Skip to main content

Lactic Acid and Exercise Performance

Culprit or Friend?

Abstract

This article critically discusses whether accumulation of lactic acid, or in reality lactate and/or hydrogen (H+) ions, is a major cause of skeletal muscle fatigue, i.e. decline of muscle force or power output leading to impaired exercise performance. There exists a long history of studies on the effects of increased lactate/H+ concentrations in muscle or plasma on contractile performance of skeletal muscle. Evidence suggesting that lactate/H+ is a culprit has been based on correlation-type studies, which reveal close temporal relationships between intramuscular lactate or H+ accumulation and the decline of force during fatiguing stimulation in frog, rodent or human muscle. In addition, an induced acidosis can impair muscle contractility in non-fatigued humans or in isolated muscle preparations, and several mechanisms to explain such effects have been provided. However, a number of recent high-profile papers have seriously challenged the ‘lactic acid hypothesis’. In the 1990s, these findings mainly involved diminished negative effects of an induced acidosis in skinned or intact muscle fibres, at higher more physiological experimental temperatures. In the early 2000s, it was conclusively shown that lactate has little detrimental effect on mechanically skinned fibres activated by artificial stimulation. Perhaps more remarkably, there are now several reports of protective effects of lactate exposure or induced acidosis on potassium-depressed muscle contractions in isolated rodent muscles. In addition, sodium-lactate exposure can attenuate severe fatigue in rat muscle stimulated in situ, and sodium lactate ingestion can increase time to exhaustion during sprinting in humans. Taken together, these latest findings have led to the idea that lactate/ H+ is ergogenic during exercise.

It should not be taken as fact that lactic acid is the deviant that impairs exercise performance. Experiments on isolated muscle suggest that acidosis has little detrimental effect or may even improve muscle performance during high-intensity exercise. In contrast, induced acidosis can exacerbate fatigue during whole-body dynamic exercise and alkalosis can improve exercise performance in events lasting 1–10 minutes. To reconcile the findings from isolated muscle fibres through to whole-body exercise, it is hypothesised that a severe plasma acidosis in humans might impair exercise performance by causing a reduced CNS drive to muscle.

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Table II
Fig. 2

References

  1. 1.

    Cady EB, Jones DA, Lynn J, et al. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol 1989; 418: 311–325

    PubMed  CAS  Google Scholar 

  2. 2.

    Cairns SP, Buller SJ, Loiselle DS, et al. Changes of action potentials and force at lowered [Na+]o in mouse skeletal muscle: implications for fatigue. Am J Physiol 2003; 285: C1529–C1536

    Google Scholar 

  3. 3.

    Cairns SP, Hing WA, Slack JR, et al. Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle. J Appl Physiol 1998; 84: 1395–1406

    PubMed  CAS  Google Scholar 

  4. 4.

    Cairns SP, Ruzhynsky V, Renaud JM. Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle. Am J Physiol 2004; 287: C762–C770

    Article  CAS  Google Scholar 

  5. 5.

    Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev 1994; 74: 49–94

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Green HJ. Mechanisms of muscle fatigue in intense exercise. J Sports Sci 1997; 15: 247–256

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Lindinger MI, McKelvie RS, Heigenhauser GJ. K+ and Lac-distribution in humans during and after high-intensity exercise: role in fatigue attenuation. J Appl Physiol 1995; 78: 765–777

    PubMed  CAS  Google Scholar 

  8. 8.

    Cairns SP, Knicker AJ, Thompson MW, et al. Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev 2005; 33 (1): 9–16

    PubMed  Google Scholar 

  9. 9.

    Allen DG, Westerblad H, Lännergren J. The role of intracellular acidosis in muscle fatigue. Adv Exp Med Biol 1995; 384: 57–68

    PubMed  CAS  Google Scholar 

  10. 10.

    Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol 2004; 558: 5–30

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Heigenhauser GJF, Jones NL. Bicarbonate loading. In: Lamb DR, Williams MH, editors. Vol. 4. Perspectives in exercise science and sports medicine. Carmel (MI): Cooper Publishing Group, 1991: 183–207

    Google Scholar 

  12. 12.

    Sahlin K. Muscle fatigue and lactic acid accumulation. Acta Physiol Scand Suppl 1986; 556: 83–91

    PubMed  CAS  Google Scholar 

  13. 13.

    Fletcher WM, Hopkins G. Lactic acid in amphibian muscle. J Physiol 1907; 35: 247–309

    PubMed  CAS  Google Scholar 

  14. 14.

    Hill AV, Kupalov P. Anaerobic and aerobic activity in isolated muscle. Proc R Soc Lond B 1929; 105: 313–322

    Article  CAS  Google Scholar 

  15. 15.

    Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 1923; 16: 135–171

    Article  CAS  Google Scholar 

  16. 16.

    Bassett DR. Scientific contributions of A.V. Hill: exercise physiology pioneer. J Appl Physiol 2002; 93: 1567–1582

    PubMed  Google Scholar 

  17. 17.

    Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced acidosis. Am J Physiol 2004; 287: R502–R516

    CAS  Google Scholar 

  18. 18.

    Robergs RA, Ghiasvand F, Parker D. Lingering construct of lactic acidosis. Am J Physiol 2005; 289: R904–R910

    CAS  Google Scholar 

  19. 19.

    Lindinger MI, Kowalchuk JM, Heigenhauser GJF. Applying physiochemical principles to skeletal muscle acid-base status. Am J Physiol 2005; 289: R891–R894

    CAS  Google Scholar 

  20. 20.

    Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature 1978; 274: 861–866

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Hermansen L, Osnes JB. Blood and muscle pH after maximal exercise in man. J Appl Physiol 1972; 32: 304–308

    PubMed  CAS  Google Scholar 

  22. 22.

    Sahlin K, Alvestrand A, Brandt R, et al. Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise. J Appl Physiol 1978; 45: 474–480

    PubMed  CAS  Google Scholar 

  23. 23.

    Sahlin K, Harris RC, Nylind B, et al. Lactate content and pH in muscle samples obtained after dynamic exercise. Pflügers Arch 1976; 367: 143–149

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Brooks GA. Lactate doesn’t necessarily cause fatigue: why are we surprised? J Physiol 2001; 536: 1

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Lydiard A, Gilmour G. Running with Lydiard. Auckland: Hod-der & Stroughton, 1983

    Google Scholar 

  26. 26.

    Spriet LL, Söderlund K, Bergström M, et al. Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulation in men. J Appl Physiol 1987; 62: 616–621

    PubMed  CAS  Google Scholar 

  27. 27.

    Juel C. Lactate-proton cotransport in skeletal muscle. Physiol Rev 1997; 77: 321–358

    PubMed  CAS  Google Scholar 

  28. 28.

    Cairns SP, Westerblad H, Allen DG. Changes in myoplasmic pH and calcium concentration during exposure to lactate in isolated rat ventricular myocytes. J Physiol 1993; 464: 561–574

    PubMed  CAS  Google Scholar 

  29. 29.

    Donaldson SKB, Hermansen L. Differential, direct effects of H+ on Ca2+-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. Pflügers Arch 1978; 376: 55–65

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Leitch SP, Paterson DJ. Interactive effects of K+, acidosis, and catecholamines on isolated rabbit heart: implications for exercise. J Appl Physiol 1994; 77: 1164–1171

    PubMed  CAS  Google Scholar 

  31. 31.

    Paterson DJ. Antiarrhythmic mechanisms during exercise. J Appl Physiol 1996; 80: 1853–1862

    PubMed  CAS  Google Scholar 

  32. 32.

    Fitts RH, Holloszy JO. Lactate and contractile force in frog muscle during development of fatigue and recovery. Am J Physiol 1976; 231: 430–433

    PubMed  CAS  Google Scholar 

  33. 33.

    Troup JP, Metzger JM, Fitts RH. Effect of high-intensity exercise training on functional capacity of limb skeletal muscle. J Appl Physiol 1986; 60: 1743–1751

    PubMed  CAS  Google Scholar 

  34. 34.

    Spriet LL, Söderlund K, Bergström M, et al. Anaerobic energy release in skeletal muscle during electrical stimulation in men. J Appl Physiol 1987; 62: 611–615

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Adams GR, Fisher MJ, Meyer RA. Hypercapnic acidosis and increased H2PO4- concentration do not decrease force in cat skeletal muscle. Am J Physiol 1991; 260: C805–C812

    PubMed  CAS  Google Scholar 

  36. 36.

    Meyer RA, Adams GR, Fisher MJ, et al. Effect of decreased pH on force and phosphocreatine in mammalian skeletal muscle. Can J Physiol Pharmacol 1991; 69: 305–310

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Renaud JM. The effect of lactate on intracellular pH and force recovery of fatigued sartorius muscles of the frog, Rana pipiens. J Physiol 1989; 416: 31–47

    PubMed  CAS  Google Scholar 

  38. 38.

    Westerblad H, Allen DG. Changes of intracellular pH due to repetitive stimulation of single fibres from mouse skeletal muscle. J Physiol 1992; 449: 49–71

    PubMed  CAS  Google Scholar 

  39. 39.

    Chase PB, Kushmerick MJ. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J 1988; 53: 935–946

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Dutka TL, Lamb GD. Effect of lactate on depolarization-induced Ca2+ release in mechanically skinned skeletal muscle fibers. Am J Physiol 2000; 278: C517–C525

    CAS  Google Scholar 

  41. 41.

    Posterino GS, Fryer MW. Effects of high myoplasmic L-lactate concentration on E-C coupling in mammalian skeletal muscle. J Appl Physiol 2000; 89: 517–528

    PubMed  CAS  Google Scholar 

  42. 42.

    Favero TG, Zable AC, Bowman MB, et al. Metabolic end products inhibit sarcoplasmic reticulum Ca2+ release and [3H]ryanodine binding. J Appl Physiol 1995; 78: 1665–1672

    PubMed  CAS  Google Scholar 

  43. 43.

    Booth J, McKenna MJ, Ruell PA, et al. Impaired calcium pump function does not slow relaxation in human skeletal muscle after prolonged exercise. J Appl Physiol 1997; 83: 511–521

    PubMed  CAS  Google Scholar 

  44. 44.

    Stephens TJ, McKenna MJ, Canny BJ, et al. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc 2002; 34: 614–621

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Bogdanis GC, Nevill ME, Lakomy HKA, et al. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand 1998; 163: 261–272

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67: 2376–2382

    PubMed  CAS  Google Scholar 

  47. 47.

    Nielsen JJ, Mohr M, Klarskov C, et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol 2003; 554 (Pt 3): 857–870

    PubMed  Article  Google Scholar 

  48. 48.

    Achten E, Van Cauteren M, Willem R, et al. 31P-NMR spectroscopy and the metabolic properties of different muscle fibers. J Appl Physiol 1990; 68: 644–649

    PubMed  CAS  Google Scholar 

  49. 49.

    Mannion AF, Jakeman PM, Willan PLT. Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man. Exp Physiol 1995; 80: 89–101

    PubMed  CAS  Google Scholar 

  50. 50.

    DeGroot M, Massie BM, Boska M, et al. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Muscle Nerve 1993; 16: 91–98

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Chasiotis D, Hultman E, Sahlin K. Acidotic depression of cyclic AMP accumulation and phosphorylase b to a transformation in skeletal muscle of man. J Physiol 1982; 335: 197–204

    Google Scholar 

  52. 52.

    Costill DL, Barnett A, Sharp R, et al. Leg muscle pH following sprint running. Med Sci Sports Exerc 1983; 15: 325–329

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Mainwood GW, Renaud JM. The effect of acid-base balance on fatigue of skeletal muscle. Can J Physiol Pharmacol 1985; 63: 403–416

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Westerblad H, Lännergren J. The relation between force and intracellular pH in fatigued, single Xenopus muscle fibres. Acta Physiol Scand 1988; 133: 83–89

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Bruton JD, Lännergren J, Westerblad H. Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28°C. J Appl Physiol 1998; 85: 478–483

    PubMed  CAS  Google Scholar 

  56. 56.

    Chin ER, Allen DG. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol 1998; 512: 831–840

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Nielsen HB, Bredmose PP, Strømstad M, et al. Bicarbonate attenuates arterial desaturation during maximal exercise in humans. J Appl Physiol 2002; 93: 724–731

    PubMed  Google Scholar 

  58. 58.

    Street D, Bangsbo J, Juel C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J Physiol 2001; 537: 993–998

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Spriet LL, Matsos CG, Peters SJ, et al. Effects of acidosis on rat metabolism and performance during heavy exercise. Am J Physiol 1985; 248: C337–C347

    PubMed  CAS  Google Scholar 

  60. 60.

    Cooke R, Franks K, Luciani GB, et al. The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J Physiol 1988; 395: 77–97

    PubMed  CAS  Google Scholar 

  61. 61.

    Nosek TM, Fender KY, Godt RE. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers. Science 1987; 236: 191–193

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Lamb GD, Stephenson DG. Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 1994; 478: 331–339

    PubMed  CAS  Google Scholar 

  63. 63.

    Hultman E, Del Canale S, Sjoholm H. Effect of induced metabolic acidosis on intracellular pH, buffer capacity and contraction force of human skeletal muscle. Clin Sci 1985; 69: 505–510

    PubMed  CAS  Google Scholar 

  64. 64.

    Kowalchuk JM, Heigenhauser GJF, Jones NL. Effect of pH on metabolic and cardiorespiratory responses during progressive exercise. J Appl Physiol 1984; 57: 1558–1563

    PubMed  CAS  Google Scholar 

  65. 65.

    Sutton JR, Jones NL, Toews CJ. Effect of pH on muscle glycolysis during exercise. Clin Sci 1981; 61: 331–338

    PubMed  CAS  Google Scholar 

  66. 66.

    McCartney N, Heigenhauser GJF, Jones NL. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. J Appl Physiol 1983; 55: 225–229

    PubMed  CAS  Google Scholar 

  67. 67.

    Balog EM, Fitts RH. Effects of depolarization and low intracellular pH on charge movement currents of frog skeletal muscle fibers. J Appl Physiol 2001; 90: 228–234

    PubMed  CAS  Google Scholar 

  68. 68.

    Rousseau E, Pinkos E. pH modulates conducting and gating behaviour of single calcium release channels. Pflügers Arch 1990; 415: 645–647

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Trivedi B, Danforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem 1966; 241: 4110–4114

    PubMed  CAS  Google Scholar 

  70. 70.

    Bangsbo J, Madsen K, Kiens B, et al. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 1996; 495: 587–596

    PubMed  CAS  Google Scholar 

  71. 71.

    Linderman J, Fahey TD. Sodium bicarbonate ingestion and exercise performance: an update. Sports Med 1991; 11: 71–77

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Pate E, Bhimani M, Franks-Skiba K, et al. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol 1995; 486: 689–694

    PubMed  CAS  Google Scholar 

  73. 73.

    Wiseman RW, Beck TW, Chase PB. Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse. Am J Physiol 1996; 271: C878–C886

    PubMed  CAS  Google Scholar 

  74. 74.

    Westerblad H, Bruton JD, Lännergren J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 1997; 500: 193–204

    PubMed  CAS  Google Scholar 

  75. 75.

    Davies NW. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 1990; 343: 375–377

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 2002; 17: 17–21

    PubMed  CAS  Google Scholar 

  77. 77.

    Sprague P, Mann RV. The effects of muscular fatigue on the kinetics of sprint running. Res Q Exerc Sport 1983; 54: 60–66

    Google Scholar 

  78. 78.

    Darques JL, Decherchi P, Jammes Y. Mechanisms of fatigue-induced activation of group IV afferents: the roles played by lactic acid and inflammatory mediators. Neurosci Lett 1998; 257: 109–112

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Van Montfoort MCE, Van Dieren L, Hopkins WG, et al. Effects of ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Med Sci Sports Exerc 2004; 36: 1239–1243

    PubMed  Article  Google Scholar 

  80. 80.

    Karelis AD, Marcil M, Péronnet F, et al. Effect of lactate infusion on M-wave characteristics and force in the rat plantaris muscle during repeated stimulation in situ. J Appl Physiol 2004; 96: 2133–2138

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Sahlin K, Katz A, Henriksson J. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Biochem J 1987; 245: 551–556

    PubMed  CAS  Google Scholar 

  82. 82.

    Lewis SF, Haller RG. The pathophysiology of McArdle’s disease: clues to regulation in exercise and fatigue. J Appl Physiol 1986; 61: 391–401

    PubMed  CAS  Google Scholar 

  83. 83.

    Renaud JM, Light P. Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens: implication for fatigue in vivo. Can J Physiol Pharmacol 1992; 70: 1236–1246

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Nielsen OB, de Paoli F, Overgaard K. Protective effects of lactic acid on force production in rat skeletal muscle. J Physiol 2001; 536 (Pt 1): 161–166

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Kristiensen M, Albertsen J, Rentsch M, et al. Lactate and force production in skeletal muscle. J Physiol 2005; 562 (Pt 2): 521–526

    Article  Google Scholar 

  86. 86.

    Pedersen TH, Clausen T, Nielsen OB. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and fh-agonist. J Physiol 2003; 551: 277–286

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Pedersen TH, De Paoli F, Nielsen OB. Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol 2005; 125: 237–246

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Pedersen TH, Nielsen OB, Lamb GD, et al. Intracellular acidosis enhances the excitability of working muscle. Science 2004; 305: 1144–1147

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    van Emst M, Klarenbeek S, Schot A, et al. Reducing chloride conductance prevents hyperkalaemia-induced loss of twitch force in rat slow-twitch muscle. J Physiol 2004; 561: 169–181

    PubMed  Article  Google Scholar 

  90. 90.

    Allen DG, Westerblad H. Lactic acid — the latest performance-enhancing drug. Science 2004; 305: 1112–1113

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Raymer GH, Marsh GD, Kowalchuk JM, et al. Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol 2004; 96: 2050–2056

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Verbitsky O, Mizrahi J, Levin M, et al. Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J Appl Physiol 1997; 83: 333–337

    PubMed  CAS  Google Scholar 

  93. 93.

    Spriet LL, Lindinger MI, Heigenhauser GJF, et al. Effects of alkalosis on skeletal muscle metabolism and performance during exercise. Am J Physiol 1986; 251: R833–R839

    PubMed  CAS  Google Scholar 

  94. 94.

    Swank A, Robertson RJ. Effect of induced alkalosis on perception of exertion during intermittent exercise. J Appl Physiol 1989; 67: 1862–1867

    PubMed  CAS  Google Scholar 

  95. 95.

    Dousset E, Steinberg JG, Balon N, et al. Effects of acute hypoxemia on force and surface EMG during sustained handgrip. Muscle Nerve 2001; 24: 364–371

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Garner SH, Sutton JR, Burse RL, et al. Operation Everest II: neuromuscular performance under conditions of extreme simulated altitude. J Appl Physiol 1990; 68: 1167–1172

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully thanks Drs Will Hopkins, Graham Lamb, Mike Lindinger and Chris Whatman for helpful discussion and comments on the manuscript. No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simeon P. Cairns.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cairns, S.P. Lactic Acid and Exercise Performance. Sports Med 36, 279–291 (2006). https://doi.org/10.2165/00007256-200636040-00001

Download citation

Keywords

  • Lactic Acid
  • Exercise Performance
  • Intense Exercise
  • Dorsal Interosseous Muscle
  • Extracellular Acidosis