Skip to main content

Trauma-Induced Systemic Inflammatory Response versus Exercise-Induced Immunomodulatory Effects

Abstract

Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med 1996 Jul; 24 (7): 1125–1128

    PubMed  CAS  Google Scholar 

  2. 2.

    Levy MM, Fink MP, Marshall JC, et al. 2001 Sccm/Esicm/Accp/Ats/Sis International Sepsis Definitions Conference. Crit Care Med 2003 Apr; 31 (4): 1250–256

    PubMed  Google Scholar 

  3. 3.

    Salo DC, Donovan CM, Davies KJ. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 1991; 11 (3): 239–246

    PubMed  CAS  Google Scholar 

  4. 4.

    Shephard RJ. Sepsis and mechanisms of inflammatory response: is exercise a good model? Br J Sports Med 2001 Aug; 35 (4): 223–230

    PubMed  CAS  Google Scholar 

  5. 5.

    Shephard RJ, Shek PN. Immune responses to inflammation and trauma: a physical training model. Can J Physiol Pharmacol 1998 May; 76 (5): 469–472

    PubMed  CAS  Google Scholar 

  6. 6.

    Northoff H, Enkel S, Weinstock C. Exercise, injury, and immune function. Exerc Immunol Rev 1995; 1: 1–25

    Google Scholar 

  7. 7.

    Moldoveanu AI, Shephard RJ, Shek PN. The cytokine response to physical activity and training. Sports Med 2001 Feb; 31 (2): 115–144

    PubMed  CAS  Google Scholar 

  8. 8.

    Shek PN, Shephard RJ. Physical exercise as a human model of limited inflammatory response. Can J Physiol Pharmacol 1998 May; 76 (5): 589–597

    PubMed  CAS  Google Scholar 

  9. 9.

    Camus G, Deby-Dupont G, Duchateau J, et al. Are similar inflammatory factors involved in strenuous exercise and sepsis? Intensive Care Med 1994 Nov; 20 (8): 602–610

    PubMed  CAS  Google Scholar 

  10. 10.

    Pedersen BK, Kappel M, Klokker M, et al. The immune system during exposure to extreme physiologic conditions. Int J Sports Med 1994 Oct; 15 Suppl. 3: S116–S121

    PubMed  Google Scholar 

  11. 11.

    Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 2000 Jul; 8 (3): 1055–1081

    Google Scholar 

  12. 12.

    Dremsizov TT, Kellum JA, Angus DC. Incidence and definition of sepsis and associated organ dysfunction. Int J Artif Organs 2004 May; 27 (5): 352–359

    PubMed  CAS  Google Scholar 

  13. 13.

    Lakier SL. Overtraining, excessive exercise, and altered immunity: is this a T helper-1 versus T helper-2 lymphocyte response? Sports Med 2003; 33 (5): 347–364

    Google Scholar 

  14. 14.

    Suzuki K, Nakaji S, Kurakake S, et al. Exhaustive exercise and type-l/type-2 cytokine balance with special focus on in-terleukin-12 p40/p70. Exerc Immunol Rev 2003; 9: 48–57

    PubMed  Google Scholar 

  15. 15.

    Nieman DC. Is infection risk linked to exercise workload? Med Sci Sports Exerc 2000 Jul; 32 (7 Suppl.): S406–S411

    PubMed  CAS  Google Scholar 

  16. 16.

    Sharp NC, Koutedakis Y. Sport and the overtraining syndrome: immunological aspects. Br Med Bull 1992; 48 (3): 518–533

    PubMed  CAS  Google Scholar 

  17. 17.

    Shephard RJ. Chronic fatigue syndrome: an update. Sports Med 2001; 31 (3): 167–194

    PubMed  CAS  Google Scholar 

  18. 18.

    Kentta G, Hassmen P, Raglin JS. Training practices and overtraining syndrome in Swedish age-group athletes. Int J Sports Med 2001 Aug; 22 (6): 460–465

    PubMed  CAS  Google Scholar 

  19. 19.

    Welch WJ, Garrels JI, Thomas GP, et al. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca2+- ionophore-regulated proteins. J Biol Chem 1983; 258 (11): 7102–7111

    PubMed  CAS  Google Scholar 

  20. 20.

    Smith LL. Tissue trauma: the underlying cause of overtraining syndrome? J Strength Cond Res 2004 Feb; 18 (1): 185–193

    PubMed  Google Scholar 

  21. 21.

    Halson SL, Jeukendrup AE. Does overtraining exist? An analysis of overreaching and overtraining research. Sports Med 2004; 34 (14): 967–981

    PubMed  Google Scholar 

  22. 22.

    Gabriel H, Kindermann W. The acute immune response to exercise: what does it mean? Int J Sports Med 1997 Mar; 18 Suppl. 1: S28–S45

    PubMed  CAS  Google Scholar 

  23. 23.

    Silva E, Pedro MD, Sogayar AC, et al. Brazilian Sepsis Epidemiological Study (BASES study). Crit Care 2004; 8 (4): R251–R260

    PubMed  Google Scholar 

  24. 24.

    Matzinger P. An innate sense of danger. Ann N Y Acad Sci 2002 Jun; 961: 341–342

    PubMed  Google Scholar 

  25. 25.

    Heeg K, Sparwasser T, Lipford GB, et al. Bacterial DNA as an evolutionary conserved ligand signalling danger of infection to immune cells. Eur J Clin Microbiol Infect Dis 1998 Jul; 17 (7): 464–469

    PubMed  CAS  Google Scholar 

  26. 26.

    Macintire DK, Bellhorn TL. Bacterial translocation: clinical implications and prevention. Vet Clin North Am Small Anim Pract 2002 Sep; 32 (5): 1165–1178

    PubMed  Google Scholar 

  27. 27.

    Moore GE, Holbein ME, Knochel JP. Exercise-associated collapse in cyclists is unrelated to endotoxemia. Med Sci Sports Exerc 1995 Sep; 27 (9): 1238–1242

    PubMed  CAS  Google Scholar 

  28. 28.

    Camus G, Poortmans J, Nys M, et al. Mild endotoxaemia and the inflammatory response induced by a marathon race. Clin Sci (Lond) 1997 Apr; 92 (4): 415–422

    CAS  Google Scholar 

  29. 29.

    Appell HJ, Soares JM, Duarte JA. Exercise, muscle damage and fatigue. Sports Med 1992 Feb; 13 (2): 108–115

    PubMed  CAS  Google Scholar 

  30. 30.

    Davies KJ, Quintanilha AT, Brooks GA, et al. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 1982; 107 (4): 1198–1205

    PubMed  CAS  Google Scholar 

  31. 31.

    Moseley P. Stress proteins and the immune response. Immunopharmacology 2000 Jul 25; 48 (3): 299–302

    PubMed  CAS  Google Scholar 

  32. 32.

    Todryk SM, Melcher AA, Dalgleish AG, et al. Heat shock proteins refine the danger theory. Immunology 2000 Mar; 99 (3): 334–337

    PubMed  CAS  Google Scholar 

  33. 33.

    Christians ES, Yan LJ, Benjamin I J. Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 2002 Jan; 30 (1 Suppl.): S43–S50

    CAS  Google Scholar 

  34. 34.

    Hickman-Miller HD, Hildebrand WH. The immune response under stress: the role of HSP-derived peptides. Trends Immunol 2004 Aug; 25 (8): 427–433

    PubMed  CAS  Google Scholar 

  35. 35.

    Doody AD, Kovalchin JT, Mihalyo MA, et al. Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol 2004 May 15; 172 (10): 6087–6092

    PubMed  CAS  Google Scholar 

  36. 36.

    Milani V, Noessner E, Ghose S, et al. Heat shock protein 70: role in antigen presentation and immune stimulation. Int J Hyperthermia 2002 Nov; 18 (6): 563–575

    PubMed  CAS  Google Scholar 

  37. 37.

    Asea A. Chaperokine-induced signal transduction pathways. Exerc Immunol Rev 2003; 9: 25–33

    PubMed  Google Scholar 

  38. 38.

    Ryan M, Levy MM. Clinical review: fever in intensive care unit patients. Crit Care 2003 Jun; 7 (3): 221–225

    PubMed  Google Scholar 

  39. 39.

    Fehrenbach E, Niess AM. Role of heat shock proteins in the exercise response. Exerc Immunol Rev 1999; 5: 57–77

    PubMed  CAS  Google Scholar 

  40. 40.

    Fehrenbach E, Niess AM, Voelker K, et al. Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 2005 Sep; 26 (7): 552–557

    PubMed  CAS  Google Scholar 

  41. 41.

    Berwin B, Hart JP, Rice S, et al. Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J 2003 Nov 17; 22 (22): 6127–6136

    PubMed  CAS  Google Scholar 

  42. 42.

    Torres M, Forman HJ. Redox signaling and the MAP kinase pathways. Biofactors 2003; 17 (1–4): 287–296

    PubMed  CAS  Google Scholar 

  43. 43.

    Asehnoune K, Strassheim D, Mitra S, et al. Involvement of reactive oxygen species in toll-like receptor 4-dependent activation of NF-kappa B. J Immunol 2004 Feb 15; 172 (4): 2522–2529

    PubMed  CAS  Google Scholar 

  44. 44.

    Vabulas RM, Ahmad-Nejad P, Ghose S, et al. HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 2002 Apr 26; 277 (17): 15107–15112

    PubMed  CAS  Google Scholar 

  45. 45.

    Vabulas RM, Ahmad-Nejad P, da Costa C, et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001 Aug 17; 276 (33): 31332–31339

    PubMed  CAS  Google Scholar 

  46. 46.

    Calandra T. Pathogenesis of septic shock: implications for prevention and treatment. J Chemother 2001 Nov; 13 Spec No 1 (1): 173–180

    PubMed  CAS  Google Scholar 

  47. 47.

    Child NJ, Yang I A, Pulletz MC, et al. Polymorphisms in toll-like receptor 4 and the systemic inflammatory response syndrome. Biochem Soc Trans 2003 Jun; 31 (Pt 3): 652–63

    PubMed  CAS  Google Scholar 

  48. 48.

    Yu BJ, Li JS, Zhang DL, et al. The associations of the single nucleotide polymorphisms on TNF and CD14 promoters with the mortality of infection, systematic inflammatory response syndromec and sepsis in surgical patients [in Chinese]. Zhonghua Yi Xue Za Zhi 2003 Dec 25; 83 (24): 2132–2136

    PubMed  CAS  Google Scholar 

  49. 49.

    Flynn MG, McFarlin BK, Phillips MD, et al. Toll-like receptor 4 and CD 14 mRNA expression are lower in resistive exercise-trained elderly women. J Appl Physiol 2003 Jun 27; 95 (5): 1833–1842

    PubMed  CAS  Google Scholar 

  50. 50.

    Calvano JE, Agnese DM, Um JY, et al. Modulation of the lipopolysaccharide receptor complex (CD 14, TLR4, MD-2) and toll-like receptor 2 in systemic inflammatory response syndrome-positive patients with and without infection: relationship to tolerance. Shock 2003 Nov; 20 (5): 415–419

    PubMed  CAS  Google Scholar 

  51. 51.

    Smith SL. Physical exercise as an oncology nursing intervention to enhance quality of life. Oncol Nurs Fomm 1996 Jun; 23 (5): 771–778

    CAS  Google Scholar 

  52. 52.

    Steppich B, Dayyani F, Gruber R, et al. Selective mobilization of CD 14 (+)CD16 (+) monocytes by exercise. Am J Physiol Cell Physiol 2000 Sep; 279 (3): C578–C586

    PubMed  CAS  Google Scholar 

  53. 53.

    Clanton TL, Zuo L, Klawitter P. Oxidants and skeletal muscle function: physiologic and pathophysiologic implications. Proc Soc Exp Biol Med 1999; 222 (3): 253–262

    PubMed  CAS  Google Scholar 

  54. 54.

    Jansky L, Vybiral S. Thermal homeostasis in systemic inflammation: modulation of neuronal mechanisms. Front Biosci 2004 Sep 1; 9: 3068–3084

    PubMed  CAS  Google Scholar 

  55. 55.

    Brooks GA, Hittelman KJ, Faulkner JA, et al. Tissue temperatures and whole-animal oxygen consumption after exercise. Am J Physiol 1971; 221 (2): 427–431

    PubMed  CAS  Google Scholar 

  56. 56.

    Suzuki K, Nakaji S, Yamada M, et al. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 2002; 8: 6–48

    PubMed  Google Scholar 

  57. 57.

    Cavaillon JM, Adib-Conquy M, Fitting C, et al. Cytokine cascade in sepsis. Scand J Infect Dis 2003; 35 (9): 535–544

    PubMed  CAS  Google Scholar 

  58. 58.

    Plank LD, Hill GL. Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg 2000 Jun; 24 (6): 630–638

    PubMed  CAS  Google Scholar 

  59. 59.

    Ostrowski K, Hermann C, Bangash A, et al. A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J Physiol 1998 Dec 15; 513 (Pt 3): 889–894

    PubMed  CAS  Google Scholar 

  60. 60.

    Mokart D, Merlin M, Sannini A, et al. Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. Br J Anaesth 2005 Jun; 94 (6): 767–773

    PubMed  CAS  Google Scholar 

  61. 61.

    Starkie RL, Rolland J, Angus DJ, et al. Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-alpha levels after prolonged running. Am J Physiol Cell Physiol 2001 Apr; 280 (4): C769–C774

    PubMed  CAS  Google Scholar 

  62. 62.

    Ostrowski K, Rohde T, Asp S, et al. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 1999 Feb 15; 515 (1): 287–291

    PubMed  CAS  Google Scholar 

  63. 63.

    Hirai S. Systemic inflammatory response syndrome after cardiac surgery under cardiopulmonary bypass. Ann Thorac Cardi-ovasc Surg 2003 Dec; 9 (6): 365–370

    Google Scholar 

  64. 64.

    Simmons EM, Himmelfarb J, Sezer MT, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int 2004 Apr; 65 (4): 1357–1365

    PubMed  CAS  Google Scholar 

  65. 65.

    Barton BE. IL-6: insights into novel biological activities. Clin Immunol Immunopathol 1997 Oct; 85 (1): 16–20

    PubMed  CAS  Google Scholar 

  66. 66.

    Starkie R, Ostrowski SR, Jauffred S, et al. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 2003 May; 17 (8): 884–886

    PubMed  CAS  Google Scholar 

  67. 67.

    Steensberg A, Fischer CP, Keller C, et al. IL-6 enhances plasma IL-lra, IL-10, and Cortisol in humans. Am J Physiol Endocrinol Metab 2003; 285 (2): E433–E437

    PubMed  CAS  Google Scholar 

  68. 68.

    Bethin KE, Vogt SK, Muglia LJ. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc Natl Acad Sci U S A 2000 Aug 1; 97 (16): 9317–9322

    PubMed  CAS  Google Scholar 

  69. 69.

    Bone RC. Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation. Crit Care Med 1996 Jan; 24 (1): 163–172

    PubMed  CAS  Google Scholar 

  70. 70.

    Syk I, Mangell P, Bjartell A, et al. Systemic interleukin-6 response to colorectal surgery originates from the bowel. Dig Surg 2002; 1 (3): 210–215

    Google Scholar 

  71. 71.

    O’Neill PJ, Ayala A, Wang P, et al. Role of Kupffer cells in interleukin-6 release following trauma-hemorrhage and resuscitation. Shock 1994 Jan; 1 (1): 43–47

    PubMed  Google Scholar 

  72. 72.

    Steensberg A. The role of IL-6 in exercise-induced immune changes and metabolism. Exerc Immunol Rev 2003; 9: 40–47

    PubMed  Google Scholar 

  73. 73.

    Pedersen BK, Steensberg A, Keller P, et al. Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflugers Arch 2003 Feb 18; 446 (1): 9–16

    PubMed  CAS  Google Scholar 

  74. 74.

    Febbraio MA, Steensberg A, Keller C, et al. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol 2003 Apr 17; 549 (2): 607–612

    PubMed  CAS  Google Scholar 

  75. 75.

    Zhou D, Kusnecov AW, Shurin MR, et al. Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic-pituitary-adrenal axis. Endocrinology 1993 Dec; 133 (6): 2523–2530

    PubMed  CAS  Google Scholar 

  76. 76.

    Toth B, Yokoyama Y, Schwacha MG, et al. Insights into the role of interleukin-6 in the induction of hepatic injury after trauma-hemorrhagic shock. J Appl Physiol 2004 Dec; 97 (6): 2184–2189

    PubMed  CAS  Google Scholar 

  77. 77.

    Beeton CA, Chatfield D, Brooks RA, et al. Circulating levels of interleukin-6 and its soluble receptor in patients with head injury and fracture. J Bone Joint Surg Br 2004 Aug; 86 (6): 912–917

    PubMed  CAS  Google Scholar 

  78. 78.

    Robson PJ. Elucidating the unexplained underperformance syndrome in endurance athletes: the interleukin-6 hypothesis. Sports Med 2003; 33 (10): 771–781

    PubMed  Google Scholar 

  79. 79.

    Ethuin F, Delarche C, Gougerot-Pocidalo MA, et al. Regulation of interleukin 12 p40 and p70 production by blood and alveolar phagocytes during severe sepsis. Lab Invest 2003 Sep; 83 (9): 1353–1360

    PubMed  CAS  Google Scholar 

  80. 80.

    Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004 Oct; 21 (4): 467–476

    PubMed  CAS  Google Scholar 

  81. 81.

    Chuang CC, Hung CJ, Tsai MC, et al. High concentrations of circulating macrophage migration inhibitory factor in patients with severe blunt trauma: is serum macrophage migration inhibitory factor concentration a valuable prognostic factor? Crit Care Med 2004 Mar; 32 (3): 734–739

    PubMed  CAS  Google Scholar 

  82. 82.

    Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003 Jan 9; 348 (2): 138–150

    PubMed  CAS  Google Scholar 

  83. 83.

    Pedersen BK. Leukocytes. In: Mooren FC, Voelker K, editors. Molecular and cellular exercise physiology, 1st ed. Muenster: Human Kinetics, 2005: 321–329

    Google Scholar 

  84. 84.

    Peake JM. Exercise-induced alterations in neutrophil degranulation and respiratory burst activity: possible mechanisms of action. Exerc Immunol Rev 2002; 8: 49–100

    PubMed  Google Scholar 

  85. 85.

    Ibfelt T, Petersen EW, Bruunsgaard H, et al. Exercise-induced change in type 1 cytokine-producing CD8+ T cells is related to a decrease in memory T cells. J Appl Physiol 2002 Aug; 93 (2): 645–648

    PubMed  CAS  Google Scholar 

  86. 86.

    Tvede N, Heilmann C, Halkjaer-Kristensen J, et al. Mechanisms of B-lymphocyte suppression induced by acute physical exercise. J Clin Lab Immunol 1989 Dec; 30 (4): 169–173

    PubMed  CAS  Google Scholar 

  87. 87.

    Nieman DC, Nehlsen Cannarella SL. The effects of acute and chronic exercise on immunoglobulins. Sports Med 1991; 11 (3): 183–201

    PubMed  CAS  Google Scholar 

  88. 88.

    Nielsen HB, Pedersen BK. Lymphocyte proliferation in response to exercise. Eur J Appl Physiol Occup Physiol 1997; 75 (5): 375–379

    PubMed  CAS  Google Scholar 

  89. 89.

    Field CJ, Gougeon R, Marliss EB. Circulating mononuclear cell numbers and function during intense exercise and recovery. J Appl Physiol 1991 Sep; 71 (3): 1089–1097

    PubMed  CAS  Google Scholar 

  90. 90.

    Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 2001 Jun 1; 166 (11): 6952–6963

    PubMed  CAS  Google Scholar 

  91. 91.

    Bruunsgaard H, Pedersen M, Pedersen BK. Aging and proinflammatory cytokines. Curr Opin Hematol 2001 May; 8 (3): 131–136

    PubMed  CAS  Google Scholar 

  92. 92.

    Bruunsgaard H, Pedersen AN, Schroll M, et al. Impaired production of proinflammatory cytokines in response to lipo-polysaccharide (LPS) stimulation in elderly humans. Clin Exp Immunol 1999 Nov; 118 (2): 235–241

    PubMed  CAS  Google Scholar 

  93. 93.

    Bruunsgaard H, Pedersen BK. Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am 2003 Feb; 23 (1): 15–39

    PubMed  Google Scholar 

  94. 94.

    Pedersen BK, Ullum H. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc 1994; 26 (2): 140–146

    PubMed  CAS  Google Scholar 

  95. 95.

    Rao DV, Watson K, Jones GL. Age-related attenuation in the expression of the major heat shock proteins in human peripheral lymphocytes. Mech Ageing Dev 1999 Feb 1; 107 (1): 105–118

    PubMed  CAS  Google Scholar 

  96. 96.

    Fehrenbach E, Passek F, Niess AM, et al. HSP expression in human leucocytes is modulated by endurance exercise. Med Sci Sports Exerc 2000 Mar; 32 (3): 592–600

    PubMed  CAS  Google Scholar 

  97. 97.

    Bercault N, Boulain T, Kuteifan K, et al. Obesity-related excess mortality rate in an adult intensive care unit: a risk-adjusted matched cohort study. Crit Care Med 2004 Apr; 32 (4): 998–1003

    PubMed  Google Scholar 

  98. 98.

    Fehrenbach E, Northoff H. Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 2001; 7: 66–89

    PubMed  CAS  Google Scholar 

  99. 99.

    Bochicchio GV, Napolitano LM, Joshi M, et al. Persistent systemic inflammatory response syndrome is predictive of nosocomial infection in trauma. J Trauma 2002 Aug; 53 (2): 245–250

    PubMed  Google Scholar 

  100. 100.

    Croce MA, Fabian TC, Malhotra AK, et al. Does gender difference influence outcome? J Trauma 2002 Nov; 53 (5): 889–894

    PubMed  Google Scholar 

  101. 101.

    Armstrong RB, Warren GL, Warren JA. Mechanisms of exercise-induced muscle fibre injury. Sports Med 1991 Sep; 12 (3): 184–207

    PubMed  CAS  Google Scholar 

  102. 102.

    Gibot S, Cariou A, Drouet L, et al. Association between a genomic polymorphism within the CD 14 locus and septic shock susceptibility and mortality rate. Crit Care Med 2002 May; 30 (5): 969–973

    PubMed  CAS  Google Scholar 

  103. 103.

    Schurmann M. Angiotensin-converting enzyme gene polymorphisms in patients with pulmonary sarcoidosis: impact on disease severity. Am J Pharmacogenomics 2003; 3 (4): 233–243

    PubMed  Google Scholar 

  104. 104.

    Heled Y, Moran DS, Mendel L, et al. Human ACE IFD polymorphism is associated with individual differences in exercise heat tolerance. J Appl Physiol 2004 Jul; 97 (1): 72–76

    PubMed  CAS  Google Scholar 

  105. 105.

    Brail DJ, Dhamrait S, Moulding R, et al. The effect of fibrinogen genotype on fibrinogen levels after strenuous physical exercise. Thromb Haemost 2002 Jan; 87 (1): 37–41

    Google Scholar 

  106. 106.

    Texereau J, Pene F, Chiche JD, et al. Importance of hemostatic gene polymorphisms for susceptibility to and outcome of severe sepsis. Crit Care Med 2004 May; 32 (5 Suppl.): S313–S319

    PubMed  Google Scholar 

  107. 107.

    Orflepp JR, Metrikat J, Vesper K, et al. The interleukin-6 promoter polymorphism is associated with elevated leukocyte, lymphocyte, and monocyte counts and reduced physical fitness in young healthy smokers. J Mol Med 2003 Sep; 81 (9): 578–584

    Google Scholar 

  108. 108.

    Bennermo M, Held C, Stemme S, et al. Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin Chem 2004 Nov; 50 (11): 2136–2140

    PubMed  CAS  Google Scholar 

  109. 109.

    Marik PE, Zaloga GP. Adrenal insufficiency in the critically ill: a new look at an old problem. Chest 2002 Nov; 122 (5): 1784–1796

    PubMed  Google Scholar 

  110. 110.

    Maisel AS, Harris T, Rearden CA, et al. Beta-adrenergic receptors in lymphocyte subsets after exercise: alterations in normal individuals and patients with congestive heart failure. Circulation 1990 Dec; 82 (6): 2003–2010

    PubMed  CAS  Google Scholar 

  111. 111.

    Mukae H, Zamfir D, English D, et al. Polymorphonuclear leukocytes released from the bone marrow by granulocyte colony-stimulating factor: intravascular behavior. Hematol J 2000; 1 (3): 159–171

    PubMed  CAS  Google Scholar 

  112. 112.

    Kim PK, Deutschman CS. Inflammatory responses and mediators. Surg Clin North Am 2000 Jun; 80 (3): 885–894

    PubMed  CAS  Google Scholar 

  113. 113.

    Brenner IK, Zamecnik J, Shek PN, et al. The impact of heat exposure and repeated exercise on circulating stress hormones. Eur J Appl Physiol 1997; 76 (5): 445–454

    CAS  Google Scholar 

  114. 114.

    Licinio J, Wong ML. Interleukin 1 receptor antagonist gene expression in rat pituitary in the systemic inflammatory response syndrome: pathophysiological implications. Mol Psychiatry 1997 Mar; 2 (2): 99–103

    PubMed  CAS  Google Scholar 

  115. 115.

    Harte JL, Eifert GH, Smith R. The effects of running and meditation on beta-endorphin, corticotropin-releasing hormone and Cortisol in plasma, and on mood. Biol Psychol 1995 Jun; 40 (3): 251–265

    PubMed  CAS  Google Scholar 

  116. 116.

    Pierce EF, Pate DW. Mood alterations in older adults following acute exercise. Percept Mot Skills 1994 Aug; 7 (1 Pt 1): 191–194

    Google Scholar 

  117. 117.

    McGowan RW, Pierce EF, Eastman N, et al. Beta-endorphins and mood states during resistance exercise. Percept Mot Skills 1993 Apr: 76 (2): 376–378

    PubMed  CAS  Google Scholar 

  118. 118.

    Anisman H, Hayley S, Turrin N, et al. Cytokines as a stressor: implications for depressive illness. Int J Neuropsychopharma-col 2002 Dec; 5 (4): 357–373

    CAS  Google Scholar 

  119. 119.

    Yirmiya R, Pollak Y, Morag M, et al. Illness, cytokines, and depression. Ann N Y Acad Sci 2000; 917: 478–487

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elvira Fehrenbach.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fehrenbach, E., Schneider, M.E. Trauma-Induced Systemic Inflammatory Response versus Exercise-Induced Immunomodulatory Effects. Sports Med 36, 373–384 (2006). https://doi.org/10.2165/00007256-200636050-00001

Download citation

Keywords

  • Natural Killer Cell
  • Systemic Inflammatory Response Syndrome
  • Endurance Exercise
  • Immune Competence
  • Systemic Inflammatory Response Syndrome Criterion