Does Neuromuscular Electrical Stimulation Strengthen the Quadriceps Femoris?

A Systematic Review of Randomised Controlled Trials

Abstract

Devices for neuromuscular electrical stimulation (NMES) are increasingly used by individuals without specific injuries and are standard equipment in most physical therapy practices. The most often stimulated muscle group is the quadriceps femoris. We designed a systematic review and meta-analysis of randomised controlled trials to determine whether NMES is an effective modality for strength augmentation of the quadriceps femoris.

A full content search for randomised controlled trials was performed in Medline, Embase, Cinahl, the Cochrane Controlled Trials Register and the Physical Therapy Evidence Database. Maximum volitional isometric or isokinetic muscle torque in Nm was used as main outcome measure.

Thirty-five trials were included and evaluated. A fundamental distinction was made between the trials using subjects with unimpaired quadriceps femoris muscles and the trials using post-injury or post-operative subjects. In the unimpaired quadriceps subgroup, meta-analyses were performed for the comparisons ‘NMES versus no exercises’ and ‘NMES versus volitional exercises’. All other comparisons were evaluated descriptively. The included trials were generally of poor quality and meta-analytic data indicate that publication bias may be present. The evaluated data suggest that, both for the unimpaired and impaired quadriceps, NMES makes sense compared with doing no exercises but volitional exercises appear to be more effective in most situations.

Based on the available evidence, NMES may only be preferred over volitional training for within-cast muscle training and perhaps in specific situations where volitional training does not receive sufficient patient compliance. Further research should be directed toward identifying the clinical impact at activity and participation levels and the optimal stimulation parameters of this modality.

This is a preview of subscription content, access via your institution.

Table I
Fig. 1
Table II
Table III
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table IV
Fig. 6
Fig. 7

References

  1. 1.

    Stillings D. Electrical stimulation for foot drop, 1772. Med Instrum 1975 Nov-Dec; 9 (6): 276–7

    PubMed  CAS  Google Scholar 

  2. 2.

    Pichon F, Chatard JC, Martin A, et al. Electrical stimulation and swimming performance. Med Sci Sports Exerc 1995; 27 (12): 1671–6

    PubMed  CAS  Google Scholar 

  3. 3.

    Maffiuletti NA, Cometti G, Amiridis IG, et al. The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability. Int J Sports Med 2000; 21: 437–43

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Harbour R, Miller J. A new system for grading recommendations in evidence based guidelines. BMJ 2001; 323: 334–6

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Lloyd T, De Domenico G, Strauss GR, et al. A review of the use of electro-motor stimulation in human muscles. Aust J Physiother 1988; 32 (1): 18–30

    Google Scholar 

  6. 6.

    Callaghan MJ, Oldham JA. A critical review of electrical stimulation of the quadriceps muscles. Crit Rev Phys Rehab Med 1997; 9 (384): 301–14

    Google Scholar 

  7. 7.

    Hainaut K, Duchateau J. Neuromuscular electrical stimulation and voluntary exercise. Sports Med 1992; 14 (2): 100–13

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Kramer JF, Mendryk SW. Electrical stimulation as a strength improvement technique: a review. J Orthop Sports Phys Ther 1982; 4 (2): 91–8

    PubMed  CAS  Google Scholar 

  9. 9.

    Selkowitz DM. High frequency electrical stimulation in muscle strengthening. Am J Sports Med 1989; 17 (1): 103–11

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Marks R, Ungar M, Ghasemmi M. Electrical stimulation for osteoarthritis of the knee: biological basis and systematic review. N Z J Physiother 2000; 28 (3): 6–21

    Google Scholar 

  11. 11.

    Dickersin K, Scherer R, Lefebvre C. Identifying relevant studies for systematic reviews. BMJ 1994; 309: 1286–91

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Verhagen AP, de Vet HCW, de Bie RA, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol 1998; 51 (12): 1235–41

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    World Health Organization. International Classification of Functioning, Disability and Health (ICF). Geneva: World Health Organization, 2001

    Google Scholar 

  14. 14.

    Baujat B, Mahé C, Pignon JP, et al. A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials. Stat Med 2002; 21: 2641–52

    PubMed  Article  Google Scholar 

  15. 15.

    Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56 (2): 455–63

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Balogun JA, Onilari AO, Akeju OA, et al. High voltage electrical stimulation in the augmentation of muscle strength. Arch Phys Med Rehabil 1993; 74: 910–6

    PubMed  CAS  Google Scholar 

  17. 17.

    Caggiano E, Emrey T, Shirley S, et al. Effects of electrical stimulation or voluntary contraction for strengthening the quadriceps femoris muscles in an aged male population. J Orthop Sports Phys Ther 1994; 20 (1): 22–8

    PubMed  CAS  Google Scholar 

  18. 18.

    Singer KP, Gow PJ, Otway WF, et al. A comparison of electrical muscle stimulation, isometric, isotonic and isokinetic strength training programs. N Z J Sports Med 1983; 11 (3): 61–3

    Google Scholar 

  19. 19.

    Wolf SL, Ariel GB, Saar D, et al. The effect of muscle stimulation during resistive training on performance parameters. Am J Sports Med 1986; 14 (1): 18–23

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Hortobagyi T, Lambert J, Scot K. Incomplete muscle activation after training with electromyostimulation. Can J Appl Physiol 1998; 23 (3): 261–70

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Hortobagyi T, Scot K, Lambert J, et al. Cross-education of muscle strength is greater with stimulated than voluntary contractions. Motor Control 1999; 3: 205–19

    PubMed  CAS  Google Scholar 

  22. 22.

    Kramer JF, Semple JE. Comparison of selected strengthening techniques for normal quadriceps. Physiother Can 1983; 35 (6): 300–4

    Google Scholar 

  23. 23.

    Mohr T, Carlson B, Sulentic C, et al. Comparison of isometric exercise and high volt galvanic stimulation on quadriceps femoris muscle strength. Phys Ther 1985; 65 (5): 606–9

    PubMed  CAS  Google Scholar 

  24. 24.

    Romero JA, Sanford TL, Schroeder RV, et al. The effects of electrical stimulation of normal quadriceps on strength and girth. Med Sci Sports Exerc 1982; 14 (3): 194–7

    PubMed  CAS  Google Scholar 

  25. 25.

    Currier DP, Mann R. Muscular strength development by electrical stimulation in healthy individuals. Phys Ther 1983; 63 (6): 915–21

    PubMed  CAS  Google Scholar 

  26. 26.

    Fahey TD, Harvey M, Schroeder RV, et al. Influence of sex differences and knee joint position on electrical stimulation modulated strength increases. Med Sci Sports Exerc 1985; 17 (1): 144–7

    PubMed  CAS  Google Scholar 

  27. 27.

    Kubiak RJ, Whitman KM, Johnston RM. Changes in quadriceps femoris muscle strength using isometric exercise versus electrical stimulation. J Orthop Sports Phys Ther 1987; 8 (11): 537–41

    PubMed  CAS  Google Scholar 

  28. 28.

    Lai HS, De Domenico G, Strauss GR. The effect of different electro-motor stimulation training intensities on strength improvement. Aust J Physiother 1988; 34 (3): 151–64

    Google Scholar 

  29. 29.

    Laughman RK, Youdas JW, Garret TR, et al. Strength changes in the normal quadriceps femoris muscle as a result of electrical muscle stimulation. Phys Ther 1983; 63 (4): 494–9

    PubMed  CAS  Google Scholar 

  30. 30.

    McMiken DF, Todd-Smith M, Thompson C. Strengthening of human quadriceps muscles by cutaneous electrical stimulation. Scand J Rehabil Med 1983; 15: 25–8

    PubMed  CAS  Google Scholar 

  31. 31.

    Selkowitz DM. Improvement in isometric strength of the quadriceps femoris muscle after training with electrical stimulation. Phys Ther 1985; 65 (2): 186–96

    PubMed  CAS  Google Scholar 

  32. 32.

    Halkjaer-Kristensen J, Ingemann-Hansen T. Wasting of the human quadriceps muscle after knee ligament injuries. Scand J Rehab Med 1985; Suppl. 13: 29–37

    Google Scholar 

  33. 33.

    Riel KA, Bernet P. Transcutaneous electrical muscle stimulation during post-operative knee immobilization [in German]. Sportmedizin 1990; 41: 425–8

    Google Scholar 

  34. 34.

    Anderson AF, Lipscomb AB. Analysis of rehabilitation techniques after anterior cruciate reconstruction. Am J Sports Med 1989; 17 (2): 154–60

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Buhmann HW, Schleicher W, Urbach D, et al. Electromyostimulation and isokinetic training in rehabilitation after anterior cruciate surgery [in German]. Phys Rehab Kur Med 1998; 8 (1): 13–6

    Article  Google Scholar 

  36. 36.

    Callaghan MJ, Oldham JA, Winstanley J. A comparison of two types of electrical stimulation of the quadriceps in the treatment of patellofemoral pain syndrome. Clin Rehab 2001; 15: 637–46

    Article  CAS  Google Scholar 

  37. 37.

    Delitto A, Rose SJ, KcKowen JM, et al. Electrical stimulation versus voluntary exercise in strengthening thigh musculature after anterior cruciate ligament surgery. Phys Ther 1988; 68 (5): 660–3

    PubMed  CAS  Google Scholar 

  38. 38.

    Draper V, Ballard L. Electrical stimulation versus electromyographic biofeedback in the recovery of quadriceps femoris muscle function following anterior cruciate ligament surgery. Phy Ther 1991; 71 (6): 455–64

    CAS  Google Scholar 

  39. 39.

    Gobelet C, Frey M, Bonard A. Muscle development techniques and retropatellar chondropathy [in French]. Rev Rhum 1992; 59 (1): 23–7

    PubMed  CAS  Google Scholar 

  40. 40.

    Gould N, Donnermeyer D, Pope M, et al. Transcutaneous muscle stimulation as a method to retard disuse atrophy. Clin Orthop Rel Res 1982; 164: 215–20

    Google Scholar 

  41. 41.

    Lieber RL, Silva PD, Daniel DM. Equal effectiveness of electrical and volitional strength training for quadriceps femoris muscles after anterior cruciate ligament surgery. J Orthop Res 1996; 14 (1): 131–8

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Oldham JA, Howe TE, Petterson T, et al. Electrotherapeutic rehabilitation of the quadriceps in elderly osteoarthritic patients: a double blind assessment of patterned neuromuscular stimulation. Clin Rehab 1995; 9 (1): 10–20

    Article  Google Scholar 

  43. 43.

    Paternostro-Sluga T, Fialka C, Alacamliogliu Y, et al. Neuromuscular electrical stimulation after anterior cruciate ligament surgery. Clin Orthop Rel Res 1999; 368: 166–75

    Google Scholar 

  44. 44.

    Quittan M, Wiesinger GF, Sturm B, et al. Improvement of thigh muscles by neuromuscular electrical stimulation in patients with refractory heart failure. Am J Phys Med Rehab 2001; 80 (3): 206–14

    Article  CAS  Google Scholar 

  45. 45.

    Sisk TD, Stralka SW, Deering MB, et al. Effect of electrical stimulation on quadriceps strength after reconstructive surgery of the anterior cruciate ligament. Am J Sports Med 1987; 15 (3): 215–20

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Snyder-Mackler L, Ladin Z, Schepsis AA, et al. Electrical stimulation of the thigh muscles and reconstruction of the anterior cruciate ligament. J Bone Joint Surg 1991; 73-A (7): 1025–36

    PubMed  CAS  Google Scholar 

  47. 47.

    Snyder-Mackler L, Delitto A, Bailey SL, et al. Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. J Bone Joint Surg 1995; 77-A (8): 1166–73

    PubMed  CAS  Google Scholar 

  48. 48.

    Wigerstad-Lossing I, Grimby G, Jonsson T, et al. Effects of electrical muscle stimulation combined with voluntary contractions after knee ligament surgery. Med Sci Sports Exerc 1988; 20 (1): 93–8

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Williams RA, Morrissey MC, Brewster CE. The effect of electrical stimulation on quadriceps strength and thigh circumference in menisectomy patients. J Orthop Sports Phys Ther 1986; 8 (3): 143–6

    PubMed  CAS  Google Scholar 

  50. 50.

    Follmann D, Elliot P, Suh I, et al. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol 1992; 45 (7): 769–73

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Huwiler-Muntener K, Jüni P, Junker C, et al. Quality of reporting of randomized trials as a measure of methodological quality. JAMA 2002 Jun 5; 287 (21): 2801–4

    PubMed  Article  Google Scholar 

  52. 52.

    Juni P, Witschi A, Bloch R, et al. The hazards of scoring the quality of clinical trials for meta-analysis. JAMA. 1999 Sep 15; 282 (11): 1054–60

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Greenland S. Can meta-analysis be salvaged? Am J Epidemiol 1994 Nov 1; 140 (9): 783–7

    PubMed  CAS  Google Scholar 

  54. 54.

    Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17: 1–12

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Berlin JA. Does blinding of readers affect the results of meta-analyses? Lancet 1997; 350: 185–6

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Verhagen AP, de Vet HCW, de Bie RA, et al. Balneotherapy and quality assessment; inter-observer reliability of the Maastricht criteria list and the need for blinded quality assessment. J Clin Epidemiol 1998; 51: 335–41

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was not supported by any grants. The authors acknowledge Katrien Bartholomeeusen, Simon Brumagne, Sara van Deun and Koen Janssens for their assistance during the validity assessments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leon Bax.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bax, L., Staes, F. & Verhagen, A. Does Neuromuscular Electrical Stimulation Strengthen the Quadriceps Femoris?. Sports Med 35, 191–212 (2005). https://doi.org/10.2165/00007256-200535030-00002

Download citation

Keywords

  • Allocation Concealment
  • Quadriceps Femoris
  • Participation Level
  • Muscle Torque
  • Neuromuscular Electrical Stimulation