Skip to main content

The Science of Cycling

Physiology and Training — Part 1

Abstract

The aim of this review is to provide greater insight and understanding regarding the scientific nature of cycling. Research findings are presented in a practical manner for their direct application to cycling. The two parts of this review provide information that is useful to athletes, coaches and exercise scientists in the prescription of training regimens, adoption of exercise protocols and creation of research designs.

Here for the first time, we present rationale to dispute prevailing myths linked to erroneous concepts and terminology surrounding the sport of cycling. In some studies, a review of the cycling literature revealed incomplete characterisation of athletic performance, lack of appropriate controls and small subject numbers, thereby complicating the understanding of the cycling research. Moreover, a mixture of cycling testing equipment coupled with a multitude of exercise protocols stresses the reliability and validity of the findings.

Our scrutiny of the literature revealed key cycling performance-determining variables and their training-induced metabolic responses. The review of training strategies provides guidelines that will assist in the design of aerobic and anaerobic training protocols. Paradoxically, while maximal oxygen uptake (VO2max) is generally not considered a valid indicator of cycling performance when it is coupled with other markers of exercise performance (e.g. blood lactate, power output, metabolic thresholds and efficiency/economy), it is found to gain predictive credibility.

The positive facets of lactate metabolism dispel the ‘lactic acid myth’. Lactate is shown to lower hydrogen ion concentrations rather than raise them, thereby retarding acidosis. Every aspect of lactate production is shown to be advantageous to cycling performance. To minimise the effects of muscle fatigue, the efficacy of employing a combination of different high cycling cadences is evident. The subconscious fatigue avoidance mechanism ‘teleoanticipation’ system serves to set the tolerable upper limits of competitive effort in order to assure the athlete completion of the physical challenge.

Physiological markers found to be predictive of cycling performance include: (i) power output at the lactate threshold (LT2); (ii) peak power output (Wpeak) indicating a power/weight ratio of ≥5.5 W/kg; (iii) the percentage of type I fibres in the vastus lateralis; (iv) maximal lactate steady-state, representing the highest exercise intensity at which blood lactate concentration remains stable; (v) Wpeak at LT2; and (vi) Wpeak during a maximal cycling test. Furthermore, the unique breathing pattern, characterised by a lack of tachypnoeic shift, found in professional cyclists may enhance the efficiency and metabolic cost of breathing. The training impulse is useful to characterise exercise intensity and load during training and competition. It serves to enable the cyclist or coach to evaluate the effects of training strategies and may well serve to predict the cyclist’s performance.

Findings indicate that peripheral adaptations in working muscles play a more important role for enhanced submaximal cycling capacity than central adaptations. Clearly, relatively brief but intense sprint training can enhance both glycolytic and oxidative enzyme activity, maximum short-term power output and VO2max. To that end, it is suggested to replace ~15% of normal training with one of the interval exercise protocols. Tapering, through reduction in duration of training sessions or the frequency of sessions per week while maintaining intensity, is extremely effective for improvement of cycling time-trial performance. Overuse and over-training disabilities common to the competitive cyclist, if untreated, can lead to delayed recovery.

This is a preview of subscription content, access via your institution.

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX

References

  1. Bassett DR, Howley ET. Maximal oxygen uptake ‘classical’ versus ‘contemporary’ viewpoints. Med Sci Sports Exerc 1997; 29: 591–603

    PubMed  CAS  Article  Google Scholar 

  2. Brooks GA. Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc 2000; 32: 790–9

    PubMed  CAS  Article  Google Scholar 

  3. Noakes TD. Maximal oxygen uptake: ‘classical’ versus ‘contemporary’ viewpoints: a rebuttal. Med Sci Sports Exerc 1998; 30: 1381–98

    PubMed  CAS  Google Scholar 

  4. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004; 287: R502–16

    Article  Google Scholar 

  5. Spriet LL. Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharmacol 1990; 70: 157–65

    Article  Google Scholar 

  6. Wagner PD. New ideas on limitations to V̇O2max. Exerc Sport Sci Rev 2000; 28: 10–4

    PubMed  CAS  Google Scholar 

  7. Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc 2001; 33: 621–7

    PubMed  CAS  Google Scholar 

  8. Hagberg JM, Coyle EF. Physiological determinants of endurance performance as studied in competitive walkers. Med Sci Sports Exerc 1983; 15: 287–9

    PubMed  CAS  Article  Google Scholar 

  9. Heck H, Mader A, Hess G, et al. Justification of the 4 mmol/l lactate threshold. Int J Sports Med 1985; 6: 117–30

    PubMed  CAS  Article  Google Scholar 

  10. Sjodin B, Jacobs I, Karlsson J. Onset of blood lactate accumulation and enzyme activities in m. vastus lateralis in man. Int J Sports Med 1981; 2: 166–70

    PubMed  CAS  Article  Google Scholar 

  11. Wasserman K, Hansen JE, Sue DY, et al. Principles of exercise testing and interpretation. Philadelphia (PA): Lea & Febiger, 1987

    Google Scholar 

  12. Davis JA. Anaerobic threshold: a review of the concept and directions for future research. Med Sci Sports Exerc 1985; 17: 6–18

    PubMed  CAS  Google Scholar 

  13. Weltman AD, Snead D, Seip R, et al. Reliability and validity of a continuous incremental treadmill protocol for determination of lactate threshold fixed blood lactate concentration, and V̇O2max. Int J Sports Med 1990; 11: 26–32

    PubMed  CAS  Article  Google Scholar 

  14. Sidossis LS, Horowitz JF, Coyle EF. Load and volecity of contraction influence gross and delta mechanical efficiency. Int J Sports Med 1992; 13: 407–11

    PubMed  CAS  Article  Google Scholar 

  15. Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc 2002; 31: 472–85

    Google Scholar 

  16. Bentley DJ, Wilson GJ, Davie AJ, et al. Correlation between peak power output, muscular strength and cycle time trial performance in triathletes. J Sports Med Phys Fitness 1998; 38: 201–7

    PubMed  CAS  Google Scholar 

  17. Bishop D, Jenkins DG, MacKinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc 1998; 30: 1270–5

    PubMed  CAS  Article  Google Scholar 

  18. Fernández-García B, Perez-Landaluce J, Rodriguez-Alonso M, et al. Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc 2000; 32: 1002–6

    PubMed  Google Scholar 

  19. Harnish CR, Swensen TC, Pate RR. Methods for estimating the maximal lactate steady state in trained cyclists. Med Sci Sports Exerc 2001; 33: 1052–5

    PubMed  CAS  Article  Google Scholar 

  20. Heil D, Wilcox A, Quinn C. Cardiorespiratory responses to seat tube variation during steady state cycling. Med Sci Sports Exerc 1995; 27: 730–5

    PubMed  CAS  Google Scholar 

  21. Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimizing training programs and maximizing performance in highly trained endurance athletes. Sports Med 2002; 32: 53–73

    PubMed  Article  Google Scholar 

  22. Lepers R, Hausswirth C, Maffiuletti NA, et al. Evidence of neuromuscular fatigue following prolonged cycling exercise. Med Sci Sports Exerc 2000; 32: 1880–6

    PubMed  CAS  Article  Google Scholar 

  23. Lindsay FH, Hawley JA, Myburgh KH, et al. Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc 1996; 28: 1427–34

    PubMed  CAS  Article  Google Scholar 

  24. Lucía A, Hoyos J, Pérez M, et al. Inverse relationship between V̇O2max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc 2002; 34: 2079–84

    PubMed  Article  Google Scholar 

  25. Lucía A, Hoyos J, Chicharro JL. Preferred pedaling cadence in professional cycling. Med Sci Sports Exerc 2001; 33: 1361–6

    PubMed  Article  Google Scholar 

  26. Marsh AP, Martin PE. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Med Sci Sports Exerc 1997; 29: 1225–32

    PubMed  CAS  Article  Google Scholar 

  27. MacRae HS-H, Hise KJ, Allen PJ. Effects of front and dual suspension mountain bike systems on uphill cycling performance. Med Sci Sports Exerc 2000; 32: 1276–80

    Article  Google Scholar 

  28. Padilla S, Mujika I, Orbananos J, et al. Exercise intensity and load during mass-start stage races in professional road cycling. Med Sci Sports Exerc 2001; 33: 796–802

    PubMed  CAS  Google Scholar 

  29. Romer LE, McConnell AK, Jones DA. Inspiratory muscle fatigue in trained cyclists: effects of inspiratory muscle training. Med Sci Sports Exerc 2002; 34: 785–92

    PubMed  Article  Google Scholar 

  30. Schabort EJ, Hawley JA, Hopkins WG, et al. A new reliable laboratory test of endurance performance for road cyclists. Med Sci Sports Exerc 1998; 30: 1744–50

    PubMed  CAS  Article  Google Scholar 

  31. Stepto NK, Martin DT, Fallon KE, et al. Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc 2001; 33: 303–10

    PubMed  CAS  Google Scholar 

  32. Swensen TC, Harnish CR, Beitman L, et al. Non-invasive estimation of the maximal lactate steady state in trained cyclists. Med Sci Sports Exerc 1999; 31: 742–6

    PubMed  CAS  Article  Google Scholar 

  33. Latin RW, Berg KE, Smith P, et al. Validation of a cycle ergometry equation for predicting steady-rate V̇O2. Med Sci Sports Exerc 1993; 25: 970–4

    PubMed  CAS  Google Scholar 

  34. Lucía A, Hoyos J, Santalla A, et al. Kinetics of V̇O2 in professional cyclists. Med Sci Sports Exerc 2002; 34: 320–5

    PubMed  Article  Google Scholar 

  35. McCole SD, Claney K, Conte JC, et al. Energy expenditure during bicycling. J Appl Physiol 1990; 68: 748–53

    PubMed  CAS  Google Scholar 

  36. Baron R. Aerobic and anaerobic power characteristics of off-road cyclists. Med Sci Sports Exerc 2001; 33: 1387–93

    PubMed  CAS  Article  Google Scholar 

  37. Palmer GS, Noakes TD, Hawley JA. Effects of steady-state versus stochastic exercise on subsequent cycling performance. Med Sci Sports Exerc 1997; 29: 684–7

    PubMed  CAS  Article  Google Scholar 

  38. Padilla S, Mujika I, Cuesta G, et al. Level ground and uphill cycling ability in professional road cycling. Med Sci Sports Exerc 1999; 31: 878–85

    PubMed  CAS  Article  Google Scholar 

  39. Impellizzeri F, Sassi A, Rodriguez-Alonso M, et al. Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc 2002; 34: 1808–13

    PubMed  Article  Google Scholar 

  40. Liedl MA, Swain DP, Branch D. Physiological effects of constant versus variable power during endurance cycling. Med Sci Sports Exerc 1999; 31: 1472–7

    PubMed  CAS  Article  Google Scholar 

  41. Laursen PB, Shing CM, Peake JM, et al. Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc 2002; 34: 1801–7

    PubMed  Article  Google Scholar 

  42. Takaishi T, Ishida K, Katayama K, et al. Effect of cycling experience and pedal cadence on the near-infrared spectroscopy parameters. Med Sci Sports Exerc 2002; 34: 2062–71

    PubMed  CAS  Article  Google Scholar 

  43. British Association of Sport Sciences (Sports Physiology Section). Position statement on the physiological assessment of the elite competitor. 2nd ed. Leeds: British Association of Sport Sciences (Sports Physiology Section), 1988

    Google Scholar 

  44. Coyle EF, Feltner ME, Kautz SA. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991; 23: 93–107

    PubMed  CAS  Google Scholar 

  45. Faria IE, Faria EW, Roberts S, et al. Comparison of physical and physiological characteristics in elite young and mature cyclists. Res Q Exerc Sports Sci 1989; 60: 388–95

    CAS  Google Scholar 

  46. Lucía A, Pardo J, Durantez A, et al. Physiological differences between professional and elite road cyclists. Int J Sports Med 1998; 19: 342–8

    PubMed  Article  Google Scholar 

  47. Saltin B. Anaerobic capacity: past, present and prospective. In: Taylor AW, Gollinck PD, Green HJ, et al. editors. Biochemistry of exercise VII. Champaign (IL): Human Kinetics, 1990: 387–413

    Google Scholar 

  48. Swain DP. The influence of body mass in endurance bicycling. Med Sci Sports Exerc 1994; 26: 58–63

    PubMed  CAS  Google Scholar 

  49. Hawley JA, Noakes TD. Peak power output predicts maximal oxygen uptake and performance in trained cyclists. Eur J Appl Physiol 1992; 65: 79–83

    CAS  Article  Google Scholar 

  50. Sjodin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 1981; 2: 23–6

    PubMed  CAS  Article  Google Scholar 

  51. Kuipers H, Verstappen FTJ, Keizer HA, et al. Variability of aerobic performance in the laboratory and its physiological correlates. Int J Sports Med 1985; 6: 197–201

    PubMed  CAS  Article  Google Scholar 

  52. Fohrenbach R, Mader A, Hollmann W, et al. Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int J Sports Med 1987; 8: 11–8

    PubMed  CAS  Article  Google Scholar 

  53. Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/l-1 lactate. Int J Sports Med 1982; 3: 105–10

    PubMed  CAS  Article  Google Scholar 

  54. Sjodin B, Svedenhag J. Applied physiology of marathon running. Sports Med 1985; 2: 83–99

    PubMed  CAS  Article  Google Scholar 

  55. Palmer GS, Hawley JA, Dennis SC, et al. Heart rate response during a 4-d cycle stage race. Med Sci Sports Exerc 1994; 26: 1278–83

    PubMed  CAS  Google Scholar 

  56. Lucía A, Hoyos J, Chicharro JL. Physiology of professional cycling. Sports Med 2001; 31: 325–37

    PubMed  Article  Google Scholar 

  57. Horowitz JF, Sidossis LS, Coyle EF. High efficiency of type I muscle fibers improves performance. Int J Sports Med 1994; 15: 152–7

    PubMed  CAS  Article  Google Scholar 

  58. Coyle EF, Sidossis LS, Horowitz JF, et al. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc 1992; 24: 782–8

    PubMed  CAS  Google Scholar 

  59. Lucía A, Carvajal A, Calderon FS, et al. Breathing pattern in highly competitive cyclists during incremental exercise. Eur J Appl Physiol 1999; 79: 512–21

    Article  Google Scholar 

  60. Harms GA. Effect of skeletal muscle demand on cardiovascular function. Med Sci Sports Exerc 2000; 32: 94–9

    PubMed  CAS  Google Scholar 

  61. Wilber RL, Zawadzki KM, Kearney JT, et al. Physiological profiles of elite off-road and road cyclists. Med Sci Sports Exerc 1997; 29: 1090–4

    PubMed  CAS  Article  Google Scholar 

  62. Foxdal P, Sjodin B, Sjodin A, et al. The validity and accuracy of blood lactate measurements for prediction of maximal endurance running capacity. Int J Sports Med 1994; 15: 89–95

    PubMed  CAS  Article  Google Scholar 

  63. Jacobs I. Blood lactate: implications for training and sports performance. Sports Med 1986; 3: 10–25

    PubMed  CAS  Article  Google Scholar 

  64. Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the detection of work load intensities during endurance training. Eur J Appl Physiol 1979; 52: 25–34

    Article  Google Scholar 

  65. Keith SP, Jacobs I, McLellan TM. Adaptations to training at the individual anaerobic threshold. Eur J Appl Physiol 1992; 65: 316–23

    CAS  Article  Google Scholar 

  66. MacDougall JD, Wenger HA, Green HJ, editors. Physiological testing of the high-performance athlete. 2nd ed. Champaign (IL): Human Kinetics Books, 1991: 107–73

    Google Scholar 

  67. Barbeau P, Serresse O, Boulay MR. Using maximal and submaximal aerobic variables to monitor elite cyclists during a season. Med Sci Sports Exerc 1993; 25: 1062–9

    PubMed  CAS  Google Scholar 

  68. Faria IE. Energy expenditure, aerodynamics and medical problems in cycling: an update. Sports Med 1992; 14: 43–63

    PubMed  CAS  Article  Google Scholar 

  69. Pfeiffer RP, Harden BP, Landis D, et al. Correlating indices of aerobic capacity with performance in elite women road cyclists. J Strength Cond Res 1993; 7: 201–5

    Google Scholar 

  70. Lucía A, Hoyos J, Perez M, et al. Heart rate and performance parameters in elite cyclists a longitudinal study. Med Sci Sports Exerc 2000; 32: 1777–82

    PubMed  Article  Google Scholar 

  71. Lacour JR, Padilla S, Denis C. The inflection curve frequency of cardiac power is not indicative of the anaerobic threshold [in French]. Sci Motr 1987; 1: 3–6

    Google Scholar 

  72. Sjogaard G. Muscle morphology and metabolic potential in elite road cyclists during a season. Int J Sports Med 1984; 5: 250–4

    PubMed  CAS  Article  Google Scholar 

  73. Terrados N, Melichna J, Sylven C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol 1988; 57: 203–9

    CAS  Article  Google Scholar 

  74. Gnehm P, Reichenbach S, Altpeter E, et al. Influence of different racing positions on metabolic costs in elite cyclists. Med Sci Sports Exerc 1997; 29: 818–23

    PubMed  CAS  Article  Google Scholar 

  75. Saltin B, Astrand PO. Maximal oxygen uptake in athletes. J Appl Physiol 1967; 23: 353–8

    PubMed  CAS  Google Scholar 

  76. Burke ER, Cerny F, Costill D, et al. Characteristics of skeletal muscle in competitive cyclists. Med Sci Sports Exerc 1977; 9: 109–12

    CAS  Google Scholar 

  77. Hermansen L. Oxygen transport during exercise in human subjects. Acta Physiol Scand Suppl 1973; 399: 1–104

    PubMed  CAS  Google Scholar 

  78. Burke ER. Physiological characteristics of competitive cyclists. Phys Sportsmed 1980; 8: 79–84

    Google Scholar 

  79. Stromme SB, Ingjer F, Meen HD. Assessment of maximal aerobic power in specifically trained athletes. J Appl Physiol 1977; 42: 833–7

    PubMed  CAS  Google Scholar 

  80. Impellizzeri F, Sassi A, Rodriguez-Alonso M, et al. Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc 2002; 34: 1808–13

    PubMed  Article  Google Scholar 

  81. Padilla S, Mujika I, Cuesta G, et al. Validity of a velodrome test for competitive road cyclists. Eur J Appl Physiol 1996; 73: 446–51

    CAS  Article  Google Scholar 

  82. Palmer GS, Dennis SC, Noakes TD, et al. Assessment of the reproducibility of performance testing on an air-braded cycle ergometer. Int J Sports Med 1996; 17: 293–8

    PubMed  CAS  Article  Google Scholar 

  83. Tanaka H, Bassett Jr DR, Swensen TC, et al. Aerobic and anaerobic power characteristics of competitive cyclists in the United States Federation. Int J Sports Med 1993; 14: 334–8

    PubMed  CAS  Article  Google Scholar 

  84. Hopkins SR, McKenzie DC. The laboratory assessment of endurance performance in cyclists. Can J Appl Physiol 1994; 19: 266–74

    PubMed  CAS  Article  Google Scholar 

  85. Costill DL, Thompson H, Roberts EL. Fractional utilization of aerobic capacity during distance running. Med Sci Sports Exerc 1973; 5: 248–53

    CAS  Google Scholar 

  86. Saltin B, Strange S. Maximal oxygen uptake: ‘old’ and ‘new’ arguments for a cardiovascular limitation. Med Sci Sports Exerc 1992; 24: 30–7

    PubMed  CAS  Google Scholar 

  87. Wagner PD. Muscle V̇O2 transport dependent control of metabolism. Med Sci Sports Exerc 1995; 27: 47–53

    PubMed  CAS  Google Scholar 

  88. Farrell PA, Wilmore JH, Coyle EF, et al. Plasma lactate accumulation and distance running performance. Med Sci Sports Exerc 1979; 11: 338–44

    CAS  Google Scholar 

  89. Ivy JL, Withers RT, van Handel PJ, et al. Muscle respiratory capacity and fiber type as determinants of lactate threshold. J Appl Physiol 1980; 48: 523–7

    PubMed  CAS  Google Scholar 

  90. Sjodin B, Jacobs I, Svedenhag J. Changes in the onset of blood lactate accumulation and muscle enzymes after training at OBLA. Eur J Appl Physiol 1982; 49: 45–57

    CAS  Article  Google Scholar 

  91. Tesch PA, Sharp DS, Daniels WL. Influence of fiber type composition and capillary density on OBLA. Int J Sports Med 1981; 2: 252–5

    Article  Google Scholar 

  92. Bar-Or O. The Wingate anaerobic test: an update on methodology, reliability and validity. Sports Med 1987; 4: 381–94

    PubMed  CAS  Article  Google Scholar 

  93. Boobis L, Williams C, Wootton SA. Human muscle metabolism during brief maximal exercise [abstract]. J Physiol (Lond) 1982; 338: 21P-2P

    Google Scholar 

  94. Hultman E, Sjoholm H. Energy metabolism and contraction force of human skeletal muscle situ during electrical stimulation. J Physiol (Lond) 1983; 345: 525–32

    CAS  Google Scholar 

  95. Jones NL, McCartney N. Influence of muscle power on aerobic performance and the effects of training. Acta Med Scand Suppl 1986; 711: 115–22

    PubMed  CAS  Google Scholar 

  96. Serresse O, Lortie G, Bouchard C, et al. Estimation of the contribution of the various energy systems during maximal work of short duration. Int J Sports Med 1988; 9: 456–60

    PubMed  CAS  Article  Google Scholar 

  97. Smith JC, Hill DW. Contribution of energy systems during a Wingagte power test. Br J Sports Med 1991; 25: 196–9

    PubMed  CAS  Article  Google Scholar 

  98. Spriet LL, Lindinger ML, McKelvie RS, et al. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 1989; 66: 8–13

    PubMed  CAS  Google Scholar 

  99. Withers RT, Sherman WM, Clark DG, et al. Muscle metabolism during 30, 60, and 90 s of maximal cycling on an air-braked ergometer. Eur J Appl Physiol Occup Physiol 1991; 63: 354–62

    PubMed  CAS  Article  Google Scholar 

  100. Harris R, Hultman E, Nordesjo LO. Glycogen glycolytic intermediates and high energy phosphates determined in biopsy samples of muscles quadriceps femoris of man at rest. Scand J Clin Lab Invest 1974; 33: 109–20

    PubMed  CAS  Article  Google Scholar 

  101. McCartney N, Spriet LL, Heigenhauser GJF, et al. Muscle power metabolism in maximal intermittent exercise. J Appl Physiol 1986; 60: 1164–9

    PubMed  CAS  Google Scholar 

  102. Sahlin K, Harris RC, Hultman E. Resynthesis of ceratine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand J Clin Lab Invest 1979; 39: 551–8

    PubMed  CAS  Article  Google Scholar 

  103. Gaitanos G, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75: 712–9

    PubMed  CAS  Google Scholar 

  104. Donovan CM, Brooks GA. Endurance training affects lactate clearance, not lactate production. Am J Physiol 1983; 244: E83–92

    Google Scholar 

  105. Santalla A, Pérez M, Montilla M, et al. Sodium bicarbonate ingestion does not alter the V̇O2 slow component of professional cyclists. J Sports Sci 2003; 1 (1): 39–47

    Article  Google Scholar 

  106. Juel C. Muscle pH regulation: role of training. Acta Physiol Scand 1998; 162: 359–66

    PubMed  CAS  Article  Google Scholar 

  107. Ward-Smith AJ. Aerobic and anaerobic energy conversion during high-intensity exercise. Med Sci Sports Exerc 1999; 31: 1855–60

    PubMed  CAS  Article  Google Scholar 

  108. Conley KE, Kemper WF, Crowther GJ. Limits to sustainable muscle performance: interaction between glycolysis and oxidative phosphorylation. J Exp Biol 2001; 204: 3189–94

    PubMed  CAS  Google Scholar 

  109. Hochachka PW, Beatty CL, Burelle Y, et al. The lactate paradox in human high-altitude physiological performance. News Physiol Sci 2002; 17: 122–6

    PubMed  CAS  Google Scholar 

  110. Faria EW, Parker DL, Faria IE. The science of cycling: factors affecting performance – part II. Sports Med 2005; 35 (4): 313–37

    PubMed  Article  Google Scholar 

  111. Edwards RHT. Biochemical bases of fatigue in exercise performance: catastrophe theory of muscular fatigue. In: Knuttgen HG, Vogel RD, Poortmans JR. editors. Biochemistry of exercise. Champaign (IL): Human Kinetics, 1983: 3–28

    Google Scholar 

  112. Colliander EB, Dudley GA, Tesch PA. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contraction. Eur J Appl Physiol 1988; 58: 81–6

    CAS  Article  Google Scholar 

  113. Hautier CA, Arsac LM, Deghdegh K, et al. Influence of fatigue on EMG/force ratio and cocontraction in cycling. Med Sci Sports Exerc 2000; 32: 839–43

    PubMed  CAS  Article  Google Scholar 

  114. Meeusen R, De Meirleir K. Exercise and brain neurotransmission. Sports Med 1995; 20: 160–88

    PubMed  CAS  Article  Google Scholar 

  115. Davis MJ, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc 1997; 29: 45–57

    PubMed  CAS  Google Scholar 

  116. Davis MJ. Nutrition, neurotransmitters, and central nervous system fatigue. In: Maughan RJ, editor. Oxford: Blackwell Science Ltd, 2000: 171–83

    Google Scholar 

  117. Piacentini MF, Meeusen R, Buyse L, et al. No effect of a noradrenergic reuptake inhibitor on performance in trained cyclists. Med Sci Sports Exerc 2002; 34: 1189–93

    PubMed  CAS  Article  Google Scholar 

  118. Hansen JJ, Faria EW, Faria IE. Effect of 5-hydroxytryptophan on central fatigue [abstract]. Med Sci Sports Exerc 1999; 31: S118

    Article  Google Scholar 

  119. St Clair Gibson A, Schabort EJ, Noakes TD. Reduced neuromuscular activity and force generation during prolonged cycling. Am J Physiol Regul Integr Comp Physiol 2001; 281: R187–96

    Google Scholar 

  120. Ulmer HV. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia 1996; 52: 416–20

    PubMed  CAS  Article  Google Scholar 

  121. Noakes TD, Peltonen JE, Rusko HK. Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. J Exp Biol 2001; 204: 3225–34

    PubMed  CAS  Google Scholar 

  122. Lucía A, Hoyos J, Santalla A, et al. Tour de France vs Vuelta a España: which is harder? Med Sci Sports Exerc 2003; 35: 872–8

    PubMed  Article  Google Scholar 

  123. Johnson DB, Aaron EA, Babcock MA, et al. Respiratory muscle fatigue during exercise: implications for performance. Med Sci Sports Exerc 1996; 28: 1129–37

    PubMed  CAS  Article  Google Scholar 

  124. Coirault C, Chemla D, Lecarpentier Y. Relaxation of diaphragm muscles. J Appl Physiol 1999; 87: 1243–52

    PubMed  CAS  Google Scholar 

  125. Caine MP, McConnell AK. The inspiratory muscles can be trained differentially to increase strength or endurance using a pressure threshold, inspiratory device. Eur Respir J 1998; 12: 58–9

    Google Scholar 

  126. Williams JS, Wongsathikun J, Boon SM, et al. Inspiratory muscle training fails to improve endurance capacity in athletes. Med Sci Sports Exerc 2002; 34: 1194–8

    PubMed  Article  Google Scholar 

  127. Perez HR. The effects of competitive road-racing cycling on the body composition, pulmonary function, and cardiovascular system of sport cyclists. J Sports Med 1981; 21: 165–72

    CAS  Google Scholar 

  128. Snyder AC, Woulfe TJ, Walsh R, et al. Insensitivity of laboratory measures to training induced improvement in athletes [abstract]. Physiologist 1989; 32: 230

    Google Scholar 

  129. Lucía A, Hoyos J, Perez M, et al. Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc 2000; 32: 1777–82

    PubMed  Article  Google Scholar 

  130. Lucía A, Hoyos J, Pardo J, et al. Metabolic and neuromuscular adaptations to endurance training in professional cyclists: a longitudinal study. Jpn J Physiol 2000; 50: 381–8

    PubMed  Article  Google Scholar 

  131. Boulay MR, Barbeau P, Giroux M, et al. Peripheral and central adaptations in cyclists during a training and competitive season [abstract]. Med Sci Sports Exerc 1992; 24: S95

    Google Scholar 

  132. Banister EW. Modeling elite athletic performance. In: Green HJ, McDougal JD, Wenger HA, editors. Physiological testing of elite athletes. Champaign (IL): Human Kinetics, 1991: 403–24

    Google Scholar 

  133. Banister EW, Carter JB, Zarkadas PC. Training theory and taper: validation in triathlon athletes. Eur J Appl Physiol 1999; 79: 182–91

    CAS  Article  Google Scholar 

  134. Candau R, Busso T, Lacour JR. Effect of training on iron status in cross-country skiers. Eur J Appl Physiol 1992; 64: 497–502

    CAS  Article  Google Scholar 

  135. Morton RH, Fitz-Clarke JR, Banister EW. Modeling human performance in running. J Appl Physiol 1990; 69: 1171–7

    PubMed  CAS  Google Scholar 

  136. Padilla S, Mujika I, Angulo F, et al. Scientific approach to the 1-h cycling world record. J Appl Physiol 2000; 89: 1522–7

    PubMed  CAS  Google Scholar 

  137. Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res 2001; 15: 109–15

    PubMed  CAS  Google Scholar 

  138. Skinner JS, Mclellan TH. The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport 1980; 51: 234–48

    PubMed  CAS  Google Scholar 

  139. Coen B, Schwarz L, Urhausen A, et al. Control of training in middle- and long-distance running by means of individual anaerobic threshold. Int J Sports Med 1991; 12: 519–24

    PubMed  CAS  Article  Google Scholar 

  140. Hollmann W, Rost R, Liesen H, et al. Assessment of different forms of physical activity with respect to preventative and rehabilitative cardiology. Int J Sports Med 1981; 2: 67–80

    PubMed  CAS  Article  Google Scholar 

  141. Weltman A, Seip R, Snead D, et al. Exercise training at and above the lactate threshold in previously untrained women. Int J Sports Med 1992; 13: 257–63

    PubMed  CAS  Article  Google Scholar 

  142. Schumacher YO, Mueller P. The 4000m team pursuit cycling world record: theoretical and practical aspects. Med Sci Sports Exerc 2002; 34: 1029–36

    PubMed  Article  Google Scholar 

  143. Hawley JA, Myburgh KH, Noakes TD, et al. Training techniques to improve fatigue resistance and enhance endurance performance. J Sports Sci 1997; 15: 325–33

    PubMed  CAS  Article  Google Scholar 

  144. MacDougall JD, Hicks AL, MacDonald JR, et al. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 1998; 84: 2138–42

    PubMed  CAS  Article  Google Scholar 

  145. Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic and V̇O2max. Med Sci Sports Exerc 1997; 28: 1327–30

    Google Scholar 

  146. Stepto NK, Hawley JA, Dennis SC, et al. Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 1999; 31: 736–41

    PubMed  CAS  Article  Google Scholar 

  147. Rodas G, Ventura JL, Cadefau JA, et al. A short training programme for the improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol 2000; 82: 480–6

    PubMed  CAS  Article  Google Scholar 

  148. Westgarth-Taylor C, Hawley JA, Rickard S, et al. Metabolic and performance adaptations to interval training in endurance-trained cyclists. Eur J Appl Physiol 1997; 75: 298–304

    CAS  Article  Google Scholar 

  149. Weston AR, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity training by well-trained cyclists. Eur J Appl Physiol 1997; 75: 7–13

    CAS  Article  Google Scholar 

  150. Houmard J, Scott BK, Justice CL, et al. The effects of a taper on performance in distance runners. Med Sci Exerc Sports 1994; 26: 624–31

    CAS  Google Scholar 

  151. Trappe S, Costill DL, Thomas R. Effects of swim taper on whole muscle and single muscle fiber contractile properties. Med Sci Sports Exerc 2001; 33: 48–56

    PubMed  CAS  Google Scholar 

  152. Neary JP, Martin TP, Quinne HA. Effects of taper on endurance cycling capacity and single muscle fiber properties. Med Sci Sports Exerc 2003; 35: 1875–81

    PubMed  Article  Google Scholar 

  153. Hooper SL, MacKinnon LT, Howard A, et al. Markers for monitoring overtraining and recovery. Med Sci Sports Exerc 1995; 27: 106–12

    PubMed  CAS  Google Scholar 

  154. Hooper SL, MacKinnon LT, Howard A. Physiological and psychometric variables for monitoring recovery during tapering for major competition. Med Sci Sports Exerc 1999; 31: 1205–10

    PubMed  CAS  Article  Google Scholar 

  155. Hooper SL, MacKinnon LT, Gordon RD, et al. Hormonal responses of elite swimmers to overtraining. Med Sci Sports Exerc 1993; 25: 741–7

    PubMed  CAS  Google Scholar 

  156. McNair DM, Lorr M, Droppleman LF. EDITS manual for the profile of mood status. San Diego (CA): Educational and Industrial Testing Services, 1971: 1–29

    Google Scholar 

  157. Gregor RJ, Broker JP, Ryan MM. The biomechanics of cycling. In: Holloszy JO, editor. Exercise and science review. Baltimore (MD): Williams & Wilkins, 1991: 127–9

    Google Scholar 

  158. Kuipers H. Training and overtraining: an introduction. Med Sci Sports Exerc 1998; 30: 1137–9

    PubMed  CAS  Article  Google Scholar 

  159. Snyder AC. Overtraining and glycogen depletion hypothesis. Med Sci Sports Exerc 1998; 30: 1146–50

    PubMed  CAS  Article  Google Scholar 

  160. Kuipers H, Keizer HA. Overtraining in elite athletes. Sports Med 1988; 6: 79–92

    PubMed  CAS  Article  Google Scholar 

  161. Uusitalo A, Tahvanainen K, Uusitalo A, et al. Noninvasive evaluation of sympathovagal balance in athletes by time and frequency domain analyses of heart and blood pressure variability. Clin Physiol 1996; 16: 575–88

    PubMed  CAS  Article  Google Scholar 

  162. Wiriam RW, Lambert MI. Heart rate during sleep: implications for monitoring training status. J Sports Sci Med 2003; 2: 133–8

    Google Scholar 

  163. Fernández-García B, Lucía A, Hoyos J, et al. The response of sexual and stress hormones of male pro-cyclists during continuous intense competition. Int J Sports Med 2002; 23: 555–60

    PubMed  Article  Google Scholar 

  164. Smith DJ, Norris SR. Changes in glutamine and glutamate concentrations for tracking training tolerance. Med Sci Sports Exerc 2000; 32: 684–9

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere gratitude and appreciation to those fellow scientists whose works are discussed and cited in this paper. Without their research the scientific knowledge reviewed herein would not exist. We are greatly indebted to the individuals who willingly physically participated in this research. Further, we want to acknowledge the reviews whose numerous constructive comments contributed to the comprehensiveness of this manuscript and for sharing their expertise and valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik W. Faria.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Faria, E.W., Parker, D.L. & Faria, I.E. The Science of Cycling. Sports Med 35, 285–312 (2005). https://doi.org/10.2165/00007256-200535040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200535040-00002

Keywords

  • Heart Rate Variability
  • Blood Lactate Concentration
  • Interval Training
  • Lactate Threshold
  • Maximal Lactate Steady State