Skip to main content

Exercise and the Lymphatic System

Implications for Breast-Cancer Survivors

Abstract

This article summarises the current research on the lymphatic system related to exercise and critically evaluates the implications for exercise performance by breast-cancer survivors. The primary role of the lymphatic system during exercise is to assist in the regulation of tissue volume and pressure by carrying fluid and plasma proteins that have leaked into the interstitial space from tissues back to the cardiovascular system. During steady-state exercise in humans, lymph flow has been shown to increase to levels approximately 2- to 3-fold higher than at rest. Although the lymphatic system does not typically limit exercise performance in the normal population, the function of this system can be impaired in 27–49% of women who have survived breast cancer.

Breast cancer-related lymphoedema (BCRL) is a chronic swelling that can occur in the ipsilateral hand or arm of women treated for breast cancer and results in a number of physical and psychological sequelae. Exercise was once believed to be a factor in the development of BCRL as it was thought that the damage to the axillary lymphatics from breast-cancer treatment resulted in a primary obstruction to lymph flow. However, the exact aetiology and pathophysiology of BCRL appears to be multi-factorial and not as simple as a ‘stop-cock’ effect. Furthermore, recent studies have shown that participating in vigorous, upper-body exercise is not related to an increase in arm volume, which would indicate the development of BCRL. It is still not known, though, how long-term exercise affects lymphatic system function in breast-cancer survivors with and without BCRL.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Kent H. Breast-cancer survivors begin to challenge exercise taboos. CMAJ 1996; 155 (7): 969–71

    PubMed  CAS  Google Scholar 

  2. Mortimer PS. The pathophysiology of lymphedema. Cancer 1998; 83 (12 Suppl.): 2798–802

    PubMed  Article  CAS  Google Scholar 

  3. McKenzie DC, Kalda AL. The effect of upper extremity exercise on secondary lymphedema in breast cancer patients: a pilot study. J Clin Oncol 2003; 21 (3): 463–6

    PubMed  Article  Google Scholar 

  4. Harris SR, Niesen-Vertommen SL. Challenging the myth of exercise-induced lymphedema following breast cancer: a series of case reports. J Surg Oncol Suppl 2000; 74 (2): 95–8

    Article  CAS  Google Scholar 

  5. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 1993; 73 (1): 1–78

    PubMed  CAS  Google Scholar 

  6. Schmid-Schönbein GW. Microlymphatics and lymph flow. Physiol Rev 1990; 70 (4): 987–1028

    PubMed  Google Scholar 

  7. Olszewski W. The lymphatic system in body homeostasis: physiological conditions. Lymphat Res Biol 2003; 1 (1): 11–21

    PubMed  Article  Google Scholar 

  8. Schmid-Schönbein GW. The second valve system in lymphatics. Lymphat Res Biol 2003; 1 (1): 25–31

    PubMed  Article  Google Scholar 

  9. Trzewik J, Mallipattu SK, Artmann GM, et al. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J 2001; 15: 1711–7

    PubMed  Article  CAS  Google Scholar 

  10. Marieb EN. Human anatomy and physiology. 5th rev ed. San Francisco (CA): Benjamin Cummings, 2001

    Google Scholar 

  11. Gashev AA. Physiologic aspects of lymphatic contractile function: current perspectives. Ann N Y Acad Sci 2002; 979: 178–87

    PubMed  Article  Google Scholar 

  12. McHale NG, Roddie IC. The effect of intravenous adrenaline and noradrenaline infusion of peripheral lymph flow in the sheep. J Physiol 1983; 341: 517–26

    PubMed  CAS  Google Scholar 

  13. Seabrook TJ, Ristevski B, Rhind SG, et al. Epinephrine causes a reduction in lymph node cell output in sheep. Can J Physiol Pharmacol 2001; 79 (3): 246–52

    PubMed  Article  CAS  Google Scholar 

  14. Pain SJ, Purushotham AD. Lymphoedema following surgery for breast cancer. Br J Surg 2000; 87 (9): 1128–41

    PubMed  Article  CAS  Google Scholar 

  15. Board J, Harlow W. Lymphoedema 1: components and function of the lymphatic system. Br J Nurs 2002; 11 (5): 304–9

    PubMed  Google Scholar 

  16. Threefoot SA. The clinical significance of lymphaticovenous communications. Ann Intern Med 1970; 72 (6): 957–8

    PubMed  CAS  Google Scholar 

  17. Threefoot S, Kossover MF, Aiken DW. Radioisotopic detection of lymphaticovenous communications in living animals. J Lab Clin Med 1965; 65: 688–97

    PubMed  CAS  Google Scholar 

  18. Olszewski W, Engeset A. Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. Am J Physiol 1980; 239: H775-H83

    Google Scholar 

  19. McHale NG, Meharg MK. Co-ordination of pumping in isolated bovine lymphatic vessels. J Physiol 1992; 450: 503–12

    PubMed  CAS  Google Scholar 

  20. Swartz MA, Boardman KC. The role of interstitial stress in lymphatic function and lymphangiogenesis. Ann N Y Acad Sci 2002; 979: 197–210

    PubMed  Article  Google Scholar 

  21. Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev 2001; 50: 3–20

    PubMed  Article  CAS  Google Scholar 

  22. Mazzoni MC, Skalak TC, Schmid-Schönbein GW. Effects of skeletal muscle fiber deformation on lymphatic volumes. Am J Physiol 1990; 259 (6 Pt 2): H1860–8

    Google Scholar 

  23. Krasnow AZ, Hellman RS. Lymphoscintigraphy revisited. In: Freeman LM, editor. Nuclear medicine annual. Philadelphia (PA): Lippincott, Williams & Wilkins, 1999: 17–97

    Google Scholar 

  24. Szuba A, Shin WS, Strauss HW, et al. The third circulation: Radionuclide lymphoscintigraphy in the evaluation of lymphedema. J Nucl Med 2003; 44: 43–57

    PubMed  Google Scholar 

  25. Bates DO. Novel insight into the pathophysiology of breast-cancer-related lymphoedema. Clin Sci 2001; 101 (2): 169–70

    PubMed  Article  CAS  Google Scholar 

  26. Bourgeois P, Leduc O, Leduc A. Imaging techniques in the management and prevention of posttherapeutic upper limb edemas. Cancer 1998; 83 (12 Suppl.): 2805–13

    PubMed  Article  CAS  Google Scholar 

  27. Mortimer PS. Evaluation of lymphatic function: abnormal lymph drainage in venous disease. Int Angiol 1995; 14 (3 Suppl. 1): 32–5

    PubMed  CAS  Google Scholar 

  28. Pain SJ, Barber RW, Ballinger JR, et al. Tissue-to-blood transport of radiolabelled immunoglobulin injected into the web spaces of the hands of normal subjects and patients with breast cancer-related lymphoedema. J Vasc Res 2004; 41: 183–92

    PubMed  Article  CAS  Google Scholar 

  29. Pain SJ, Barber RW, Ballinger JR, et al. Side-to-side symmetry of radioprotein transfer from tissue space to systemic vasculature following subcutaneous injection in normal subjects and subjects with breast cancer. Eur J Nucl Med Mol Imaging 2003; 30 (5): 657–61

    PubMed  Article  Google Scholar 

  30. Pain SJ, Purushotham AD, Barber RW, et al. Variation in lymphatic function may predispose to development of breast cancer-related lymphoedema. Eur J Surg Oncol 2004; 30: 508–14

    PubMed  Article  CAS  Google Scholar 

  31. Stanton AW, Svensson WE, Mellor RH, et al. Differences in lymph drainage between swollen and non-swollen regions in arms with breast-cancer-related lymphoedema. Clin Sci 2001; 101 (2): 131–40

    PubMed  Article  CAS  Google Scholar 

  32. Pain SJ, Nicholas RS, Barber RW, et al. Quantification of lymphatic function for investigation of lymphedema: depot clearance and rate of appearance of soluble macromolecules in blood. J Nucl Med 2002; 43 (3): 318–24

    PubMed  Google Scholar 

  33. Williams WH, Witte CL, Witte MH, et al. Radionuclide lymphangioscintigraphy in the evaluation of peripheral lymphedema. Clin Nucl Med 2000; 25 (6): 451–64

    PubMed  Article  CAS  Google Scholar 

  34. Szuba A, Strauss W, Sirsikar S, et al. Quantitative radionuclide lymphoscintigraphy predicts outcome of manual lymphatic therapy in breast cancer-related lymphedema of the upper extremity. Nucl Med Commun 2002; 23: 1171–5

    PubMed  Article  CAS  Google Scholar 

  35. Gothard L, Stanton A, MacLaren J, et al. Non-randomized phase II trial of hyperbaric oxygen therapy in patients with chronic arm lympoedema and tissue fibrosis after radiotherapy for early breast cancer. Radiother Oncol 2004; 70: 217–24

    PubMed  Article  CAS  Google Scholar 

  36. McGeown JG, McHale NG, Thornbury KD. The role of external compression and movement in lymph propulsion in the sheep hind limb. J Physiol 1987; 387: 83–93

    PubMed  CAS  Google Scholar 

  37. Coates G, O’Brodovich H, Goeree G. Hindlimb and lung lymph flows during prolonged exercise. J Appl Physiol 1993; 75 (2): 633–8

    PubMed  CAS  Google Scholar 

  38. Havas E, Parviainen T, Vuorela J, et al. Lymph flow dynamics in exercising human skeletal muscle as detected by scintography. J Physiol 1997; 504 (Pt 1): 233–9

    PubMed  Article  CAS  Google Scholar 

  39. Tesch PA, Wright JE. Recovery from short term intense exercise: its relation to capillary supply and blood lactate concentration. Eur J Appl Physiol 1983; 52: 98–103

    Article  CAS  Google Scholar 

  40. Havas E, Lehtonen M, Vuorela J, et al. Albumin clearance from human skeletal muscle during prolonged steady-state running. Exp Physiol 2000; 85 (6): 863–8

    PubMed  Article  CAS  Google Scholar 

  41. Hinrichs CS, Watroba NL, Rezaishiraz H, et al. Lymphedema secondary to postmastectomy radiation: incidence and risk factors. Ann Surg Oncol 2004; 11 (6): 573–80

    PubMed  Article  Google Scholar 

  42. Ozaslan C, Kuru B. Lymphedema after treatment of breast cancer. Am J Surg 2004; 187 (1): 69–72

    PubMed  Article  Google Scholar 

  43. Petrek JA, Senie RT, Peters M, et al. Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis. Cancer 2001; 92 (6): 1368–77

    PubMed  Article  CAS  Google Scholar 

  44. Erickson VS, Pearson ML, Ganz PA, et al. Arm edema in breast cancer patients. J Natl Cancer Inst 2001; 93 (2): 96–111

    PubMed  Article  CAS  Google Scholar 

  45. Sener SF, Winchester DJ, Martz CH, et al. Lymphedema after sentinel lymphadenectomy for breast carcinoma. Cancer 2001; 92: 748–52

    PubMed  Article  CAS  Google Scholar 

  46. Megens AM, Harris SR, Kim-Sing C, et al. Measurement of upper extremity volume in women after axillary dissection for breast cancer. Arch Phys Med Rehabil 2001; 82 (12): 1639–44

    PubMed  Article  CAS  Google Scholar 

  47. Harris SR, Hugi MR, Olivotto IA, et al. Clinical practice guidelines for the care and treatment of breast cancer: 11. Lymphedema. CMAJ 2001; 164 (2): 191–9

    CAS  Google Scholar 

  48. Witte CL, Witte MH, Unger EC, et al. Advances in imaging of lymph flow disorders. Radiographics 2000; 20 (6): 1697–719

    PubMed  CAS  Google Scholar 

  49. Bates DO, Levick JR, Mortimer PS. Change in macromolecular composition of interstitial fluid from swollen arms after breast cancer treatment, and its implications. Clin Sci 1993; 85 (6): 737–46

    PubMed  CAS  Google Scholar 

  50. Bates DO, Levick JR, Mortimer PS. Subcutaneous interstitial fluid pressure and arm volume in lymphoedema. Int J Microcirc Clin Exp 1992; 11 (4): 359–73

    PubMed  CAS  Google Scholar 

  51. Svensson WE, Mortimer PS, Tohno E, et al. Increased arterial inflow demonstrated by Doppler ultrasound in arm swelling following breast cancer treatment. Eur J Cancer 1994; 30A (5): 661–4

    Article  Google Scholar 

  52. Stanton AW, Holroyd B, Mortimer PS, et al. Comparison of microvascular filtration in human arms with and without postmastectomy oedema. Exp Physiol 1999; 84: 405–19

    PubMed  Article  CAS  Google Scholar 

  53. Mellor RH, Stanton AW, Azarbod P, et al. Enhanced cutaneous lymphatic network in the forearms of women with postmastectomy oedema. J Vasc Res 2000; 37 (6): 501–12

    PubMed  Article  CAS  Google Scholar 

  54. Aboul-Enein A, Eshmawy I, Arafa S, et al. The role of lymphovenous communication in the development of postmastectomy lymphedema. Surgery 1984; 95 (5): 562–6

    PubMed  CAS  Google Scholar 

  55. McKenzie DC. Abreast in a boat: a race against breast cancer. CMAJ 1998; 159 (4): 376–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

K. Lane was supported by the Michael Smith Foundation for Health Research (MSFHR) and the Canadian Institutes of Health Research. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirstin Lane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lane, K., Worsley, D. & McKenzie, D. Exercise and the Lymphatic System. Sports Med 35, 461–471 (2005). https://doi.org/10.2165/00007256-200535060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200535060-00001

Keywords

  • Lymphatic System
  • Lymphatic Function
  • Lymph Flow
  • Lymphatic Capillary
  • Initial Lymphatic