Skip to main content
Log in

The Science of Cycling

Factors Affecting Performance — Part 2

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

This review presents information that is useful to athletes, coaches and exercise scientists in the adoption of exercise protocols, prescription of training regimens and creation of research designs. Part 2 focuses on the factors that affect cycling performance. Among those factors, aerodynamic resistance is the major resistance force the racing cyclist must overcome. This challenge can be dealt with through equipment technological modifications and body position configuration adjustments. To successfully achieve efficient transfer of power from the body to the drive train of the bicycle the major concern is bicycle configuration and cycling body position. Peak power output appears to be highly correlated with cycling success. Likewise, gear ratio and pedalling cadence directly influence cycling economy/efficiency. Knowledge of muscle recruitment throughout the crank cycle has important implications for training and body position adjustments while climbing. A review of pacing models suggests that while there appears to be some evidence in favour of one technique over another, there remains the need for further field research to validate the findings. Nevertheless, performance modelling has important implications for the establishment of performance standards and consequent recommendations for training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kyle CR. The effect of crosswinds upon time trials. Cycling Sci 1991; 3 (3–4): 51–6

    Google Scholar 

  2. Gross AC, Kyle CR, Malewicki DJ. The aerodynamics of human-powered land vehicles. Sci Am 1983; 249: 142–52

    Article  Google Scholar 

  3. Padilla S, Mujika I, Angulo F. Scientific approach to the 1-hr cycling world record: case study. J Appl Physiol 2000; 89: 1522–7

    PubMed  CAS  Google Scholar 

  4. Faria IE. Energy expenditure, aerodynamics and medical problems in cycling: an update. Sports Med 1992; 14: 43–63

    Article  PubMed  CAS  Google Scholar 

  5. Faria IE, Cavanagh PR. The physiology and biomechanics of cycling. New York: John Wiley and Sons, 1978

    Google Scholar 

  6. Gnehm P, Reichenbach S, Altpeter E, et al. Influence of different racing positions on metabolic costs in elite cyclists. Med Sci Sports Exerc 1997; 29: 818–23

    Article  PubMed  CAS  Google Scholar 

  7. Capelli C, Rosa G, Butti F, et al. Energy cost and efficiency of riding aerodynamic bicycles. Eur J Appl Physiol 1993; 67: 144–9

    Article  CAS  Google Scholar 

  8. Kyle CR. The aerodynamics of helmets and handlebars. Cycling Sci 1989; 1: 22–5

    Google Scholar 

  9. Stegemann J. Exercise physiology: physiological foundation of work and sport [in German]. 4th ed. Stuttgart: Thieme Books, 1991: 59

    Google Scholar 

  10. Kyle CR. Mechanical factors affecting the speed of a cycle. In: Burke ER, editor. Science of cycling. Champaign (IL): Human Kinetics, 1986: 124–8

    Google Scholar 

  11. Swain DP, Coast JR, Clifford PS, et al. Influence of body size on oxygen consumption during bicycling. J Appl Physiol 1987; 62: 668–72

    PubMed  CAS  Google Scholar 

  12. De Groot G, Sargeant A, Geysel J. Air friction and rolling resistance during cycling. Med Sci Sports Exerc 1995; 27: 1090–5

    Article  PubMed  Google Scholar 

  13. Bassett DR, Kyle CR, Passfield L, et al. Comparing cycling world records, 1967–1996: modeling with empirical data. Med Sci Sports Exerc 1999; 31: 1665–76

    Article  PubMed  Google Scholar 

  14. Wright ME, Hale T, Keen PS, et al. The relationship between selected anthropometric data, maximal aerobic power and 40 km time-trial performance [abstract]. J Sports Sci 1994; 12: 167

    Google Scholar 

  15. Swain DP. The influence of body mass in endurance cycling. Med Sci Sports Exerc 1994; 26: 58–63

    PubMed  CAS  Google Scholar 

  16. Lucía A, Hoyos J, Chicharro JL, et al. Preferred pedaling cadence in professional cycling. Med Sci Sports Exerc 2000; 33: 1361–6

    Google Scholar 

  17. Hausswirth C, Lehenaff D, Dreano P, et al. Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon. Med Sci Sports Exerc 1999; 31: 599–604

    Article  PubMed  CAS  Google Scholar 

  18. Hausswirth C, Vallier JM, Lehenaff D, et al. Effect of two drafting modalities in cycling on running performance. Med Sci Sports Exerc 2001; 33: 485–92

    Article  PubMed  CAS  Google Scholar 

  19. McCole SD, Claney K, Conte JC. Energy expenditure during bicycling. J Appl Physiol 1990; 68: 748–52

    PubMed  CAS  Google Scholar 

  20. Di Prampero PE, Capelli G, Mognoni P, et al. Equation of motion of a cyclist. J Appl Physiol 1979; 47: 201–6

    PubMed  Google Scholar 

  21. Kyle CR. The mechanics and aerodynamics of cycling. In: Burk ER, Newsom M, editors. Medical and scientific aspects of cycling. Champaign (IL): Human Kinetics, 1988: 235–55

    Google Scholar 

  22. Rowland RD, Rice RS. Bicycle dynamics, rider guidance modelling and disturbance response. New York: Calspan Corporation, 1973 Apr. Technical report #ZS-5157-K-1

    Google Scholar 

  23. Kyle CR, Caiozzo VJ, Palombo C. Predicting human powered vehicle performance using ergometry and aerodynamic drag measurements. Proceedings of the Human Powered Vehicle Symposium; 1993; Technical University Eindhoven, The Netherlands. Gemert: Pandelaar Press, 1993: 5–21

    Google Scholar 

  24. Candau R, Frederic G, Ménard M, et al. Simplified deceleration method for assessment of resistive forces in cycling. Med Sci Sports Exerc 1999; 31: 1441–7

    Article  PubMed  CAS  Google Scholar 

  25. Grappe F, Candau R, Belli A, et al. Aerodynamic drag in field cycling with special reference to the Obree’s position. Ergonomics 1997; 40: 1299–322

    Article  Google Scholar 

  26. Gonzales H, Hull ML. Multivariable optimization of cycling biomechanics. J Biomechan 1989; 22: 1152–61

    Google Scholar 

  27. Hull ML, Gonzales HK. Bivariate optimization of pedaling rate and crank arm length in cycling. J Biomechan 1988; 21: 839–49

    Article  CAS  Google Scholar 

  28. Inbar O, Dotan R, Trousil T, et al. The effect of bicycle crank-length variation upon power performance. Ergonomics 1983; 26: 1139–46

    Article  PubMed  CAS  Google Scholar 

  29. Ericson MO, Nisell R, Arborelius UP, et al. Muscular activity during ergometer cycling. Scand J Rehab Med 1985; 17: 53–61

    CAS  Google Scholar 

  30. Ericson MO, Bratt A, Nesell R, et al. Load moments about the hip and knee joints during ergometer cycling. Scand J Rehab Med 1986; 18: 165–72

    CAS  Google Scholar 

  31. Boning D, Gonen Y, Maassen N. Relationship between work load, pedal frequency, and physical fitness. Int J Sports Med 1984; 5: 92–7

    Article  PubMed  CAS  Google Scholar 

  32. Hagberg J, Mullin JP, Giese MD, et al. Effect of pedaling rate on submaximal exercise responses of competitive cyclists. J Appl Physiol 1981; 51: 447–51

    PubMed  CAS  Google Scholar 

  33. Hamley EJ, Thomas V. Physiological and postural factors in the calibration of the bicycle ergometer. J Appl Physiol 1967; 191: P55–7

    Google Scholar 

  34. Nordeen-Snyder KS. The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Med Sci Sports Exerc 1977; 9: 113–7

    CAS  Google Scholar 

  35. Shennum PL, Devries HA. The effect of saddle height on oxygen consumption during ergometer work. Med Sci Sports 1976; 8: 119–21

    PubMed  CAS  Google Scholar 

  36. Browning RC, Gregor RJ, Broker JP. Lower extremity kinetics in elite athletes in aerodynamic cycling positions [abstract]. Med Sci Sports Exerc 1992; 24: S186

    Google Scholar 

  37. Too D. The effect of body configuration on cycling performance. In: Kreighbaum E, McNeill A, editors. Proceedings of the 6th ISBS Symposium; 1988 Dec; Bozeman (MT). Bozeman (MT): International Society of Biomechanics in Sports, 1988: 51–8

    Google Scholar 

  38. Too D. The effect of hip position/configuration on anaerobic power and capacity in cycling. Int J Sports Biomech 1991; 7: 359–70

    Google Scholar 

  39. Heil D, Wilcox A, Quinn C. Cardiorespiratory responses to seat tube variation during steady state cycling. Med Sci Sports Exerc 1995; 27: 730–5

    PubMed  CAS  Google Scholar 

  40. Garside I, Doran D. Effects of bicycle frame ergonomics on triathlon 10-K running performance. J Sports Sci 2000; 18: 825–33

    Article  PubMed  CAS  Google Scholar 

  41. Raasch CC, Zajac FE, Ma B, et al. Muscle coordination of maximum-speed pedaling. J Appl Biomech 1997; 30: 595–602

    Article  CAS  Google Scholar 

  42. Jeukendrup AE, Martin J. Improving cycling performance: how should we spend our time and money. Sports Med 2001; 31: 559–69

    Article  PubMed  CAS  Google Scholar 

  43. MacRae HS-H, Hise KJ, Allen PJ. Effects of front and dual suspension mountain bike systems on uphill cycling performance. Med Sci Sports Exerc 2000; 32: 1276–80

    Article  Google Scholar 

  44. Hue O, Galy O, Hertogh C, et al. Enhancing cycling performance using an eccentric chainring. Med Sci Sports Exerc 2001; 33: 1006–10

    Article  PubMed  CAS  Google Scholar 

  45. Jones SM, Passfield L. The dynamic calibration of bicycle power measuring cranks. In: Haake SJ, editor. The engineering of sports. Oxford: Blackwell Science, 1998: 265–74

    Google Scholar 

  46. Atkinson G, Davison R, Jeukendrup A, et al. Science and cycling: current knowledge and future directions for research. J Sports Sci 2003; 21: 767–87

    Article  PubMed  Google Scholar 

  47. Baron R, Bachl N, Petschnig R, et al. Measurement of maximal power output in isokinetic and non-isokinetic cycling: a comparison of two methods. Int J Sports Med 1999; 20: 532–7

    Article  PubMed  CAS  Google Scholar 

  48. Jones NL, McCartney N. Influence of muscle power on aerobic performance and the effects of training. Acta Med Scand Suppl 1986; 711: 115–22

    PubMed  CAS  Google Scholar 

  49. Marsh AP, Martin PE. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Med Sci Sports Exerc 1997; 29: 1225–32

    Article  PubMed  CAS  Google Scholar 

  50. McCartney N, Heigenhauser GJF, Jones NL. Power output and fatigue of human muscle in maximal cycling exercise. J Appl Physiol Resp Environ Exerc Physiol 1983; 55: 218–24

    CAS  Google Scholar 

  51. Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 1981; 51: 1175–82

    PubMed  CAS  Google Scholar 

  52. Baron R. Aerobid and anaerobic power characteristics of off-road cyclists. Med Sci Sports Exerc 2001; 33: 1387–93

    Article  PubMed  CAS  Google Scholar 

  53. Palmer GS, Noakes TD, Hawley JA. Metabolic and performance responses to constant-load vs variable-intensity exercise in trained cyclists. J Appl Physiol 1999; 87: 1186–96

    PubMed  CAS  Google Scholar 

  54. Wilber RL, Zawadzki KM, Kerney JT, et al. Physiological profiles of elite off-road and road cyclists. Med Sci Sports Exerc 1997; 29: 1090–4

    Article  PubMed  CAS  Google Scholar 

  55. Tanaka H, Bassett Jr DR, Swensen TC, et al. Aerobic and anaerobic power characteristics of competitive cyclists in the United States Federation. Int J Sports Med 1993; 14: 334–8

    Article  PubMed  CAS  Google Scholar 

  56. Takaishi T, Yasuda Y, Moritani T. Neuromuscular fatigue during prolonged pedaling rates. Eur J Appl Physiol 1994; 69: 154–8

    Article  CAS  Google Scholar 

  57. Takaishi T, Yasuda Y, Ono T, et al. Optimal pedaling rate estimated from neuromuscular fatigue for cyclists. Med Sci Sports Exerc 1996; 28: 1492–7

    Article  PubMed  CAS  Google Scholar 

  58. Ahlquist LE, Basset DR, Sufit R, et al. The effects of pedaling frequency on glycogen depletion rates in type I and II quadriceps muscle fibers during submaximal cycling exercise. Eur J Appl Physiol 1992; 65: 360–4

    Article  CAS  Google Scholar 

  59. Faria EW, Parker DL, Faria IE. The science of cycling: physiology and training – part 1. Sports Med 2005; 35 (4): 285–312

    Article  PubMed  Google Scholar 

  60. Coyle EF, Feltner ME, Kautz SA. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991; 23: 93–107

    PubMed  CAS  Google Scholar 

  61. Sidossis LS, Horowitz JF. Load and velocity of contraction influence gross and delta mechanical efficiency. Int J Sports Med 1992; 13: 407–11

    Article  PubMed  CAS  Google Scholar 

  62. Lepers R, Hausswirth C, Maffiuletti NA, et al. Evidence of neuromuscular fatigue following prolonged cycling exercise. Med Sci Sports Exerc 2000; 32: 1880–6

    Article  PubMed  CAS  Google Scholar 

  63. Lepers R, Maffiuletti NA, Millet GY. Effects of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc 2001; 33: 1882–8

    Article  PubMed  CAS  Google Scholar 

  64. Lucía A, San Juan AF, Montilla M, et al. In professional road cyclists, low pedalling cadences are less efficient. Med Sci Sports Exerc 2004; 36: 1048–54

    Article  PubMed  Google Scholar 

  65. Barclay CJ. Efficiency of fast- and slow-twitch muscles of the mouse performing cyclic contractions. J Exp Biol 1994; 193: 65–78

    PubMed  CAS  Google Scholar 

  66. Barclay CJ. Mechanical efficiency and fatigue of fast and slow muscles in the mouse. J Physiol (Lond) 1996; 497: 781–94

    CAS  Google Scholar 

  67. Garnevale TG, Gaesser GA. Effects of pedaling speed on power-duration relationship for high-intensity exercise. Med Sci Sports Exerc 1991; 23: 242–6

    Google Scholar 

  68. Gueli D, Shephard RJ. Pedal frequency in bicycle ergometry. Can J Appl Sport Sci 1976; 1: 137–41

    Google Scholar 

  69. Hull ML, Gonzalez HK, Redfield R. Optimization of pedaling rate in cycling using a muscle stress-based objective function. Int J Sports Biomech 1988; 4: 1–20

    Google Scholar 

  70. Marsh AP, Martin PE. The association between cycling experience and preferred and most economical cadences. Med Sci Sports Exerc 1993; 25: 1269–74

    PubMed  CAS  Google Scholar 

  71. Gaesser GA, Brooks GA. Muscle efficiency during steady-rate exercise effects of speed work. J Appl Physiol 1975; 38: 1132–9

    PubMed  CAS  Google Scholar 

  72. Faria IE, Sjogaard G, Bonde-Peterson F. Oxygen cost during different pedaling speeds for constant power outputs. J Sports Med Phys Fitness 1982; 22: 295–9

    PubMed  CAS  Google Scholar 

  73. Takaishi T, Yamamoto T, Ono T, et al. Neuromuscular, metabolic and kinetic adaptations for skilled pedaling performance in cyclists. Med Sci Sports Exerc 1998; 30: 442–9

    Article  PubMed  CAS  Google Scholar 

  74. Chavarren J, Calbet JA. Cycling efficiency and pedaling frequency in road cyclists. Eur J Appl Physiol Occup Physiol 1999; 80: 555–63

    Article  PubMed  CAS  Google Scholar 

  75. Patterson RP, Moreno MI. Bicycle pedaling forces as a function of pedaling rate and power output. Med Sci Sports Exerc 1990; 22: 512–26

    PubMed  CAS  Google Scholar 

  76. Coast RJ, Welch HG. Linear increase in optimal pedal rate with increased power output in cycling ergometry. Eur J Appl Physiol 1985; 53: 339–42

    Article  CAS  Google Scholar 

  77. Lollgen H, Graham T, Sjogaard G. Muscle metabolites, force, and perceived exertion bicycling at various pedal rates. Med Sci Sports Exerc 1980; 12: 345–51

    PubMed  CAS  Google Scholar 

  78. Coast RJ, Cox RH, Welch HG. Optimal pedaling rate in prolonged bouts of cycle ergometry. Med Sci Sports Exerc 1986; 18: 225–30

    PubMed  CAS  Google Scholar 

  79. Croissant PT, Boileau RA. Effect of pedal rate, brake load and power on metabolic responses to bicycle ergometer work. Ergonomics 1984; 27: 691–700

    Article  Google Scholar 

  80. Widrick JJ, Freedson PS, Hamill J. Effect of internal work on the calculation of optimal pedaling rates. Med Sci Sports Exerc 1992; 24: 376–82

    PubMed  CAS  Google Scholar 

  81. Bisswalter J, Hausswirth C, Smith D, et al. Energetically optimal cadence versus freely-chosen cadence during cycling: effect of exercise duration. Int J Sports Med 2000; 20: 1–5

    Google Scholar 

  82. Gotshall RW, Bauer TA, Fahrner SL. Cycling cadence alters exercise hemodynamics. Int J Sports Med 1996; 17: 17–21

    Article  PubMed  CAS  Google Scholar 

  83. Sargeant AJ. Human power output and muscle fatigue. Int J Sports Med 1994; 15: 116–21

    Article  PubMed  CAS  Google Scholar 

  84. Pandolf KB, Noble BJ. The effect of pedaling speed and resistance changes on perceived exertion for equivalent power outputs on the bicycle ergometer. Med Sci Sports Exerc 1973; 5: 132–16

    CAS  Google Scholar 

  85. Marsh AP, Martin PE, Foley KO. Effect of cadence cycling experience and aerobic power on delta efficiency during cycling. Med Sci Sports Exerc 2000; 32: 1630–4

    PubMed  CAS  Google Scholar 

  86. Sjogaard G. Force-velocity curve for bicycle work. In: Asmussen E, Jorgensen K, editors. Biomechanics VI-A. Baltimore (MD): University Park Press, 1978: 93–9

    Google Scholar 

  87. Hagan RD, Weis SE, Raven PB. Effect of pedal rate on cardiovascular responses during continuous exercise. Med Sci Sports Exerc 1992; 24: 1088–95

    PubMed  CAS  Google Scholar 

  88. Coyle EF, Sidossis LS, Horowittz JF, et al. Cycling efficiency is related to the percentage of Type I muscle fibers. Med Sci Sports Exerc 1992; 24: 782–8

    PubMed  CAS  Google Scholar 

  89. Lucía A, Hoyos J, Perez M, et al. Inverse relationship between V̇O2max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc 2002; 34: 2079–84

    Article  PubMed  Google Scholar 

  90. Lucía A, Pardo J, Durantez A, et al. Physiological differences between professional and elite road cyclists. Int J Sports Med 1998; 19: 342–8

    Article  PubMed  Google Scholar 

  91. Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 1980; 12: 357–60

    PubMed  CAS  Google Scholar 

  92. Costill DL, Thompson H, Roberts EL. Fractional utilization of aerobic capacity during distance running. Med Sci Sports Exerc 1973; 5: 248–53

    CAS  Google Scholar 

  93. Brouwer E. On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange (oxygen and carbonic acid output) and urine-N. Acta Physiol Pharmacol Neerl 1957; 6: 795–802

    PubMed  CAS  Google Scholar 

  94. Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc 2001; 33: 621–7

    PubMed  CAS  Google Scholar 

  95. Lucía A, Hoyos J, Santalla A, et al. Kinetics of V̇O2 in professional cyclists. Med Sci Sports Exerc 2002; 34: 320–5

    Article  PubMed  Google Scholar 

  96. Pool DC, Henson LC. Effect of acute caloric restriction on work efficiency. Am J Clin Nutr 1998; 47: 15–8

    Google Scholar 

  97. Bahr R, Opstad P, Medbo J, et al. Strenuous prolonged exercise elevates resting metabolic rate and causes reduced mechanical efficiency. Aca Physiol Scand 1991; 141: 555–63

    Article  CAS  Google Scholar 

  98. Buelmann B, Schierning B, Toubro S, et al. The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obes Relat Metab Disord 2002; 25: 467–71

    Article  CAS  Google Scholar 

  99. Suzuki Y. Mechanical efficiency of fast and slow-twitch muscle fibers in man during cycling. J Appl Physiol 1979; 47: 263–7

    PubMed  CAS  Google Scholar 

  100. Coast RJ. Optimal pedaling cadence. In: Burke ER, editor. Optimal pedaling cadence. Champain (IL): Human Kinetics, 1996: 1–117

    Google Scholar 

  101. Fernández-García B, Periz-Landaluce J, Roidriguez-Alonso M, et al. Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc 2000; 32: 1002–6

    PubMed  Google Scholar 

  102. Padilla S, Mujika I, Orbananos J, et al. Exercise intensity and load during mass-start stage races in professional road cycling. Med Sci Sports Exerc 2001; 33: 796–802

    PubMed  CAS  Google Scholar 

  103. Lucía A, Hoyos J, Carvajal A, et al. Heart rate response to professional road cycling: the Tour de France. Int J Sports Med 1999; 20: 167–72

    Article  PubMed  Google Scholar 

  104. Hagberg JM, Coyle EF. Physiological determinants of endurance performance as studied in competitive race walkers. Med Sci Sports Exerc 1983; 15: 287–9

    Article  PubMed  CAS  Google Scholar 

  105. Sjodin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol Occup Physiol 1982; 49: 45–57

    Article  PubMed  CAS  Google Scholar 

  106. Swain DP, Leutholtz BC. Heart rate reserve is equivalent to %V̇O2 Reserve, not to %V̇O2max. Med Sci Sports Exerc 1997; 29: 410–4

    Article  PubMed  CAS  Google Scholar 

  107. Kuipers H, Verstappen FTJ, Keizer HA. Variability of aerobic performance in the Laboratory and its physiological correlates. Int J Sports Med 1985; 6: 197–201

    Article  PubMed  CAS  Google Scholar 

  108. Impellizzeri F, Sassi A, Rodriguez-Alonso M, et al. Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc 2002; 34: 1808–13

    Article  PubMed  Google Scholar 

  109. Hagberg J, McCole S. Energy expenditure during cycling. In: Burke E, editor. High tech cycling. Champaign (IL): Human Kinetics, 1996: 167–184

    Google Scholar 

  110. Millet GP, Tronche C, Fuster N, et al. Level ground and uphill cycling efficiency in seated and standing position. Med Sci Sports Exerc 2002; 34: 1645–52

    Article  PubMed  Google Scholar 

  111. Caldwell GE, McCole SD, Hagberg JM. Pedal force profiles during uphill cycling. In: Herzog W, Nigg BM, editors. Proceedings of the 8th Canadian Society of Biomechanics Conference; 1994 Aug; Calgary. Calgary: Canadian Society of Biomechanics, 1994: 58–9

    Google Scholar 

  112. Caldwell GE, Hagberg JM, McCole SD, et al. Lower extremity joint movements during uphill cycling. In: Hoffer A, editor. Proceedings of the 9th Canadian Society of Biomechanics Conference; 1996 Aug; Vancouver. Vancouver: Canadian Society of Biomechanics, 1996: 182–3

    Google Scholar 

  113. Li L, Caldwell GE. Muscle coordination in cycling: effect of surface inclines and posture. J Appl Physiol 1998; 85: 927–34

    PubMed  CAS  Google Scholar 

  114. Gregor RJ, Broker JP, Ryan MM. The biomechanics of cycling. In: Holloszy JO, editor. Exercise and science review. Baltimore (MD): Williams and Williams, 1991: 127–9

    Google Scholar 

  115. Redfield R, Hill ML. On the relation between joint movements and pedaling rates at constant power in bicycling. J Biomech 1986; 19: 317–27

    Article  PubMed  CAS  Google Scholar 

  116. Van Ingen Schenau GJ, Boots PJM, de Groot D, et al. The constrained control of force and position in multi-joint movements. Neuroscience 1992; 46: 197–207

    Article  PubMed  Google Scholar 

  117. Van Ingen Schenau GJ. From rotation to translation: construction on the multi-joint movements and the unique action of bi-articular muscles. Hum Move Sci 1989; 8: 301–37

    Article  Google Scholar 

  118. Palmer GS, Noakes TD, Hawley JA. Effects of steady-state versus stochastic exercise on subsequent cycling performance. Med Sci Sports Exerc 1997; 29: 684–7

    Article  PubMed  CAS  Google Scholar 

  119. Foster C, Snyder AC, Thompson NN, et al. Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc 1993; 25: 383–8

    PubMed  CAS  Google Scholar 

  120. Bishop D, Bonetti D, Dawson B. The influence of pacing strategy on V̇O2 and supramaximal kayak performance. Med Sci Sports Exerc 2002; 34: 1041–7

    Article  PubMed  Google Scholar 

  121. Liedl MA, Swan DP, Branch JD. Physiological effects of constant versus variable power during endurance cycling. Med Sci Sports Exerc 1999; 31: 1472–7

    Article  PubMed  CAS  Google Scholar 

  122. Faria IE, Peiffer J, Garcia B, et al. Effect of pacing with HR on cycling time trial performance [abstract]. Med Sci Sports Exerc 2003; 35: S369

    Google Scholar 

  123. Swain DP. Varying power to optimize cycling time trial performance on hills and in wind. Med Sci Sports Exerc 1997; 29: 1104–8

    Article  PubMed  CAS  Google Scholar 

  124. Atkinson G, Brunskill A. Effect of pacing strategy on cycling performance in a time trial with simulated head and tail wind. Ergonomics 2000; 43: 1449–60

    Article  PubMed  CAS  Google Scholar 

  125. Billat VL, Slawinski S, Danel M, et al. Effects of free versus constant pace on performance and oxygen kinetics in running. Med Sci Sports Exerc 2001; 33: 2080–8

    Google Scholar 

  126. Wolski L, McKenzie D, Wenger H. Altitude training for improvement in sea level performance. Is the scientific evidence of benefit? Sport Med 1996; 4: 251–63

    Article  Google Scholar 

  127. Bailey D, Davis B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med 1997; 31: 183–90

    Article  PubMed  CAS  Google Scholar 

  128. Fulco C, Rock P, Cymerman A. Improving athletic performance: is altitude residence or altitude training helpful? Aviat Space Environ Med 2000; 71: 162–71

    PubMed  CAS  Google Scholar 

  129. Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol 2001; 84: 283–90

    Article  PubMed  CAS  Google Scholar 

  130. Hahn AG, Gore CJ. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med 2001; 31: 533–57

    Article  PubMed  CAS  Google Scholar 

  131. Terrados N, Melichna J, Sylven C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol 1988; 57: 203–9

    Article  CAS  Google Scholar 

  132. Gore CJ, Hahn AG, Scroop GC, et al. Increased arterial desaturation in trained cyclists during maximal exercise at 580m altitude. J Appl Physiol 1996; 80: 2204–10

    PubMed  CAS  Google Scholar 

  133. Robergs RA, Roberts S. Exercise physiology: sports performance and clinical applications. St Louis (MO): Mosby Year-Book, 1997: 647–9

    Google Scholar 

  134. Peronnet F, Bouissou P, Perrault H, et al. The one hour cycling record at sea level and at altitude. Cycling Sci 1991; 3: 16–22

    Google Scholar 

  135. Squires RW, Buskirk ER. Aerobic capacity during acute exposure to simulated altitude, 914 m to 2286 m. Med Sci Sports Exerc 1982; 14: 36–40

    Article  PubMed  CAS  Google Scholar 

  136. Ferretti G, Moia C, Thomet JM, et al. The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Appl Physiol 1997; 498: 231–7

    CAS  Google Scholar 

  137. Chapman RF, Emery M, Stager JM. Degree of arterial desaturation in normoxia influences V̇O2max decline in mild hypoxia. Med Sci Sports Exerc 1999; 31: 658–63

    Article  PubMed  CAS  Google Scholar 

  138. Wilber RL, Holm PL, Morris DM, et al. Effect of FIO2 on physiological responses and cycling performance at moderate altitude. Med Sci Sports Exerc 2003; 35: 1153–9

    Article  PubMed  Google Scholar 

  139. Daniels J. Altitude and athletic training and performance. Am J Sports Med 1979; 7: 370–3

    Article  Google Scholar 

  140. Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performed at altitude. Aviat Space Environ Med 1998; 69: 793–801

    PubMed  CAS  Google Scholar 

  141. Weston AR, MacKenzie G, Tufts A, et al. Optimal time of arrival for performance at moderate altitude (1700 m). Med Sci Sports Exerc 2001; 33: 298–302

    PubMed  CAS  Google Scholar 

  142. Robergs RA, Quintana R, Parker DL, et al. Multiple variables explain the variability in the decrement in V̇O2max during acute hypobaric hypoxia. Med Sci Sports Exerc 1998; 30: 869–79

    Article  PubMed  CAS  Google Scholar 

  143. Parker D. Effect of altitude and acute hypoxia on V̇O2max [online]. Available from: http://www.asep.org/jeponline/issue/Doc/June2004/ParkerV2.pdf [Accessed 2005 Feb 24]

  144. Billings CR, Bason R, Mathews D, et al. Cost of submaximal and maximal work during chronic exposure at 3,800 m. J Appl Physiol 1971; 30: 406–8

    PubMed  CAS  Google Scholar 

  145. Maher JT, Jones LC, Hartley LH. Effects of high altitude exposure on submaximal endurance capacity of men. J Appl Physiol 1974; 37: 895–901

    PubMed  CAS  Google Scholar 

  146. Schumacher YO, Mueller P. The 4000m team pursuit cycling world record: theoretical and practical aspects. Med Sci Sports Exerc 2002; 34: 1029–36

    Article  PubMed  Google Scholar 

  147. Broker JP, Kyle CR, Burke ER. Racing cyclist power requirements in the 4000m individual and team pursuits. Med Sci Sports Exerc 1999; 31: 1677–85

    Article  PubMed  CAS  Google Scholar 

  148. Capelli C, Schena F, Zamparo P, et al. Energetics of best performance in track cycling. Med Sci Sports Exerc 1998; 30: 614–24

    Article  PubMed  CAS  Google Scholar 

  149. Marion GA, Leger LA. Energetics of indoor track cycling in trained competitors. Int J Sports Med 1988; 9: 234–9

    Article  PubMed  CAS  Google Scholar 

  150. Olds TS, Norton KI, Craig NP. Mathematical model of cycling performance. J Appl Physiol 1993; 75: 730–7

    PubMed  CAS  Google Scholar 

  151. Olds TS, Norton KI, Lowe ELA, et al. Modeling road cycling performance. J Appl Physiol 1995; 78: 1596–611

    PubMed  CAS  Google Scholar 

  152. Olds TS, Norton KI, Craig N, et al. The limits of the possible: models of power supply and demand in cycling. Aust J Sci Med Sport 1995; 27: 29–33

    PubMed  CAS  Google Scholar 

  153. Van Soest O, Casius LJ. Which factors determine the optimal pedaling rate in sprint cycling? Med Sci Sports Exerc 2000; 32: 1927–34

    Article  PubMed  Google Scholar 

  154. Beelen A, Sargeant A AJ. Effect of fatigue on maximal power output at different contraction velocities in humans. J Appl Physiol 1991; 71: 2332–7

    PubMed  CAS  Google Scholar 

  155. Bobbert MF, Gerritsen KGM, Litjens MCA, et al. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc 1996; 28: 1402–12

    Article  PubMed  CAS  Google Scholar 

  156. Heil DP. Defining the role of body mass as a determinant of time-trial cycling performance. Sixth IOC World Congress on Sport Science; 2002, Salt Lake Med Sci Sports Exerc 2002, 34 (5): IOC 29

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere gratitude and appreciation to those fellow scientists whose works are discussed and cited in this paper. Without their research the scientific knowledge reviewed herein would not exist. We are greatly indebted to the individuals who willingly physically participated in this research. Further, we want to acknowledge the reviews whose numerous constructive comments contributed to the comprehensiveness of this manuscript and for sharing their expertise and valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irvin E. Faria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faria, E.W., Parker, D.L. & Faria, I.E. The Science of Cycling. Sports Med 35, 313–337 (2005). https://doi.org/10.2165/00007256-200535040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200535040-00003

Keywords

Navigation