Skip to main content
Log in

Effects of Exercise on the Fatty-Acid Composition of Blood and Tissue Lipids

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

This article reviews the effects of acute and chronic exercise on the fatty-acid composition of animal and human tissues (plasma, skeletal muscle, heart, adipose tissue, liver, artery and erythrocytes), as reported in 68 studies spanning four decades. The most consistently observed effect has been an increase in the relative amount of unsaturated, especially monounsaturated, non-esterified fatty acids in plasma of both animals and humans after acute exercise. Chronic exercise seems to increase the proportion of polyunsaturated fatty acids and ω6 fatty acids, while decreasing the proportion of monounsaturated fatty acids in animal and human adipose tissue. Additionally, chronic exercise seems to decrease the relative amount of unsaturated fatty acids in liver lipids of animals and humans. There is no consensus regarding the effect of exercise on the fatty-acid composition of lipids in any other tissue. In general, the effects of exercise are independent of nutrition and, regarding skeletal muscle, muscle fibre type.

The available literature shows that, in addition to modifying the concentrations of animal and human tissue lipids, exercise also changes their fatty-acid profile. Unfortunately, the available studies are so much divided among exercise models, species and biological samples that a cohesive picture of the plasticity of the fatty-acid pattern of most tissues toward exercise has not emerged. Future studies should focus on determining the fatty-acid profile of separate lipid classes (rather than total lipids) in separate subcellular fractions (rather than whole tissues), examining tissues and organs on which no data are available and exploring the mechanisms of the exercise-induced changes in fatty-acid composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Table II
Table III
Fig. 4

Similar content being viewed by others

References

  1. Kogteva GS, Bezuglov VV. Unsaturated fatty acids as endogenous bioregulators. Biochemistry (Mosc) 1998; 63: 4–12

    CAS  Google Scholar 

  2. Borkman M, Storlien LH, Pan DA, et al. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N Engl J Med 1993; 28: 238–44

    Google Scholar 

  3. Phinney SD. Arachidonic acid maldistribution in obesity. Lipids 1996; 31: S271–4

    Google Scholar 

  4. Hulbert AJ, Else PL. Membranes as possible pacemakers of metabolism. J Theor Biol 1999; 7: 257–74

    Google Scholar 

  5. Ayre KJ, Hulbert AJ. Dietary fatty acid profile affects endurance in rats. Lipids 1997; 32: 1265–70

    PubMed  CAS  Google Scholar 

  6. McKenzie DJ, Higgs DA, Dosanjh BS, et al. Dietary fatty acid composition influences swimming performance in Atlantic salmon (Salmo salar) in seawater. Fish Physiol Biochem 1998; 19: 111–22

    CAS  Google Scholar 

  7. Durstine JL, Grandjean PW, Davis PG, et al. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med 2001; 31: 1033–62

    PubMed  CAS  Google Scholar 

  8. Górski J, Oscai LB, Palmer WK. Hepatic lipid metabolism in exercise and training. Med Sci Sports Exerc 1990; 22: 213–21

    PubMed  Google Scholar 

  9. Górski J. Muscle triglyceride metabolism during exercise. Can J Physiol Pharmacol 1992; 70: 123–31

    PubMed  Google Scholar 

  10. van der Vusse GJ, Reneman RS. Lipid metabolism in muscle. In: Rowell LB, Shepherd JT, editors. Handbook of physiology: regulation and integration of multiple systems. New York: Oxford University Press, 1996: 1075–123

    Google Scholar 

  11. Helge JW, Storlien LH. Muscle membranes, diet and exercise. In: Hargreaves M, Thompson M, editors. Biochemistry of exercise X. Champaign (IL): Human Kinetics, 1999: 57–67

    Google Scholar 

  12. Vessby B, Andersson A, Sjödin A. Training induced changes in the fatty acid composition of skeletal muscle lipids. Functional aspects. Adv Exp Med Biol 1998; 441: 139–45

    PubMed  CAS  Google Scholar 

  13. Brown JE, Lindsay RM, Riemersma RA. Linoleic acid metabolism in the spontaneously diabetic rat: Δ6-desaturase activity vs product/precursor ratios. Lipids 2000; 35: 1319–23

    PubMed  CAS  Google Scholar 

  14. de Antueno RJ, Elliot M, Horrobin DF. Liver Δ5- and Δ6-desaturase activity differs among laboratory rat strains. Lipids 1994; 29: 327–31

    PubMed  Google Scholar 

  15. Poisson JG, Cunnane S. Long-chain fatty acid metabolism in fasting and diabetes: relation between altered desaturase activity and fatty acid composition. J Nutr Biochem 1991; 2: 60–70

    CAS  Google Scholar 

  16. Barclay JK, Stainsby WN. Intramuscular lipid store utilization by contracting dog skeletal muscle in situ. Am J Physiol 1972; 223: 115–9

    PubMed  CAS  Google Scholar 

  17. Fröberg SO, Mossfeldt F. Effect of prolonged strenuous exercise on the concentration of triglycerides, phospholipids and glycogen in muscle of man. Acta Physiol Scand 1971; 82: 167–71

    PubMed  Google Scholar 

  18. Fröberg SO. Effect of acute exercise on tissue lipids in rats. Metabolism 1971; 20: 714–20

    PubMed  Google Scholar 

  19. Wójcik B, Nawrocki A, Chocian G, et al. Effect of exercise on fatty acid content in the rat heart. Biol Sport 1999; 16: 87–96

    Google Scholar 

  20. Jeanrenaud B. Lipid components of adipose tissue. In: Ranold AE, Cahill GF, editors. Handbook of physiology: adipose tissue. Washington, DC: American Physiological Society, 1965: 169–80

    Google Scholar 

  21. Horowitz JF. Fatty acid mobilization from adipose tissue during exercise. Trends Endocrinol Metab 2003; 14: 386–92

    PubMed  CAS  Google Scholar 

  22. Schmitz-Peiffer C. Signalling aspects of insulin resistance in skeletal muscle: mechanisms induced by lipid oversupply. Cell Signal 2000; 12: 583–94

    PubMed  CAS  Google Scholar 

  23. Górski J, Nawrocki A, Murthy M. Characterization of free and glyceride-esterified long chain fatty acids in different skeletal muscle types of the rat. Mol Cell Biochem 1998; 178: 113–8

    PubMed  Google Scholar 

  24. Barenholz Y. Cholesterol and other membrane active sterols: from membrane evolution to ‘rafts’. Prog Lipid Res 2002; 41: 1–5

    PubMed  CAS  Google Scholar 

  25. Murphy MG. Dietary fatty acids and membrane protein function. J Nutr Biochem 1991; 1: 68–79

    Google Scholar 

  26. Seidelin KN. Fatty acid composition of adipose tissue in humans: implications for the dietary fat-serum cholesterol-CHD issue. Prog Lipid Res 1995; 34: 199–217

    PubMed  CAS  Google Scholar 

  27. Booth FW, Thomason DB. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 1991; 71: 541–85

    PubMed  CAS  Google Scholar 

  28. Bernard SF, Reidy SP, Zwingelstein G, et al. Glycerol and fatty acid kinetics in rainbow trout: effects of endurance swimming. J Exp Biol 1999; 202: 279–88

    PubMed  CAS  Google Scholar 

  29. Børsheim E, Knardahl S, Høstmark AT. Short-term effects of exercise on plasma very low density lipoproteins (VLDL) and fatty acids. Med Sci Sports Exerc 1999; 31: 522–30

    PubMed  Google Scholar 

  30. Carlsten A, Hallgren B, Jagenburg R, et al. Arterial concentrations of free fatty acids and free amino acids in healthy human individuals at rest and at different work loads. Scand J Clin Lab Invest 1962; 14: 185–91

    PubMed  CAS  Google Scholar 

  31. Ceder O, Bardon A, Kollberg H, et al. Fatty acids in cystic fibrosis in response to a marathon race. Int J Sports Med 1988; 9: 51–5

    PubMed  CAS  Google Scholar 

  32. Cleland PJ, Appleby GJ, Rattigan S, et al. Exercise-induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. Relationship to changes in glucose transport. J Biol Chem 1989; 25: 17704–11

    Google Scholar 

  33. Conquer JA, Roelfsema H, Zecevic J, et al. Effect of exercise on FA profiles in n-3 FA-supplemented and -nonsupplemented premenopausal women. Lipids 2002; 37: 947–51

    PubMed  CAS  Google Scholar 

  34. Dobrzyń A, Górski J. Ceramides and sphingomyelins in skeletal muscles of the rat: content and composition: effect of prolonged exercise. Am J Physiol 2002; 282: E277–85

    Google Scholar 

  35. Donike M, Hollmann W, Stratmann D. Das verhalten der individuellen freien fettsäuren (FFS) unter körperlicher belastung. Sportarzt Ver Sportmed 1974; 12: 274–8

    Google Scholar 

  36. Dvořáková L, Bass A. Fatty acid composition of the lipids in different types of muscles after functional exercise. Physiol Bohemoslov 1970; 19: 33–6

    PubMed  Google Scholar 

  37. Gold M, Miller HI, Issekutz B, et al. Effect of exercise and lactic acids infusion on individual free fatty acids of plasma. Am J Physiol 1963; 205: 902–4

    PubMed  CAS  Google Scholar 

  38. Hall PE, Smith SR, Jack DB, et al. The influence of beta-adrenoceptor blockade on the lipolytic response to exercise. J Clin Pharm Ther 1987; 12: 101–16

    PubMed  CAS  Google Scholar 

  39. Hambleton PL, Slade LM, Hamar DW, et al. Dietary fat and exercise conditioning effect on metabolic parameters in the horse. J Anim Sci 1980; 51: 1330–9

    PubMed  CAS  Google Scholar 

  40. Havel RJ, Carlson LA, Ekelund L, et al. Turnover rate and oxidation of different fatty acids in man during exercise. J Appl Physiol 1964; 19: 613–8

    PubMed  CAS  Google Scholar 

  41. Helge JW, Therkildsen KJ, Jørgensen TB, et al. Eccentric contractions affect muscle membrane phospholipid fatty acid composition in rats. Exp Physiol 2001; 86: 599–604

    PubMed  CAS  Google Scholar 

  42. Horstman D, Mendez J, Buskirk ER, et al. Lipid metabolism during heavy and moderate exercise. Med Sci Sports 1971; 3: 18–23

    PubMed  CAS  Google Scholar 

  43. Hurter R, Peyman MA, Swale J, et al. Some immediate and long-term effects of exercise on the plasma-lipids. Lancet 1972; 30: 671–4

    Google Scholar 

  44. Jones NL, Heigenhauser GJ, Kuksis A, et al. Fat metabolism in heavy exercise. Clin Sci (Lond) 1980; 59: 469–78

    CAS  Google Scholar 

  45. Kirkeby K, Strömme SB, Bjerkedal I, et al. Effects of prolonged, strenuous exercise on lipids and thyroxine in serum. Acta Med Scand 1977; 202: 463–7

    PubMed  CAS  Google Scholar 

  46. Mataix J, Quiles JL, Huertas JR, et al. Tissue specific interactions of exercise, dietary fatty acids and vitamin E in lipid peroxidation. Free Radic Biol Med 1998; 24: 511–21

    CAS  Google Scholar 

  47. McClelland G, Zwingelstein G, Taylor CR, et al. Effect of exercise on the plasma nonesterified fatty acid composition of dogs and goats: species with different aerobic capacities and diets. Lipids 1995; 30: 147–53

    PubMed  CAS  Google Scholar 

  48. McClelland GB, Hochachka PW, Weber JM. Effect of high-altitude acclimation on NEFA turnover and lipid utilization during exercise in rats. Am J Physiol 1999; 277: E1095–102

    Google Scholar 

  49. Meydani M, Evans WJ, Handelman G, et al. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. Am J Physiol 1993; 264: R992–8

    Google Scholar 

  50. Mougios V, Kotzamanidis C, Koutsari C, et al. Exercise-induced changes in the concentration of individual fatty acids and triacylglycerols of human plasma. Metabolism 1995; 44: 681–8

    PubMed  CAS  Google Scholar 

  51. Mougios V, Kouidi E, Kyparos A, et al. Effect of exercise on the proportion of unsaturated fatty acids in serum of untrained middle aged individuals. Br J Sports Med 1998; 32: 58–62

    PubMed  CAS  Google Scholar 

  52. Mougios V, Ring S, Petridou A, et al. Duration of coffee- and exercise-induced changes in the fatty acid profile of human serum. J Appl Physiol 2003; 94: 476–84

    PubMed  CAS  Google Scholar 

  53. Petridou A, Mougios V. Acute changes in triacylglycerol lipase activity of human adipose tissue during exercise. J Lipid Res 2002; 43: 1331–4

    PubMed  CAS  Google Scholar 

  54. Quiles JL, Huertas JR, Ochoa JJ, et al. Dietary fat (virgin olive oil or sunflower oil) and physical training interactions on blood lipids in the rat. Nutrition 2003; 19: 363–8

    PubMed  CAS  Google Scholar 

  55. Rose RJ, Sampson D. Changes in certain metabolic parameters in horses associated with food deprivation and endurance exercise. Res Vet Sci 1982; 32: 198–202

    PubMed  CAS  Google Scholar 

  56. Sen CK, Atalay M, Ågren J, et al. Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise. J Appl Physiol 1997; 83: 189–95

    CAS  Google Scholar 

  57. Sumikawa K, Mu Z, Inoue T, et al. Changes in erythrocyte membrane phospholipid composition induced by physical training and physical exercise. Eur J Appl Physiol 1993; 67: 132–7

    CAS  Google Scholar 

  58. Vapaatalo H, Laustiola K, Seppala E, et al. Exercise, ethanol and arachidonic acid metabolism in healthy men. Biomed Biochim Acta 1984; 43: S413–20

    CAS  Google Scholar 

  59. Vihko V, Sarviharju PJ, Suominen H. Effect of endurance training on concentrations of individual plasma free fatty acids in young men at rest and after moderate bicycle ergometer exercise. Ann Med Exp Biol Fenn 1973; 51: 112–7

    PubMed  CAS  Google Scholar 

  60. Vihko V, Suominen H, Sarviharju PJ. Mobilization of individual free fatty acids by aerobic ergometer work. Ann Med Exp Biol Fenn 1973; 51: 47–50

    PubMed  CAS  Google Scholar 

  61. Vincent R, Brackenbury JH. Plasma free fatty acid profile in male and female domestic fowl at rest and after exercise. Poult Sci 1987; 66: 368–72

    PubMed  CAS  Google Scholar 

  62. Wirth A, Neermann G, Eckert W, et al. Metabolic response to heavy physical exercise before and after a 3-month training period. Eur J Appl Physiol 1979; 12: 51–9

    Google Scholar 

  63. Wood P, Schlierf G, Kinsell L. Plasma free oleic and palmitic acid levels during vigorous exercise. Metabolism 1965; 14: 1095–100

    PubMed  CAS  Google Scholar 

  64. Ågren JJ, Pekkarinen H, Litmanen H, et al. Fish diet and physical fitness in relation to membrane and serum lipids, prostanoid metabolism and platelet aggregation in female students. Eur J Appl Physiol 1991; 63: 393–8

    Google Scholar 

  65. Allard C, Alteresco M, Ferguson RJ, et al. Changes in adipose tissue and increased serum cholesterol of coronary patients following training. CMAJ 1973; 109: 194–7

    CAS  Google Scholar 

  66. Andersson A, Sjödin A, Olsson R, et al. Effects of physical exercise on phospholipid fatty acid composition in skeletal muscle. Am J Physiol 1998; 274: E432–8

    Google Scholar 

  67. Andersson A, Sjödin A, Hedman A, et al. Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men. Am J Physiol 2000; 279: E744–51

    Google Scholar 

  68. Ayre KJ, Phinney SD, Tang AB, et al. Exercise training reduces skeletal muscle membrane arachidonate in the obese (fa/fa) Zucker rat. J Appl Physiol 1998; 85: 1898–902

    PubMed  CAS  Google Scholar 

  69. Bailey JW, Walker E, Beauchene RE. Fatty acid composition of adipose tissue in aged rats: effects of dietary restriction and exercise. Exp Gerontol 1993; 28: 233–47

    PubMed  CAS  Google Scholar 

  70. Danner SA, Wieling W, Havekes L, et al. Effect of physical exercise on blood lipids and adipose tissue composition in young healthy men. Atherosclerosis 1984; 53: 83–90

    PubMed  CAS  Google Scholar 

  71. Demaison L, Blet J, Sergiel JP, et al. Effect of dietary polyunsaturated fatty acids on contractile function of hearts isolated from sedentary and trained rats. Reprod Nutr Dev 2000; 40: 113–25

    PubMed  CAS  Google Scholar 

  72. Fiebig R, Griffiths MA, Gore MT, et al. Exercise training down-regulates hepatic lipogenic enzymes in meal-fed rats: fructose versus complex-carbohydrate diets. J Nutr 1998; 128: 810–7

    PubMed  CAS  Google Scholar 

  73. Fiebig RG, Hollander JM, Ney D, et al. Training down-regulates fatty acid synthase and body fat in obese Zucker rats. Med Sci Sports Exerc 2002; 34: 1106–14

    PubMed  CAS  Google Scholar 

  74. Hashimoto M, Shinozuka K, Tanabe Y, et al. Hypotension induced by exercise is associated with enhanced release of adenyl purines from aged rat artery. Am J Physiol 1999; 276: H970–5

    Google Scholar 

  75. Helge JW, Ayre KJ, Hulbert AJ, et al. Regular exercise modulates muscle membrane phospholipid profile in rats. J Nutr 1999; 129: 1636–42

    PubMed  CAS  Google Scholar 

  76. Helge JW, Wu BJ, Willer M, et al. Training affects muscle phospholipid fatty acid composition in humans. J Appl Physiol 2001; 90: 670–7

    PubMed  CAS  Google Scholar 

  77. Kamada T, Tokuda S, Aozaki S, et al. Higher levels of erythrocyte membrane fluidity in sprinters and long-distance runners. J Appl Physiol 1993; 74: 354–8

    PubMed  CAS  Google Scholar 

  78. Kriketos AD, Pan DA, Sutton JR, et al. Relationships between muscle membrane lipids, fiber type and enzyme activities in sedentary and exercised rats. Am J Physiol 1995; 269: R1154–62

    Google Scholar 

  79. Masumura S, Furui H, Hashimoto M, et al. The effects of season and exercise on the levels of plasma polyunsaturated fatty acids and lipoprotein cholesterol in young rats. Biochim Biophys Acta 1992; 8: 292–6

    Google Scholar 

  80. Nakano T, Wada Y, Matsumura S. Membrane lipid components associated with increased filterability of erythrocytes from long-distance runners. Clin Hemorheol Microcirc 2001; 24: 85–92

    PubMed  CAS  Google Scholar 

  81. Ohkubo T, Jacob R, Rupp H. Swimming changes vascular fatty acid composition and prostanoid generation of rats. Am J Physiol 1992; 262: R464–71

    Google Scholar 

  82. Quiles JL, Huertas JR, Mañas M, et al. Physical exercise affects the lipid profile of mitochondrial membranes in rats fed with virgin olive oil or sunflower oil. Br J Nutr 1999; 81: 21–4

    PubMed  CAS  Google Scholar 

  83. Quiles JL, Huertas JR, Mañas M, et al. Dietary fat type and regular exercise affect mitochondrial composition and function depending on specific tissue in the rat. J Bioenerg Biomembr 2001; 33: 127–34

    PubMed  CAS  Google Scholar 

  84. Rocquelin G, Juaneda P. Influence of prolonged physical training on the composition of fatty acids of epididymal adipose tissue and of the carcass in the young rat on a dietary regime of sunflower, rapeseed or primor oil. Reprod Nutr Dev 1981; 21: 1015–23

    PubMed  CAS  Google Scholar 

  85. Rocquelin G, Juaneda P, Cluzan R. Influence of physical training on the effects of dietary oils on cardiac morphology and phospholipids in rats. Ann Nutr Metab 1981; 25: 350–61

    PubMed  CAS  Google Scholar 

  86. Šimko V, Ondreička R, Chorváthová V, et al. Effect of long-term physical exercise on bile sterols, fecal fat and fatty acid metabolism in rats. J Nutr 1970; 100: 1331–9

    PubMed  Google Scholar 

  87. Sutherland WH, Woodhouse SP, Heyworth MR. Physical training and adipose tissue fatty acid composition in men. Metabolism 1981; 30: 839–44

    PubMed  CAS  Google Scholar 

  88. Szabó A, Romvári R, Fébel H, et al. Training-induced alterations of the fatty acid profile of rabbit muscles. Acta Vet Hung 2002; 50: 357–64

    PubMed  Google Scholar 

  89. Thomas TR, Londeree BR, Gerhardt KO, et al. Fatty acid profile and cholesterol in skeletal muscle of trained and untrained men. J Appl Physiol 1977; 43: 709–13

    PubMed  CAS  Google Scholar 

  90. Thorling EB, Overvad K. Effect of exercise on the fatty-acid profile of omental lipid stores in Fischer rats. Nutr Res 1994; 14: 569–76

    CAS  Google Scholar 

  91. Tibbits GF, Nagatomo T, Sasaki M, et al. Cardiac sarcolemma: compositional adaptation to exercise. Science 1981; 11: 1271–3

    Google Scholar 

  92. Venkatraman JT, Angkeow P, Fernandes G. Effects of food restriction on antioxidant defense system in exercised rats. Nutr Res 1998; 18: 283–98

    CAS  Google Scholar 

  93. Venkatraman JT, Angkeow P, Satsangi N, et al. Effects of dietary n-6 and n-3 lipids on antioxidant defense system in livers of exercised rats. J Am Coll Nutr 1998; 17: 586–94

    PubMed  CAS  Google Scholar 

  94. Wirth A, Heuck CC, Holm G, et al. Changes in the composition of fatty acids of total lipids in various tissues and serum due to physical training and food restriction in the rat. Scand J Clin Lab Invest 1980; 40: 55–62

    PubMed  CAS  Google Scholar 

  95. van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 2000; 14: 279–93

    Google Scholar 

  96. Pan DA, Hulbert AJ, Storlien LH. Dietary fats, membrane phospholipids and obesity. J Nutr 1994; 124: 1555–65

    PubMed  CAS  Google Scholar 

  97. Neufer PD. Contractile activity and skeletal muscle gene expression. In: Hargreaves M, Thompson M, editors. Biochemistry of exercise X. Champaign (IL): Human Kinetics, 1999: 291–300

    Google Scholar 

  98. Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol 2000; 10: 73–80

    PubMed  CAS  Google Scholar 

  99. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56: 831–8

    PubMed  CAS  Google Scholar 

  100. Ontko JA. Lipid metabolism in muscle. In: Engel AG, Franzini-Armstrong C, editors. Myology: basic and clinical. New York: McGraw-Hill, 1994: 665–82

    Google Scholar 

  101. Blackard WG, Li J, Clore JN, et al. Phospholipid fatty acid composition in type I and type II rat muscle. Lipids 1997; 32: 193–8

    PubMed  CAS  Google Scholar 

  102. Moore RL. Cellular adaptations of the heart muscle to exercise training. Ann Med 1998; 30: 46–53

    PubMed  Google Scholar 

  103. van der Vusse GJ, Glatz JF, Stam HCG, et al. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 72: 881–940

    PubMed  Google Scholar 

  104. Després J. Physical activity and adipose tissue. In: Bouchard C, Shepard RJ, Stephens T, editors. Physical activity, fitness and health. Champaign (IL): Human Kinetics, 1994: 358–68

    Google Scholar 

  105. MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 2002; 13: 5–11

    PubMed  CAS  Google Scholar 

  106. Kjær M. Hepatic fuel metabolism during exercise. In: Hargreaves M, editor. Exercise metabolism. Champaign (IL): Human Kinetics, 1995: 73–97

    Google Scholar 

  107. Frayn KN. Metabolic regulation: a human perspective. London: Portland Press, 1996

    Google Scholar 

  108. Kromhout D, Bosschieter EB, de Lezenne-Coulander C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. N Engl J Med 1985; 312: 1205–9

    PubMed  CAS  Google Scholar 

  109. Engler MM, Engler MB, Kroetz DL, et al. The effects of a diet rich in docosahexaenoic acid on organ and vascular fatty acid composition in spontaneously hypertensive rats. Prostaglandins Leukot Essent Fatty Acids 1999; 61: 289–95

    PubMed  CAS  Google Scholar 

  110. Powers SK, Lennon SL, Quindry J, et al. Exercise and cardioprotection. Curr Opin Cardiol 2002; 17: 495–502

    PubMed  Google Scholar 

  111. Chiu D, Kuypers F, Lubin B. Lipid peroxidation in human red cells. Semin Hematol 1989; 26: 257–76

    PubMed  CAS  Google Scholar 

  112. Ernst E, Matrai A, Aschenbrenner E. Blood rheology in athletes. J Sports Med Phys Fitness 1985; 25: 207–10

    PubMed  CAS  Google Scholar 

  113. Smith JA, Martin DT, Telford RD, et al. Greater erythrocyte deformability in world-class endurance athletes. Am J Physiol 1999; 276: H2188–93

    Google Scholar 

  114. Fiehn W, Peter JB, Mead JF, et al. Lipids and fatty acids of sarcolemma, sarcoplasmic reticulum and mitochondria from rat skeletal muscle. J Biol Chem 1971; 25: 5617–20

    Google Scholar 

  115. Hoppeler H, Howald H, Conley K, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 1985; 59: 320–7

    PubMed  CAS  Google Scholar 

  116. Morgan TE, Short FA, Cobb LA. Effect of long-term exercise on skeletal muscle lipid composition. Am J Physiol 1969; 216: 82–6

    PubMed  CAS  Google Scholar 

  117. Voelker DR. Lipid assembly into cell membranes. In: Vance DE, Vance J, editors. Biochemistry of lipids, lipoproteins and membranes. Amsterdam: Elsevier, 1991: 489–523

    Google Scholar 

  118. Clore JN, Li J, Gill R, et al. Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans. Am J Physiol 1998; 275: E665–70

    Google Scholar 

  119. Górski J, Nowacka M, Namiot Z, et al. Effect of prolonged exercise on the level of triglycerides in the rat liver. Eur J Appl Physiol 1988; 57: 554–7

    Google Scholar 

  120. Kalofoutis A, Lekakis J, Miras C. Heart mitochondrial and microsomal phospholipid fluctuations induced by chronic exercise in rats. Int J Biochem 1981; 13: 195–9

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Mougios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaidis, M.G., Mougios, V. Effects of Exercise on the Fatty-Acid Composition of Blood and Tissue Lipids. Sports Med 34, 1051–1076 (2004). https://doi.org/10.2165/00007256-200434150-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200434150-00004

Keywords

Navigation