R, Rothschild BM. The significance of enthesopathy as a skeletal phenomenon. Clin Exp Rheumatol 1993: 11: 399–403

    PubMed  CAS  Google Scholar 

  254. 254.

    Khan KM, Cook JL, Taunton JE, et al. Ovemse tendinosis, not tendinitis: part 1: a new paradigm for a difficult clinical problem. Phys Sportsmed 2000; 28: 38–48

    PubMed  CAS  Article  Google Scholar 

  255. 255.

    Maffulli N, Khan KM, Puddu G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 1998; 14: 840–843

    PubMed  CAS  Article  Google Scholar 

  256. 256.

    Almekinders LC, Temple JD. Etiology, diagnosis, and treatment of tendonitis: an analysis of the literature. Med Sci Sports Exerc 1998; 30: 1183–1190

    PubMed  CAS  Article  Google Scholar 

  257. 257.

    Mosier SM, Pomeroy G, Manoli A. Pathoanatomy and etiology of posterior tibial tendon dysfunction. Clin Orthop 1999; 365: 12–22

    PubMed  Article  Google Scholar 

  258. 258.

    Hess GP, Cappiello WL, Poole RM, et al. Prevention and treatment of overuse tendon injuries. Sports Med 1989; 8: 371–384

    PubMed  CAS  Article  Google Scholar 

  259. 259.

    Backman C, Boquist L, Fridén J, et al. Chronic achilles paratenonitis with tendinosis: an experimental model in the rabbit. J Orthop Res 1990; 8: 541–547

    PubMed  CAS  Article  Google Scholar 

  260. 260.

    Enwemeka CS. Inflammation, cellularity, and fibrillogenesis in regenerating tendon: implications for tendon rehabilitation. Phys Ther 1989; 69: 816–825

    PubMed  CAS  Google Scholar 

  261. 261.

    Herrick RT, Herrick S. Rupture of the plantar fascia in a middle-aged tennis player: a case report. Am J Sports Med 1983; 11: 95

    PubMed  CAS  Article  Google Scholar 

  262. 262.

    Lun V, Meeuwisse W, Vellet D. Spontaneous rupture of plantar fascia. Clin J Sport Med 1999; 9: 48–49

    PubMed  CAS  Article  Google Scholar 

  263. 263.

    Rolf C, Guntner P, Ericsater J, et al. Plantar fascia rupture: diagnosis and treatment. J Foot Ankle Surg 1997; 36: 112–114

    PubMed  CAS  Article  Google Scholar 

  264. 264.

    Józsa L, Réffy A, Kannus P, et al. Pathological alterations in human tendons. Arch Orthop Trauma Surg 1990; 110: 15–21

    PubMed  Article  Google Scholar 

  265. 265.

    Kannus P, Natri A. Etiology and pathophysiology of tendon ruptures in sports. Scand J Med Sci Sports 1997; 7: 107–112

    PubMed  CAS  Article  Google Scholar 

  266. 266.

    Carpenter JE, Flanagan CL, Thomopoulos S, et al. The effects of overuse combined with intrinsic or extrinsic alterations in an animal model of rotator cuff tendinosis. Am J Sports Med 1998; 26: 801–807

    PubMed  CAS  Google Scholar 

  267. 267.

    Archambault JM, Herzog W, Hart DA. Acute and chronic tendon overuse in a rabbit model. 23rd Annual Meeting of the American Society of Biomechanics; 1999 Oct 21–23; Pittsburgh (PA)

    Google Scholar 

  268. 268.

    Kannus P. Etiology and pathophysiology of chronic tendon disorders in sports. Scand J Med Sci Sports 1997; 7: 78–85

    PubMed  CAS  Article  Google Scholar 

  269. 269.

    Kraus-Hansen AE, Fackelman GE, Becker C, et al. Preliminary studies on the vascular anatomy of the equine superficial digital flexor tendon. Equine Vet J 1992; 24: 46–51

    PubMed  CAS  Article  Google Scholar 

  270. 270.

    Wilson AM, Goodship AE. Exercise-induced hyperthermia as a possible mechanism for tendon degeneration. J Biomech 1994; 27: 899–905

    PubMed  CAS  Article  Google Scholar 

  271. 271.

    Józsa L, Kvist M, Balint BJ, et al. The role of recreational sport activity in Achilles tendon rupture: a clinical, pathoanatomical, and sociological study of 292 cases. Am J Sports Med 1989; 17: 338–343

    PubMed  Article  Google Scholar 

  272. 272.

    Józsa L, Balint JB, Kannus P, et al. Distribution of blood groups in patients with tendon rupture: an analysis of 832 cases. J Bone Joint Surg Br 1989; 71: 272–274

    PubMed  Google Scholar 

  273. 273.

    Kujala UM, Jarvinen M, Natri A, et al. ABO blood groups and musculoskeletal injuries. Injury 1992; 23: 131–133

    PubMed  CAS  Article  Google Scholar 

  274. 274.

    Maffulli N, Reaper JA, Waterston SW, et al. ABO blood groups and achilles tendon rupture in the Grampian Region of Scotland. Clin J Sport Med 2000; 10: 269–271

    PubMed  CAS  Article  Google Scholar 

  275. 275.

    Leppilahti J, Puranen J, Orava S. ABO blood group and Achilles tendon rupture. Ann Chir Gynaecol 1996; 85: 369–371

    PubMed  CAS  Google Scholar 

  276. 276.

    Chandler TJ, Kibler WB. A biomechanical approach to the prevention, treatment, and rehabilitation of plantar fasciitis. Sports Med 1993; 15: 344–352

    PubMed  CAS  Article  Google Scholar 

  277. 277.

    Cornwall MW, McPoil TG. Plantar fasciitis: etiology and treatment. J Orthop Sports Phys Ther 1999; 29: 756–760

    PubMed  CAS  Google Scholar 

  278. 278.

    Murphy DF, Connolly DAJ, Beynnon BD. Risk factors for lower extremity injury: a review of the literature. Br J Sports Med 2002; 37: 13–29

    Article  Google Scholar 

  279. 279.

    James SL, Bates BT, Osternig LR. Injuries to runners. Am J Sports Med 1978; 6: 40–50

    PubMed  CAS  Article  Google Scholar 

  280. 280.

    Taunton JE, Clement DB, McNicol K. Plantar fasciitis in runners. Can J Appl Sport Sci 1982; 7: 41–44

    PubMed  CAS  Google Scholar 

  281. 281.

    Kibler WB, Goldberg C, Chandler J. Functional biomechanical deficits in running athletes with plantar fasciitis. Am J Sports Med 1991; 19: 66–71

    PubMed  CAS  Article  Google Scholar 

  282. 282.

    Warren BL. Anatomical factors associated with predicting plantar fasciitis in long-distance runners. Med Sci Sports Exerc 1984; 16: 60–63

    PubMed  CAS  Google Scholar 

  283. 283.

    Warren BL, Jones CJ. Predicting plantar fasciitis in runners. Med Sci Sports Exerc 1987; 19: 71–73

    PubMed  CAS  Google Scholar 

  284. 284.

    Messier SP, Pittala KA. Etiologic factors associated with selected running injuries. Med Sci Sports Exerc 1988; 20: 501–505

    PubMed  CAS  Google Scholar 

  285. 285.

    Hill JJ, Cutting PJ. Heel pain and body weight. Foot Ankle 1989; 9: 254–256

    PubMed  Google Scholar 

  286. 286.

    Prichasuk S. The heel pad in plantar heel pain. J Bone Joint Surg Br 1994; 76: 140–142

    PubMed  CAS  Google Scholar 

  287. 287.

    Turgut A, GokturkE, Kose N, et al. The relationship of heel pad elasticity and plantar heel pain. Clin Orthop 1999; 360: 191–196

    PubMed  Article  Google Scholar 

  288. 288.

    Tsai WC, Wang CL, Hsu TC, et al. The mechanical properties of the heel pad in unilateral plantar heel pain syndrome. Foot Ankle Int 1999; 20: 663–668

    PubMed  CAS  Google Scholar 

  289. 289.

    Wilk BR, Fisher KL, Gutierrez W. Defective running shoes as a contributing factor in plantar fasciitis in a triathlete. J Orthop Sports Phys Ther 2000; 30: 21–28

    PubMed  CAS  Google Scholar 

  290. 290.

    Rano JA, Fallet LM, Savoy-Moore RT. Correlation of heel pain with body mass index and other characteristics of heel pain. J Foot Ankle Surg 2001; 40: 351–356

    PubMed  CAS  Google Scholar 

  291. 291.

    Rome K, Campbell R, Hint A, et al. Heel pad thickness: a contributing factor associated with plantar heel pain in young adults. Foot Ankle Int 2002; 23: 142–174

    PubMed  Google Scholar 

  292. 292.

    Whittle MW. Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture 1999; 10: 264–275

    PubMed  CAS  Article  Google Scholar 

  293. 293.

    Spears IR, Miller-Young JE, Waters M, et al. The effect of loading conditions on stress in the barefooted heel pad. Med Sci Sports Exerc 2005; 37: 1030–1036

    PubMed  Google Scholar 

  294. 294.

    Liddle D, Rome K, Howe T. Vertical ground reaction forces in patients with unilateral plantar heel pain: a pilot study. Gait Posture 2000: 11: 62–66

    PubMed  CAS  Article  Google Scholar 

  295. 295.

    Katoh Y, Chao EYS, Laughman RK, et al. Biomechanical analysis of foot function during gait and clinical applications. Clin Orthop 1983; 177: 23–33

    PubMed  Google Scholar 

  296. 296.

    Katoh Y, Chao EYS, Morrey BF, et al. Objective technique for evaluating painful heel syndrome and its treatment. Foot Ankle 1983; 3: 227–237

    PubMed  CAS  Google Scholar 

  297. 297.

    Daly PJ, Kitaoka HB, Chao EYS. Plantar fasciotomy for intractable plantar fasciitis: clinical results and biomechanical evaluation. Foot Ankle 1992; 13: 188–195

    PubMed  CAS  Google Scholar 

  298. 298.

    Wearing SC, Smeathers JE, Urry SR. The effect of plantar fasciitis on vertical foot-ground reaction force. Clin Orthop 2003; 409: 175–185

    PubMed  Article  Google Scholar 

  299. 299.

    Katoh Y, Chao EYS, Morrey BF, et al. Objective evaluation of painful heel syndrome by gait analysis. In: Matsui H, Kobayashi K, editors. Biomechanics VIII: proceedings of the 8th International Congress of Biomechanics. Champaign (IL): Human Kinetics, 1981: 490–497

    Google Scholar 

  300. 300.

    Kelly AJ, Wainwright AM, Winson IG. Plantar pressures are normal in plantar fasciitis. Foot Dis 1995; 11: 129–132

    Google Scholar 

  301. 301.

    Bedi HS, Love BRT. Differences in impulse distribution patterns in patients with plantar fasciitis. Foot Ankle Int 1998; 19: 153–156

    PubMed  CAS  Google Scholar 

  302. 302.

    Kanatli U, Yetkin H, Simsek A, et al. The relationship of the heel pad compressibility and plantar pressure distribution. Foot Ankle Int 2001; 22: 662–665

    PubMed  CAS  Google Scholar 

  303. 303.

    Kwong PK, Kay D, Voner RT, et al. Plantar fasciitis: mechanics and pathomechanics of treatment. Clin Sports Med 1988; 7: 119–126

    PubMed  CAS  Google Scholar 

  304. 304.

    Huang YC, Wang LY, Wang HC, et al. The relationship between the flexible flatfoot and plantar fasciitis: ultrasonographic evaluation. Chang Gung Med J 2004; 27: 443–448

    PubMed  Google Scholar 

  305. 305.

    Kosmahl EM, Kosmahl HE. Painful plantar heel, plantar fasciitis and calcaneal spur: etiology and treatment. J Orthop Sports Phys Ther 1987; 9: 17–24

    PubMed  CAS  Google Scholar 

  306. 306.

    Ross M. Use of the tissue stress model as a paradigm for developing an examination and management plan for a patient with plantar fasciitis. J Am Podiatr Med Assoc 2002; 92: 499–506

    PubMed  Google Scholar 

  307. 307.

    Prichasuk S, Subhadrabandhu T. The relationship of pes planus and calcaneal spur to plantar heel pain. Clin Orthop 1994; 306: 192–196

    PubMed  Google Scholar 

  308. 308.

    Shama SS, Kominsky SJ, Lemont H. Prevalence of non painful heel spur and its relation to postural foot position. J Am Podiatry Assoc 1983; 73: 122–123

    PubMed  CAS  Google Scholar 

  309. 309.

    Lyman J, Weinhold PS, Almekinders LC. Strain behavior of the distal achilles tendon: implications for insertional achilles tendinopathy. Am J Sports Med 2004; 32: 457–461

    PubMed  Article  Google Scholar 

  310. 310.

    Almekinders LC, Vellema JH, Weinhold PS. Strain patterns in the patellar tendon and the implications for patellar tendinopathy. Knee Surg Sports Traumatol Arthrosc 2002; 10: 2–5

    PubMed  Article  Google Scholar 

  311. 311.

    Almekinders LC, Weinhold PS, Maffulli N. Compression etiology in tendinopathy. Clin Sports Med 2003; 22: 703–710

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors have no conflicts of interest that are directly related to the contents of this review and no financial support was received for the preparation of this manuscript. Dr Wearing was funded by a Strategic Links with Industry Grant with co-contributions from the Queensland University of Technology and Medical Benefits Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott C. Wearing.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wearing, S.C., Smeathers, J.E., Urry, S.R. et al. The Pathomechanics of Plantar Fasciitis. Sports Med 36, 585–611 (2006). https://doi.org/10.2165/00007256-200636070-00004

Download citation

Keywords

  • Plantar Fascia
  • Plantar Fasciitis
  • Heel Pain
  • Free Nerve Ending
  • Plantar Plate