Multiple Sprint Work

Physiological Responses, Mechanisms of Fatigue and the Influence of Aerobic Fitness

Abstract

The activity patterns of many sports (e.g. badminton, basketball, soccer and squash) are intermittent in nature, consisting of repeated bouts of brief (≤-second) maximal/near-maximal work interspersed with relatively short (≤60-second) moderate/low-intensity recovery periods. Although this is a general description of the complex activity patterns experienced in such events, it currently provides the best means of directly assessing the physiological response to this type of exercise. During a single short (5- to 6-second) sprint, adenosine triphosphate (ATP) is resynthesised predominantly from anaerobic sources (phosphocreatine [PCr] degradation and glycolysis), with a small (<10%) contribution from aerobic metabolism. During recovery, oxygen uptake (V̇O2) remains elevated to restore homeostasis via processes such as the replenishment of tissue oxygen stores, the resynthesis of PCr, the metabolism of lactate, and the removal of accumulated intracellular inorganic phosphate (Pi). If recovery periods are relatively short, V̇O2 remains elevated prior to subsequent sprints and the aerobic contribution to ATP resynthesis increases. However, if the duration of the recovery periods is insufficient to restore the metabolic environment to resting conditions, performance during successive work bouts may be compromised. Although the precise mechanisms of fatigue during multiple sprint work are difficult to elucidate, evidence points to a lack of available PCr and an accumulation of intracellular Pi as the most likely causes. Moreover, the fact that both PCr resynthesis and the removal of accumulated intracellular Pi are oxygen-dependent processes has led several authors to propose a link between aerobic fitness and fatigue during multiple sprint work. However, whilst the theoretical basis for such a relationship is compelling, corroborative research is far from substantive. Despite years of investigation, limitations in analytical techniques combined with methodological differences between studies have left many issues regarding the physiological response to multiple sprint work unresolved. As such, multiple sprint work provides a rich area for future applied sports science research.

This is a preview of subscription content, log in to check access.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Bangsbo J, Nørregaard L, Thorsø F. Activity profile of competition soccer. Can J Sports Sci 1991; 16 (2): 110–6

    CAS  Google Scholar 

  2. 2.

    Brewer J, Davis J. Applied physiology of rugby league. Sports Med 1995; 20 (3): 129–35

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Docherty D, Wenger HA, Neary P. Time-motion analysis related to the physiological demands of rugby. J Hum Mov Stud 1988; 14 (6): 269–77

    Google Scholar 

  4. 4.

    Ekblom B. Applied physiology of soccer. Sports Med 1986; 3 (1): 50–60

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Reilly T, Thomas V. A motion analysis of work-rate in different positional roles in professional football match-play. J Hum Mov Stud 1976; 2: 87–97

    Google Scholar 

  6. 6.

    Withers RT, Maricic Z, Wasilewski S, et al. Match analyses of Australian professional soccer players. J Hum Mov Stud 1982; 8: 159–76

    Google Scholar 

  7. 7.

    Reilly T, Borrie A. Physiology applied to field hockey. Sports Med 1992; 14 (1): 10–26

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    Mayhew SR, Wenger HA. Time-motion analysis of professional soccer. J Hum Mov Stud 1985; 11 (1): 49–52

    Google Scholar 

  9. 9.

    Brodowicz GR, Schatz JC, Svoboda MD. Frequency, intensity and duration of locomotion of semi-professional soccer players. J Hum Mov Stud 1990; 18: 63–71

    Google Scholar 

  10. 10.

    Bangsbo J. The physiology of soccer: with special reference to intense intermittent exercise. Acta Physiol Scand Suppl 1994; 619: 1–155

    PubMed  CAS  Google Scholar 

  11. 11.

    Nicholas CW. Anthropometric and physiological characteristics of rugby union football players. Sports Med 1997; 23 (6): 375–96

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Reilly T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J Sports Sci 1997; 15 (3): 257–63

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Christmass MA, Richmond SE, Cable NT, et al. Exercise intensity and metabolic response in singles tennis. J Sports Sci 1998; 16: 739–47

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Docherty D. A comparison of heart rate responses in racquet games. Br J Sports Med 1982; 16 (2): 96–100

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Elliott B, Dawson B, Pyke F. The energetics of singles tennis. J Hum Mov Stud 1985; 11: 11–20

    Google Scholar 

  16. 16.

    Faccini P, Dal Monte A. Physiologic demands of badminton match play. Am J Sports Med 1996; 24 (6): S64–6

    Google Scholar 

  17. 17.

    Liddle SD, Murphy MH, Bleakley W. A comparison of the physiological demands of singles and doubles badminton: a heart rate and time-motion analysis. J Hum Mov Stud 1996; 30: 159–76

    Google Scholar 

  18. 18.

    Majumdar P, Khanna GL, Malik V, et al. Physiological analysis to quantify training load in badminton. Br J Sports Med 1997; 31: 342–5

    PubMed  CAS  Article  Google Scholar 

  19. 19.

    Montpetit RR. Applied physiology of squash. Sports Med 1990; 10 (1): 31–41

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Fox EL. Sports physiology. Philadelphia (PA): Saunders, 1984

    Google Scholar 

  21. 21.

    Maud PJ. Physiological and anthropometric parameters that describe a rugby union team. Br J Sports Med 1983; 17: 16–23

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Seliger V, Ejam M, Pauer M, et al. Energy metabolism in tennis. Int Z Angew Physiol 1973; 31: 333–40

    PubMed  CAS  Google Scholar 

  23. 23.

    Boyle PM, Mahoney CA, Wallace WFM. The competitive demands of elite male field hockey. J Sport Med Phys Fit 1994; 34: 235–41

    CAS  Google Scholar 

  24. 24.

    Ballor DL, Volovsek AJ. Effect of exercise to rest ratio on plasma lactate concentration at work rates above and below maximum oxygen uptake. Eur J Appl Physiol 1992; 65: 365–9

    CAS  Article  Google Scholar 

  25. 25.

    Bergeron MF, Maresh CM, Kraemer WJ, et al. Tennis: a physiological profile during match play. Int J Sports Med 1991; 12 (5): 474–9

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Balsom PD. High intensity intermittent exercise: performance and metabolic responses with very high intensity short duration work periods [dissertation]. Stockholm: Karolinska Institute, 1995

    Google Scholar 

  27. 27.

    Brooks S, Nevill ME, Meleagros L, et al. The hormonal responses to repetitive brief maximal exercise in humans. Eur J Appl Physiol 1990; 60 (2): 144–8

    CAS  Article  Google Scholar 

  28. 28.

    Christmass MA, Dawson B, Passeretto P, et al. A comparison of skeletal muscle oxygenation and fuel use in sustained continuous and intermittent exercise. Eur J Appl Physiol 1999; 80: 423–35

    CAS  Article  Google Scholar 

  29. 29.

    Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75 (2): 712–9

    PubMed  CAS  Google Scholar 

  30. 30.

    Hamilton AL, Nevill ME, Brooks S, et al. Physiological responses to maximal intermittent exercise: differences between endurance-trained runners and games players. J Sports Sci 1991; 9 (4): 371–82

    PubMed  CAS  Article  Google Scholar 

  31. 31.

    Holmyard DJ, Cheetham ME, Lakomy HKA, et al. Effect of recovery duration on performance during multiple treadmill sprints. In: Reilly T, Lees A, Davids K, et al. editors. Science and football. London: F & N Spon, 1988: 134–42

    Google Scholar 

  32. 32.

    Bogdanis GC, Nevill ME, Lakomy HKA, et al. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand 1998; 163: 261–72

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol 1999; 277: E890–900

    Google Scholar 

  34. 34.

    Bangsbo J, Krustrup P, González-Alonso J, et al. ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise. Am J Physiol 2001; 280 (6): E956–64

    Google Scholar 

  35. 35.

    Hultman E, Sjöholm H. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J Physiol 1983; 345: 525–32

    PubMed  CAS  Google Scholar 

  36. 36.

    Walter G, Vandenborne K, McCully KK, et al. Noninvasive measurement of phosphocreatine recovery kinetics in single human muscles. Am J Physiol 1997; 272: C525–34

    Google Scholar 

  37. 37.

    Hultman E, Bergström M, Spriet LL, et al. Energy metabolism and fatigue. In: Taylor A, Gollnick P, Green H, et al. editors. Biochemistry of sport and exercise VII. Champaign (IL): Human Kinetics, 1990: 73–92

    Google Scholar 

  38. 38.

    Jones NL, McCartney N, Graham T, et al. Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J Appl Physiol 1985; 59 (1): 132–6

    PubMed  CAS  Google Scholar 

  39. 39.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med 2001; 31 (10): 725–41

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Greenhaff PL, Bodin K, Casey A, et al. Dietary creatine supplementation and fatigue during high-intensity exercise in humans. In: Maughan RJ, Shirreffs SM, editors. Biochemistry of sport and exercise IX. Champaign (IL): Human Kinetics, 1996: 219–42

    Google Scholar 

  41. 41.

    Bangsbo J, Graham T, Johansen L, et al. Elevated muscle acidity and energy production during exhaustive exercise in humans. Am J Physiol 1992; 263: R891–9

    Google Scholar 

  42. 42.

    Hellsten-Westing Y, Norman B, Balsom PD, et al. Decreased resting levels of adenine nucleotides in human skeletal muscle after high-intensity training. J Appl Physiol 1993; 74 (5): 2523–8

    PubMed  CAS  Google Scholar 

  43. 43.

    Astrand I, Astrand PO, Christensen EH, et al. Myohemoglobin as an oxygen-store in man. Acta Physiol Scand 1960; 48: 454–60

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Christensen EH, Hedman R, Saltin B. Intermittent and continuous running. Acta Physiol Scand 1960; 50: 269–86

    PubMed  CAS  Article  Google Scholar 

  45. 45.

    Margaria R, Oliva RD, Di Prampero PE, et al. Energy utilisation in intermittent exercise of supramaximal intensity. J Appl Physiol 1969; 26 (6): 752–6

    PubMed  CAS  Google Scholar 

  46. 46.

    Boobis L, Williams C, Wootton SA. Human muscle metabolism during brief maximal exercise. J Physiol 1982; 338: 21P-2P

    Google Scholar 

  47. 47.

    McMahon S, Jenkins D. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med 2002; 32 (12): 761–84

    PubMed  Article  Google Scholar 

  48. 48.

    Blei ML, Conley KE, Kushmerick MJ. Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol 1993; 465: 203–22

    PubMed  CAS  Google Scholar 

  49. 49.

    Bogdanis GC, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol 1995; 482 (2): 467–80

    PubMed  CAS  Google Scholar 

  50. 50.

    Cooke SR, Petersen SR, Quinney HA. The influence of maximal aerobic power on recovery of skeletal muscle following anaerobic exercise. Eur J Appl Physiol 1997; 75 (6): 512–9

    CAS  Article  Google Scholar 

  51. 51.

    Harris RC, Edwards RHT, Hultman E, et al. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch 1976; 367: 137–42

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Haseler LJ, Hogan MC, Richardson RS. Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol 1999; 86 (6): 2013–8

    PubMed  CAS  Google Scholar 

  53. 53.

    Quistorff B, Johansen L, Sahlin K. Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery. Biochem J 1992; 291: 681–6

    Google Scholar 

  54. 54.

    Roussel M, Bendahan D, Mattei JP, et al. 31P magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability. Biochim Biophys Acta 2000; 1457: 18–26

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Sahlin K, Harris RC, Hultman E. Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand J Clin Lab Invest 1979; 39: 551–8

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Takahashi H, Inaki M, Fujimoto K, et al. Control of the rate of phosphocreatine resynthesis after exercise in trained and untrained human quadriceps muscles. Eur J Appl Physiol 1995; 71 (5): 396–404

    CAS  Article  Google Scholar 

  57. 57.

    Thompson CH, Kemp GJ, Sanderson AL, et al. Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis. J Appl Physiol 1995; 78 (6): 2131–9

    PubMed  CAS  Google Scholar 

  58. 58.

    Idström JP, Subramanian VH, Chance B, et al. Oxygen dependence of energy metabolism in contracting and recovering rat skeletal muscle. Am J Physiol 1985; 248 (17): H40–8

    Google Scholar 

  59. 59.

    Bergström M, Hultman E. Relaxation and force during fatigue and recovery of the human quadriceps muscle: relations to metabolite changes. Pflugers Arch 1991; 418: 153–60

    PubMed  Article  Google Scholar 

  60. 60.

    Metzger JM, Fitts RH. Role of intracellular pH in muscle fatigue. J Appl Physiol 1987; 62 (4): 1392–7

    PubMed  CAS  Google Scholar 

  61. 61.

    Sahlin K. Metabolic factors in fatigue. Sports Med 1992; 13 (2): 99–107

    PubMed  CAS  Article  Google Scholar 

  62. 62.

    Sahlin K, Gorski J, Edström L. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am J Physiol 1990; 259: C409–12

    Google Scholar 

  63. 63.

    Taylor DJ, Bore PJ, Styles P, et al. Bioenergetics of intact human muscle: a 31P nuclear magnetic resonance study. Mol Biol Med 1983; 1 (1): 77–94

    PubMed  CAS  Google Scholar 

  64. 64.

    Sahlin K, Harris RC, Nylind B, et al. Lactate content and pH in muscle samples obtained after dynamic exercise. Pflugers Arch 1976; 367: 143–9

    PubMed  CAS  Article  Google Scholar 

  65. 65.

    Bangsbo J. Regulation of muscle glycogenolysis and glycolysis during intense exercise: in vivo studies using repeated intense exercise. In: Maughan RJ, Shirreffs SM, editors. Biochemistry of exercise IX. Champaign (IL): Human Kinetics, 1996: 261–75

    Google Scholar 

  66. 66.

    Putman CT, Jones NL, Lands LC, et al. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans. Am J Physiol 1995; 269: E458–68

    Google Scholar 

  67. 67.

    Balsom PD, Gaitanos GC, Söderlund K, et al. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand 1999; 165: 337–45

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Asmussen E, Klausen K, Nielsen LE, et al. Lactate production and anaerobic work capacity after prolonged exercise. Acta Physiol Scand 1974; 90: 731–42

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Greenhaff PL, Gleeson M, Maughan RJ. The effects of a glycogen loading regimen on acid-base status and blood lactate concentration before and after a fixed period of high-intensity exercise in man. Eur J Appl Physiol 1988; 57: 254–9

    CAS  Article  Google Scholar 

  70. 70.

    Maughan RJ, Poole DC. The effects of a glycogen-loading regimen on the capacity to perform anaerobic exercise. Eur J Appl Physiol 1981; 46: 211–9

    CAS  Article  Google Scholar 

  71. 71.

    Bangsbo J, Graham T, Kiens B, et al. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol 1992; 451: 205–27

    PubMed  CAS  Google Scholar 

  72. 72.

    Jacobs I. Lactate concentrations after short, maximal exercise at various glycogen levels. Acta Physiol Scand 1981; 111: 465–9

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Ren JM, Broberg S, Sahlin K, et al. Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man. Acta Physiol Scand 1990; 139: 467–74

    PubMed  CAS  Article  Google Scholar 

  74. 74.

    Spencer MK, Katz A. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Am J Physiol 1991; 260: E859–64

    Google Scholar 

  75. 75.

    Symons JD, Jacobs I. High-intensity exercise performance is not impaired by low intramuscular glycogen. Med Sci Sports Exerc 1989; 21 (5): 550–7

    PubMed  CAS  Google Scholar 

  76. 76.

    Boscá L, Aragón JJ, Sols A. Modulation of muscle phosphofructokinase at physiological concentration of enzyme. J Biol Chem 1985; 260 (4): 2100–7

    PubMed  Google Scholar 

  77. 77.

    Dobson GP, Yamamoto E, Hochachka PW. Phosphofructokinase control in muscle: nature and reversal of pH-dependent ATP inhibition. Am J Physiol 1986; 250: R71–6

    Google Scholar 

  78. 78.

    Spriet LL, Söderlund K, Bergström M, et al. Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulation in men. J Appl Physiol 1987; 62 (2): 616–21

    PubMed  CAS  Google Scholar 

  79. 79.

    Parmeggiani A, Bowman RH. Regulation of phosphofructokinase activity by citrate in normal and diabetic muscle. Biochem Biophys Res Commun 1963; 12 (4): 268–73

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Passonneau JV, Lowry OH. P-fructokinase and the control of the citric acid cycle. Biochem Biophys Res Commun 1963; 13 (5): 372–9

    CAS  Article  Google Scholar 

  81. 81.

    Taylor WM, Halperin ML. Regulation of pyruvate dehydrogenase in muscle. J Biol Chem 1973; 248 (17): 6080–3

    PubMed  CAS  Google Scholar 

  82. 82.

    Wu TFL, Davis EJ. Regulation of glycolytic flux in an energetically controlled cell-free system: the effects of adenine nucleotide ratios, inorganic phosphate, pH, and citrate. Arch Biochem Biophys 1981; 209 (1): 85–99

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Peters SJ, Spriet LL. Skeletal muscle phosphofructokinase activity examined under physiological conditions in vitro. J Appl Physiol 1995; 78 (5): 1853–8

    PubMed  CAS  Google Scholar 

  84. 84.

    Conley KE, Ordway GA, Richardson RS. Deciphering the mysteries of myoglobin in striated muscle. Acta Physiol Scand 2000; 168: 623–34

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Richardson RS, Newcomer SC, Nnoyszewski EA. Skeletal muscle intracellular PO2 assessed by myoglobin desaturation: response to graded exercise. J Appl Physiol 2001; 91 (6): 2679–85

    PubMed  CAS  Google Scholar 

  86. 86.

    Wittenberg BA, Wittenberg JB, Caldwell PRB. Role of myoglobin in the oxygen supply to red skeletal muscle. J Biol Chem 1975; 250 (23): 9038–43

    PubMed  CAS  Google Scholar 

  87. 87.

    Bangsbo J, Krustrup P, González-Alonso J, et al. Muscle oxygen kinetics at onset of intense dynamic exercise in humans. Am J Physiol 2000; 279: R899–906

    Google Scholar 

  88. 88.

    Akeson A, Biörck G, Simon R. On the content of myoglobin in human muscles. Acta Med Scand 1968; 183: 307–16

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Harris RC, Hultman E, Kaijser L, et al. The effect of circulatory occlusion on isometric exercise capacity and energy metabolism of the quadriceps muscle in man. Scand J Clin Lab Invest 1975; 35 (1): 87–95

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Molé PA, Chung Y, Tran TK, et al. Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 1999; 277: R173–80

    Google Scholar 

  91. 91.

    Richardson RS, Noyszewski EA, Kendrick KF, et al. Myoglobin O2 desaturation during exercise. J Clin Invest 1995; 96 (4): 1916–26

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 1996; 80 (3): 876–84

    PubMed  CAS  Google Scholar 

  93. 93.

    Trump ME, Heigenhauser GJF, Putman CT, et al. Importance of muscle phosphocreatine during intermittent maximal cycling. J Appl Physiol 1996; 80 (5): 1574–80

    PubMed  CAS  Google Scholar 

  94. 94.

    Bahr R, Grønnerød O, Sejersted OM. Effect of supramaximal exercise on excess postexercise O2 consumption. Med Sci Sports Exerc 1992; 24 (1): 66–71

    PubMed  CAS  Google Scholar 

  95. 95.

    Bangsbo J, Hellsten Y. Muscle blood flow and oxygen uptake in recovery from exercise. Acta Physiol Scand 1998; 162: 305–12

    PubMed  CAS  Article  Google Scholar 

  96. 96.

    Børsheim E, Knardahl S, Høstmark AT, et al. Adrenergic control of post-exercise metabolism. Acta Physiol Scand 1998; 162: 313–23

    PubMed  Article  Google Scholar 

  97. 97.

    Gaesser GA, Brooks GA. Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc 1984; 16 (1): 29–43

    PubMed  CAS  Google Scholar 

  98. 98.

    Bohnert B, Ward SA, Whipp BJ. Effects of prior arm exercise on pulmonary gas exchange kinetics during high-intensity leg exercise in humans. Exp Physiol 1998; 83: 557–70

    PubMed  CAS  Google Scholar 

  99. 99.

    Gausche MA, Harmon T, Lamarra N, et al. Pulmonary O2 uptake kinetics in humans are speeded by a bout of prior exercise above, but not below, the lactate threshold [abstract]. J Physiol 1989; 417: 138P

    Google Scholar 

  100. 100.

    Gerbino A, Ward SA, Whipp BJ. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol 1996; 80 (1): 99–107

    PubMed  CAS  Google Scholar 

  101. 101.

    Rossiter HB, Ward SA, Kowalchuk JM, et al. Effects of prior exercise on oxygen uptake and phosphocreatine kinetics during high-intensity knee-extension exercise in humans. J Physiol 2001; 537 (1): 291–303

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Jones AM, Koppo K, Burnley M. Effects of prior exercise on metabolic and gas exchange responses to exercise. Sports Med 2003; 33 (13): 949–71

    PubMed  Article  Google Scholar 

  103. 103.

    Grassi B, Poole DC, Richardson RS, et al. Muscle O2 uptake kinetics in humans: implications for metabolic control. J Appl Physiol 1996; 80 (3): 988–98

    PubMed  CAS  Google Scholar 

  104. 104.

    McCully KK, Authier B, Olive J, et al. Muscle fatigue: the role of metabolism. Can J Appl Physiol 2002; 27 (1): 70–82

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Balsom PD, Seger JY, Sjödin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med 1992; 13 (7): 528–33

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Wootton S, Williams C. The influence of recovery duration on repeated maximal sprints. In: Knuttgen HG, Vogel JA, Poortmans J, editors. Biochemistry of exercise, international series in sports science, vol. XIII. Champaign (IL): Human Kinetics, 1983: 269–73

    Google Scholar 

  107. 107.

    Robinson JM, Stone MH, Johnson RL, et al. Effects of different weight training exercise/rest intervals on strength, power and high intensity exercise endurance. J Strength Cond Res 1995; 9 (4): 216–21

    Google Scholar 

  108. 108.

    Stone MH, Sanborn K, Smith LL, et al. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players. Int J Sport Nutr 1999; 9 (2): 146–65

    PubMed  CAS  Google Scholar 

  109. 109.

    Abbate F, Sargeant AJ, Verdijk PW, et al. Effects of high-frequency initial pulses and posttetanic potentiation on power output of skeletal muscle. J Appl Physiol 2000; 88 (1): 35–40

    PubMed  CAS  Google Scholar 

  110. 110.

    Güllich A, Schmidtbleicher D. MVC-induced short-term potentiation of explosive force. N Stud Athletics 1996; 11 (4): 67–81

    Google Scholar 

  111. 111.

    MacIntosh BR, Rassier DE. What is fatigue? Can J Appl Physiol 2002; 27 (1): 42–55

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Smith JC, Fry AC, Weiss LW, et al. The effects of high-intensity exercise on a 10-second sprint cycle test. J Strength Cond Res 2001; 15 (3): 344–8

    PubMed  CAS  Google Scholar 

  113. 113.

    Bigland-Ritchie B, Woods J. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 1984; 7 (9): 691–9

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Cherry PW, Lakomy HKA, Boobis LH, et al. Rapid recovery of power output in females. Acta Physiol Scand 1998; 164: 79–87

    PubMed  CAS  Article  Google Scholar 

  115. 115.

    Duchateau J, Hainaut K. Electrical and mechanical failures during sustained and intermittent contractions in humans. J Appl Physiol 1985; 58 (3): 942–7

    PubMed  CAS  Google Scholar 

  116. 116.

    Balsom PD, Seger JY, Sjödin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur J Appl Physiol 1992; 65: 144–9

    CAS  Article  Google Scholar 

  117. 117.

    Hitchcock HC. Recovery of short-term power after dynamic exercise. J Appl Physiol 1989; 67 (2): 677–81

    PubMed  CAS  Google Scholar 

  118. 118.

    Holmyard DJ, Nevill ME, Lakomy HKA, et al. Recovery of power output after maximal treadmill sprinting [abstract]. J Sports Sci 1994; 12 (2): 140

    Google Scholar 

  119. 119.

    Sahlin K, Ren JM. Relationship of contraction capacity to metabolic changes during recovery from a fatiguing contraction. J Appl Physiol 1989; 67 (2): 648–54

    PubMed  CAS  Google Scholar 

  120. 120.

    Sargeant AJ, Dolan P. Effect of prior exercise on maximal short-term power output in humans. J Appl Physiol 1987; 63 (4): 1475–80

    PubMed  CAS  Google Scholar 

  121. 121.

    Aaserud R, Gramvik P, Olsen SR, et al. Creatine supplementation delays onset of fatigue during repeated bouts of sprint running. Scand J Med Sci Sports 1998; 8 (5): 247–51

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    Balsom PD, Ekblom B, Söderlund K, et al. Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J Med Sci Sports 1993; 3: 143–9

    Article  Google Scholar 

  123. 123.

    Bogdanis GC, Nevill ME, Lakomy HKA, et al. The effects of oral creatine supplementation on power output during repeated treadmill sprinting. J Sports Sci 1996; 14: 65–6

    Google Scholar 

  124. 124.

    Jones AM, Atter T, Georg KP. Oral creatine supplementation improves multiple sprint performance in elite ice-hockey players. J Sport Med Phys Fitness 1999; 39 (3): 189–96

    CAS  Google Scholar 

  125. 125.

    Mujika I, Padilla S, Ibanéz J, et al. Creatine supplementation and sprint performance in soccer players. Med Sci Sports Exerc 2000; 32 (2): 518–25

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Yquel RJ, Arsac LM, Thiaudière E, et al. Effect of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent maximal exercise. J Sports Sci 2002; 20 (5): 427–37

    PubMed  CAS  Article  Google Scholar 

  127. 127.

    Barnett C, Hinds M, Jenkins DG. Effects of oral creatine supplementation on multiple sprint cycle performance. Aust J Sci Med Sport 1996; 28 (1): 35–9

    PubMed  CAS  Google Scholar 

  128. 128.

    Dawson B, Cutler M, Moody A, et al. Effects of oral creatine loading on single and repeated maximal short sprints. Aust J Sci Med Sport 1995; 27 (3): 56–61

    PubMed  CAS  Google Scholar 

  129. 129.

    Delecluse C, Diels R, Goris M. Effect of creatine supplementation on intermittent sprint running performance in highly trained athletes. J Strength Cond Res 2003; 17 (3): 446–54

    PubMed  Google Scholar 

  130. 130.

    Leenders NM, Lamb DR, Nelson TE. Creatine supplementation and swimming performance. Int J Sport Nutr 1999; 9 (3): 251–62

    PubMed  CAS  Google Scholar 

  131. 131.

    McKenna MJ, Morton J, Selig SE, et al. Creatine supplementation increases muscle total creatine but not maximal intermittent exercise performance. J Appl Physiol 1999; 87 (6): 2244–52

    PubMed  CAS  Google Scholar 

  132. 132.

    Cady EB, Jones DA, Lynn J, et al. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol 1989; 418: 311–25

    PubMed  CAS  Google Scholar 

  133. 133.

    DeGroot M, Massie BM, Boska M, et al. Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P-NMR. Muscle Nerve 1993; 16 (1): 91–8

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    Miller RG, Boska MD, Moussavi RS, et al. 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue: comparison of aerobic and anaerobic exercise. J Clin Invest 1988; 81 (4): 1190–6

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    Chase PB, Kushmerick MJ. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J 1988; 53 (6): 935–46

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    Cooke R, Franks K, Luciani GB, et al. The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J Physiol 1988; 395: 77–97

    PubMed  CAS  Google Scholar 

  137. 137.

    Godt RE, Nosek TM. Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J Physiol 1989; 412: 155–80

    PubMed  CAS  Google Scholar 

  138. 138.

    Kentish JC, Palmer S. Effect of pH on force and stiffness in skinned muscles isolated from rat and guinea-pig ventricle and from rabbit psoas muscle [abstract]. J Physiol 1989; 410: 67P

    Google Scholar 

  139. 139.

    Metzger JM, Moss RL. Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. J Physiol 1987; 393: 727–42

    PubMed  CAS  Google Scholar 

  140. 140.

    Bruton JD, Lannergren J, Westerblad H. Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28 degrees C. J Appl Physiol 1998; 85 (2): 478–83

    PubMed  CAS  Google Scholar 

  141. 141.

    Pate E, Bhimani M, Franks-Skiba K, et al. Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol 1995; 486 (3): 689–94

    PubMed  CAS  Google Scholar 

  142. 142.

    Westerblad H, Bruton JD, Lännergren J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 1997; 500 (1): 193–204

    PubMed  CAS  Google Scholar 

  143. 143.

    Wiseman RW, Beck TW, Chase PB. Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse. Am J Physiol 1996; 271 (3): C878–86

    Google Scholar 

  144. 144.

    Linderman JK, Gosselink KL. The effects of sodium bicarbonate ingestion on exercise performance. Sports Med 1994; 18 (2): 75–80

    PubMed  CAS  Article  Google Scholar 

  145. 145.

    Lavender G, Bird SR. Effect of sodium bicarbonate ingestion upon repeated sprints. Br J Sports Med 1989; 23 (1): 41–5

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Bishop D, Edge J, Davis C, et al. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc 2004; 36 (5): 807–13

    PubMed  CAS  Google Scholar 

  147. 147.

    Gaitanos GC, Nevill ME, Brooks S, et al. Repeated bouts of sprint running after induced alkalosis. J Sports Sci 1991; 9 (4): 355–70

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    Allen DG, Kabbara AA, Westerblad H. Muscle fatigue: the role of intracellular calcium stores. Can J Appl Physiol 2002; 27 (1): 83–96

    PubMed  CAS  Article  Google Scholar 

  149. 149.

    Dahlstedt AJ, Katz A, Wieringa B, et al. Is creatine kinase responsible for fatigue? Studies of isolated skeletal muscle deficient in creatine kinase. FASEB J 2000; 14 (7): 982–90

    PubMed  CAS  Google Scholar 

  150. 150.

    Dahlstedt AJ, Westerblad H. Inhibition of creatine kinase reduces the rate of fatigue-induced decrease in tetanic Ca2+ in mouse skeletal muscle. J Physiol 2001; 533 (3): 639–49

    PubMed  CAS  Article  Google Scholar 

  151. 151.

    Fryer MW, Owen VJ, Lamb GD, et al. Effects of creatine phosphate and Pi on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. J Physiol 1995; 482 (1): 123–40

    PubMed  CAS  Google Scholar 

  152. 152.

    Kabbara AA, Allen DG. The role of calcium stores in fatigue of isolated single muscle fibres from the cane toad. J Physiol 1999; 519 (1): 169–76

    PubMed  CAS  Article  Google Scholar 

  153. 153.

    Allen DG, Lee JA, Westerblad H. Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis. J Physiol 1989; 415: 433–58

    PubMed  CAS  Google Scholar 

  154. 154.

    Baker AJ, Kostov KG, Miller RG, et al. Slow force recovery after long duration exercise: metabolic and activation factors in muscle fatigue. J Appl Physiol 1993; 74: 2294–300

    PubMed  CAS  Article  Google Scholar 

  155. 155.

    Gyorke S. Effects of repeated tetanic stimulation on excitation-contraction coupling in cut muscle fibres of the frog. J Physiol 1993; 464: 699–710

    PubMed  CAS  Google Scholar 

  156. 156.

    Westerblad H, Lee JA, Lamb AG, et al. Spatial gradients of intracellular calcium in skeletal muscle during fatigue. Pflugers Arch 1990; 415 (6): 734–40

    PubMed  CAS  Article  Google Scholar 

  157. 157.

    Duke AM, Steele DS. Mechanisms of reduced SR Ca2+ release induced by inorganic phosphate in rat skeletal muscle fibers. Am J Physiol 2001; 281: C418–29

    Google Scholar 

  158. 158.

    McLester Jr JR. Muscle contraction and fatigue: the role of adenosine 5’-diphosphate and inorganic phosphate. Sports Med 1997; 23 (5): 287–305

    PubMed  Article  Google Scholar 

  159. 159.

    Posterino GS, Dutka TL, Lamb GD. L(+)-lactate does not affect twitch and tetanic responses in mechanically skinned mammalian muscle fibres. Pflugers Arch 2001; 442 (2): 197–203

    PubMed  CAS  Article  Google Scholar 

  160. 160.

    Stackhouse SK, Reisman DS, Binder-Macleod SA. Challenging the role of pH in skeletal muscle fatigue. Phys Ther 2001; 81 (12): 1897–903

    PubMed  CAS  Google Scholar 

  161. 161.

    Westerblad H, Allen DG, Lännergren J. Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 2002; 17: 17–21

    PubMed  CAS  Google Scholar 

  162. 162.

    Cymerman A, Reeves JT, Sutton JR, et al. Operation Everest II: maximal oxygen uptake at extreme altitude. J Appl Physiol 1989; 66 (5): 2446–53

    PubMed  CAS  Google Scholar 

  163. 163.

    Eiken O, Tesch PA. Effects of hyperoxia and hypoxia on dynamic and sustained static performance of the human quadriceps muscle. Acta Physiol Scand 1984; 122 (4): 629–33

    PubMed  CAS  Article  Google Scholar 

  164. 164.

    Fulco CS, Lewis SF, Frykman PN, et al. Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia. J Appl Physiol 1996; 81 (5): 1891–900

    PubMed  CAS  Google Scholar 

  165. 165.

    Hogan MC, Kohin S, Stary CM, et al. Rapid force recovery in contracting skeletal muscle after brief ischemia is dependent on O2 availability. J Appl Physiol 1999; 87 (6): 2225–9

    PubMed  CAS  Google Scholar 

  166. 166.

    Hogan MC, Richardson RS, Haseler LJ. Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P-MRS study. J Appl Physiol 1999; 86 (4): 1367–73

    PubMed  CAS  Google Scholar 

  167. 167.

    Peltonen JE, Rantamaki J, Niittymaki SP, et al. Effects of oxygen fraction in inspired air on rowing performance. Med Sci Sports Exerc 1995; 27 (4): 573–9

    PubMed  CAS  Google Scholar 

  168. 168.

    Balsom PD, Ekblom B, Sjödin B. Enhanced oxygen availability during high intensity intermittent exercise decreases anaerobic metabolite concentrations in blood. Acta Physiol Scand 1994; 150 (4): 455–6

    PubMed  CAS  Article  Google Scholar 

  169. 169.

    Balsom PD, Gaitanos GC, Ekblom B, et al. Reduced oxygen availability during high intensity intermittent exercise impairs performance. Acta Physiol Scand 1994; 152 (3): 279–85

    PubMed  CAS  Article  Google Scholar 

  170. 170.

    MacDonald M, Pedersen PK, Hughson RL. Acceleration of V-dotO2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise. J Appl Physiol 1997; 83 (4): 1318–25

    PubMed  CAS  Google Scholar 

  171. 171.

    Hughson RL, Kowalchuk JM. Kinetics of oxygen uptake for submaximal exercise in hyperoxia, normoxia, and hypoxia. Can J Appl Physiol 1995; 20 (2): 198–210

    PubMed  CAS  Article  Google Scholar 

  172. 172.

    Linnarsson D, Karlsson J, Fagraeus L. Muscle metabolites and oxygen deficit with exercise in hypoxia and hyperoxia. J Appl Physiol 1974; 36 (4): 399–402

    PubMed  CAS  Google Scholar 

  173. 173.

    Pedersen PK. Oxygen uptake kinetics and lactate accumulation in heavy submaximal exercise with normal and high inspired oxygen fractions. In: Knuttgen HG, Vogel JA, Poortmans J, editors. Biochemistry of exercise, international series in sports science, vol. XIII. Champaign (IL): Human Kinetics, 1983: 415–20

    Google Scholar 

  174. 174.

    Aziz AR, Chia M, Teh KC. The relationship between maximal oxygen uptake and repeated sprint performance indices in field hockey and soccer players. J Sport Med Phys Fitness 2000; 40: 195–200

    CAS  Google Scholar 

  175. 175.

    Bell GJ, Snydmiller GD, Davies DS, et al. Relationship between aerobic fitness and metabolic recovery from intermittent exercise in endurance athletes. Can J Appl Physiol 1997; 22 (1): 78–85

    PubMed  CAS  Article  Google Scholar 

  176. 176.

    Dawson B, Fitzsimons M, Ward D. The relationship of repeated sprint ability to aerobic power and performance measures of an aerobic work capacity and power. Aust J Sci Med Sport 1993; 25 (4): 88–93

    Google Scholar 

  177. 177.

    Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med 2001; 31 (1): 1–11

    PubMed  CAS  Article  Google Scholar 

  178. 178.

    Carter H, Jones AM, Barstow TJ, et al. Effect of endurance training on oxygen uptake kinetics during treadmill running. J Appl Physiol 2000; 89 (5): 1744–52

    PubMed  CAS  Google Scholar 

  179. 179.

    Chilibeck PD, Paterson DH, Petrella RJ, et al. The influence of age and cardiorespiratory fitness on kinetics of oxygen uptake. Can J Appl Physiol 1996; 21 (3): 185–96

    PubMed  CAS  Article  Google Scholar 

  180. 180.

    Demarle AP, Slawinski JJ, Laffite LP, et al. Decrease of O2 deficit is a potential factor in increased time to exhaustion after specific endurance training. J Appl Physiol 2001; 90 (3): 947–53

    PubMed  CAS  Google Scholar 

  181. 181.

    Norris SR, Petersen SR. Effects of endurance training on transient oxygen uptake responses in cyclists. J Sports Sci 1998; 16 (8): 733–8

    PubMed  CAS  Article  Google Scholar 

  182. 182.

    Phillips SM, Green HJ, MacDonald MJ, et al. Progressive effect of endurance training on V-dotO2 kinetics at the onset of submaximal exercise. J Appl Physiol 1995; 79 (6): 1914–20

    PubMed  CAS  Google Scholar 

  183. 183.

    Yoshida T, Udo M, Ohmori T, et al. Day-to-day changes in oxygen uptake kinetics at the onset of exercise during strenuous endurance training. Eur J Appl Physiol 1992; 64 (1): 78–83

    CAS  Article  Google Scholar 

  184. 184.

    McCully KK, Posner JD. Measuring exercise-induced adaptations and injury with magnetic resonance spectroscopy. Int J Sports Med 1992; 13: S147–9

    Article  Google Scholar 

  185. 185.

    Laurent D, Reutenauer H, Payen JF, et al. Muscle bioenergetics in skiers: studies using NMR spectroscopy. Int J Sports Med 1992; 13 (1): S150–2

    Article  Google Scholar 

  186. 186.

    McCully KK, Boden BP, Tuchler M, et al. Wrist flexor muscles of elite rowers measured with magnetic resonance spectroscopy. J Appl Physiol 1989; 67 (3): 926–32

    PubMed  CAS  Google Scholar 

  187. 187.

    McCully KK, Vandenborne K, De Meirleir K, et al. Muscle metabolism in track athletes, using 31P magnetic resonance spectroscopy. Can J Physiol Pharmacol 1992; 70 (10): 1353–9

    PubMed  CAS  Article  Google Scholar 

  188. 188.

    Yoshida T, Watari H. Metabolic consequences of repeated exercise in long distance runners. Eur J Appl Physiol 1993; 67 (3): 261–5

    CAS  Article  Google Scholar 

  189. 189.

    Freund H, Lonsdorfer J, Oyono-Enguelle S, et al. Lactate exchange and removal abilities in sickle cell patients and in untrained and trained healthy humans. J Appl Physiol 1992; 73 (6): 2580–7

    PubMed  CAS  Google Scholar 

  190. 190.

    Oyono-Enguelle S, Marbach J, Heitz A, et al. Lactate removal ability and graded exercise in humans. J Appl Physiol 1990; 68 (3): 905–11

    PubMed  CAS  Google Scholar 

  191. 191.

    Taoutaou Z, Granier P, Mercier B, et al. Lactate kinetics during passive and partially active recovery in endurance and sprint athletes. Eur J Appl Physiol 1996; 73 (5): 465–70

    CAS  Article  Google Scholar 

  192. 192.

    Bassett Jr DR, Merrill PW, Nagle FJ, et al. Rate of decline in blood lactate after cycling exercise in endurance-trained and untrained subjects. J Appl Physiol 1991; 70 (4): 1816–20

    PubMed  CAS  Google Scholar 

  193. 193.

    Oosthuyse T, Carter RN. Plasma lactate decline during passive recovery from high-intensity exercise. Med Sci Sports Exerc 1999; 31 (5): 670–4

    PubMed  CAS  Article  Google Scholar 

  194. 194.

    Evans BW, Cureton KJ. Effect of physical conditioning on blood lactate disappearance after supramaximal exercise. Br J Sports Med 1983; 17 (1): 40–5

    PubMed  CAS  Article  Google Scholar 

  195. 195.

    Fukuba Y, Walsh ML, Morton RH, et al. Effect of endurance training on blood lactate clearance after maximal exercise. J Sports Sci 1999; 17 (3): 239–48

    PubMed  CAS  Article  Google Scholar 

  196. 196.

    Donovan CM, Pagliassotti MJ. Enhanced efficiency of lactate removal after endurance training. J Appl Physiol 1990; 68 (3): 1053–8

    PubMed  CAS  Google Scholar 

  197. 197.

    Helgerud J, Engen LC, Wisloff U, et al. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc 2001; 33 (11): 1925–31

    PubMed  CAS  Article  Google Scholar 

  198. 198.

    Bishop D, Lawrence S, Spencer M. Predictors of repeated-sprint ability in elite female hockey players. J Sci Med Sport 2003; 6 (2): 199–209

    PubMed  CAS  Article  Google Scholar 

  199. 199.

    Wadley G, Le Rossignol P. The relationship between repeated sprint ability and the aerobic and anaerobic energy systems. J Sci Med Sport 1998; 1 (2): 100–10

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the following for their help in writing this review: the University of Edinburgh, St Mary’s College, Michael Hughes, Gill McInnes, Gavin Moir, Andrew M. Stewart, and Michael H. Stone. No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Mark Glaister.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Glaister, M. Multiple Sprint Work. Sports Med 35, 757–777 (2005). https://doi.org/10.2165/00007256-200535090-00003

Download citation

Keywords

  • Blood Lactate
  • Endurance Training
  • Lactate Clearance
  • Muscular Fatigue
  • Maximal Sprint