Exercise Programmes for Patients with Chronic Heart Failure

Abstract

The safety and efficacy of exercise training in patients with chronic heart failure (CHF) have been reported in a large number of scientific studies, with endurance training representing the most frequently applied training stimulus. Beneath the common continuous method of endurance training, the interval method (short bouts of intense exercise interspersed with pre-scheduled rest intervals), was also applied in some studies. Ergometric testing is a prerequisite for all individualised training prescription and is an appropriate method of efficacy documentation. However, there is a surprisingly large range of exercise intensities being prescribed to patients with CHF. Most of the prescription models refer to maximal ergometric measurements. Submaximal references from lactate and ventilatory curves represent an alternative method in measuring accuracy and efficacy of training. The course of heart rate during submaximal incremental exercise can be reliably used to indicate endurance gains in CHF. Some positive reports exist for carefully executed strength endurance training for patients with CHF and there are convincing arguments for the use of coordination and flexibility exercises; however, substantial scientific evidence is lacking.

This is a preview of subscription content, access via your institution.

Table I
Table II
Table III

Notes

  1. 1.

    V̇O2peak improved by an arithmetic average of 15.4% (range: 4—33%), whereas the mean increase in anaerobic threshold was 19.5% (range: 7—39%). These approximate calculations are clearly subject to error from differing frequencies, intensities and durations of the exercise programmes; however, there was no difference between controlled studies and those using a crossover design.

References

  1. 1.

    Remme WJ, Swedberg K. Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 2001; 22: 1527–60

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Hunt HA, Baker DW, Chin MH, et al. ACC/AHA Guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. Circulation 2001; 104: 2996–3007

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Georgiou D, Chen Y, Appadoo S, et al. Cost-effectiveness analysis of long-term moderate exercise training in chronic heart failure. Am J Cardiol 2001; 87: 984–8

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Meyer K. Exercise training in chronic heart failure: is it really safe? Eur Heart J 1999; 20: 851–3

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Magnusson G, Gordon A, Kaijser L, et al. High intensity knee extensor training, in patients with chronic heart failure: major skeletal muscle improvement. Eur Heart J 1996; 17: 1048–55

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Tyni-Lenne R, Gordon A, Jansson E, et al. Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 1997; 80: 1025–9

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Meyer K, Hajric R, Westbrook S, et al. Hemodynamic responses during leg press exercise in patients with chronic congestive heart failure. Am J Cardiol 1999; 83: 1537–43

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Arvan S. Exercise performance of the high risk acute myocardial infarction patient after cardiac rehabilitation. Am J Cardiol 1988; 62: 197–201

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Jetté M, Heller R, Landry F, et al. Randomized 4-week exercise program in patients with impaired left ventricular function. Circulation 1991; 84: 1561–7

    PubMed  Article  Google Scholar 

  10. 10.

    Kavanagh T, Myers MG, Baigrie RS, et al. Quality of life and cardiorespiratory function in chronic heart failure: effects of 12 months’ aerobic training. Heart 1996; 76: 42–9

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Adamopoulos S, Coats AJ, Brunotte F, et al. Physical training improves skeletal muscle metabolism in patients with chronic heart failure. J Am Coll Cardiol 1993; 21: 1101–6

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Coats AJ, Adamopoulos S, Meyer TE, et al. Effects of physical training in chronic heart failure. Lancet 1990; 335: 63–6

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Coats AJ, Adamopoulos S, Radaelli A, et al. Controlled trial of physical training in chronic heart failure: exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 1992; 85: 2119–31

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Conn EH, Williams RS, Wallace AG. Exercise responses before and after physical conditioning in patients with severely depressed left ventricular function. Am J Cardiol 1982; 49: 296–300

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Dubach P, Myers J, Dziekan G, et al. Effect of exercise training on myocardial remodeling in patients with reduced left ventricular function after myocardial infarction: application of magnetic resonance imaging. Circulation 1997; 95: 2060–7

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Giannuzzi P, Temporelli PL, Corra U, et al. Attenuation of unfavorable remodeling by exercise training in postinfarction patients with left ventricular dysfunction: results of the Exercise in Left Ventricular Dysfunction (ELVD) trial. Circulation 1997; 96: 1790–7

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Kellermann JJ, Shemesh J, Fisman EZ, et al. Arm exercise training in the rehabilitation of patients with impaired ventricular function and heart failure. Cardiology 1990; 77: 130–8

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Larsen AI, Aarsland T, Kristiansen M, et al. Assessing the effect of exercise training in men with heart failure; comparison of maximal, submaximal and endurance exercise protocols. Eur Heart J 2001; 22: 684–92

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Lee AP, Ice R, Blessey R, et al. Long-term effects of physical training on coronary patients with impaired ventricular function. Circulation 1979; 60: 1519–26

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Stolen KQ, Kemppainen J, Ukkonen H, et al. Exercise training improves biventricular oxidative metabolism and left ventricular efficiency in patients with dilated cardiomyopathy. J Am Coll Cardiol 2003; 41: 460–7

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Sturm B, Quittan M, Wiesinger GF, et al. Moderate-intensity exercise training with elements of step aerobics in patients with severe chronic heart failure. Arch Phys Med Rehabil 1999; 80: 746–50

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Adamopoulos S, Parissis J, Kroupis C, et al. Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J 2001; 22: 791–7

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Belardinelli R, Scocco V, Mazzanti M, et al. Effects of aerobic training in patients with moderate chronic heart failure. G Ital Cardiol 1992; 22: 919–30

    PubMed  CAS  Google Scholar 

  24. 24.

    Belardinelli R, Georgiou D, Cianci G, et al. Exercise training improves left ventricular diastolic filling in patients with dilated cardiomyopathy: clinical and prognostic implications. Circulation 1995; 91: 2775–84

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Belardinelli R, Georgiou D, Scocco V, et al. Low intensity exercise training in patients with chronic heart failure. J Am Coll Cardiol 1995; 26: 975–82

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Belardinelli R, Georgiou D, Cianci G, et al. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 1999; 99: 1173–82

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Demopoulos L, Bijou R, Fergus I, et al. Exercise training in patients with severe congestive heart failure: enhancing peak aerobic capacity while minimizing the increase in ventricular wall stress. J Am Coll Cardiol 1997; 29: 597–603

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Myers J, Dziekan G, Goebbels U, et al. Influence of high-intensity exercise training on the ventilatory response to exercise in patients with reduced ventricular function. Med Sci Sports Exerc 1999; 31: 929–37

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Callaerts-Végh Z, Wenk M, Goebbels U, et al. Influence of intensive physical training on urinary nitrate elimination and plasma endothelin-1 levels in patients with congestive heart failure. J Cardiopulm Rehabil 1998; 18: 450–7

    PubMed  Article  Google Scholar 

  30. 30.

    Ennezat PV, Maledowicz SL, Testa M, et al. Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol 2001; 38: 194–8

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Giannuzzi P, Gavazzi L, Temporelli PL, et al. Long-term physical training and left ventricular remodeling after anterior myocardial infarction: results of the Exercise in Anterior Myocardial Infarction (EAMI) trial. EAMI study group. J Am Coll Cardiol 1993; 22: 1821–9

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Hambrecht R, Niebauer J, Fiehn E, et al. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 1995; 25: 1239–49

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Harris S, LeMaitre JP, Mackenzie G, et al. A randomised study of home-based electrical stimulation of the legs and conventional bicycle exercise training for patients with chronic heart failure. Eur Heart J 2003; 24: 871–8

    PubMed  Article  Google Scholar 

  34. 34.

    Keteyian SJ, Levine AB, Brawner CA, et al. Exercise training in patients with heart failure: a randomized, controlled trial. Ann Intern Med 1996; 124: 1051–7

    PubMed  CAS  Google Scholar 

  35. 35.

    Kiilavuori K, Sovijarvi A, Naveri H, et al. Effect of physical training on exercise capacity and gas exchange in patients with chronic heart failure. Chest 1996; 110: 985–91

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Kostis JB, Rosen RC, Cosgrove NM, et al. Nonpharmacologic therapy improves functional and emotional status in congestive heart failure. Chest 1994; 106: 996–1001

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Nechwatal RM, Duck C, Gruber G. Exercise training by interval versus steady-state modus in chronic heart failure: improvement of functional capacity, hemodynamics and quality of life — a controlled study. Z Kardiol 2002; 91: 328–37

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Parnell MM, Holst DP, Kaye DM. Exercise training increases arterial compliance in patients with congestive heart failure. Clin Sci (Lond) 2002; 102: 1–7

    Article  Google Scholar 

  39. 39.

    Radaelli A, Coats AJ, Leuzzi S, et al. Physical training enhances sympathetic and parasympathetic control of heart rate and peripheral vessels in chronic heart failure. Clin Sci (Lond) 1996; 91: 92–4

    Google Scholar 

  40. 40.

    Quittan M, Sturm B, Wiesinger GF, et al. Quality of life in patients with chronic heart failure: a randomized controlled trial of changes induced by a regular exercise program. Scand J Rehabil Med 1999; 31: 223–8

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with chronic heart failure delays ventilatory anaerobic threshold and improves submaximal exercise performance. Circulation 1989; 79: 324–9

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Taylor A. Physiological response to a short period of exercise training in patients with chronic heart failure. Physiother Res Int 1999; 4: 237–49

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Wielenga RP, Huisveld IA, Bol E, et al. Safety and effects of physical training in chronic heart failure: results of the Chronic Heart Failure and Graded Exercise study (CHANGE). Eur Heart J 1999; 20: 872–9

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Meyer K, Samek L, Schwaibold M, et al. Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures. Med Sci Sports Exerc 1997; 29: 306–12

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Meyer K, Görnand L, Schwaibold M, et al. Predictors of response to exercise training in severe chronic congestive heart failure. Am J Cardiol 1997; 80: 56–60

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Willenheimer R, Erhardt L, Cline C, et al. Exercise training in heart failure improves quality of life and exercise capacity. Eur Heart J 1998; 19: 774–81

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Koch M, Douard H, Braustet JP. The benefit of graded physical exercise in chronic heart failure. Chest 1992; 101 (5 Suppl.): 231S–5S

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Maiorana A, O’Driscoll G, Cheetham C, et al. Combined aerobic and resistance exercise training improves functional capacity and strength in CHF. J Appl Physiol 2000; 88: 1565–70

    PubMed  CAS  Google Scholar 

  49. 49.

    Owen A, Croucher L. Effect of an exercise programme for elderly patients with heart failure. Eur J Heart Fail 2000; 2: 65–70

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Wallén NH, Goodall AH, Li N, et al. Activation of haemostasis by exercise, mental stress and adrenaline: effects on platelet sensitivity to thrombin and thrombin generation. Clin Sci (Lond) 1999; 97: 27–35

    Article  Google Scholar 

  51. 51.

    Willich SN, Lewis M, Löwel H, et al. Physical exertion as a trigger of acute myocardial infarction. N Engl J Med 1993; 329: 1684–90

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Albert CM, Mittleman MA, Chae CU, et al. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med 2000; 343: 1355–61

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Mancini DM, Walter G, Reichek N, et al. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 1992; 85: 1364–73

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Drexler H, Riede U, Munzel T, et al. Alterations of skeletal muscle in chronic heart failure. Circulation 1992; 85: 1751–9

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Lipkin DP, Jones DA, Round JM, et al. Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol 1988; 18: 187–95

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Sullivan MJ, Green HJ, Cobb FR. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 1990; 81: 518–27

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Massie BM. Exercise tolerance in congestive heart failure: role of cardiac function, peripheral blood flow, and muscle metabolism and effect of treatment. Am J Med 1988; 84: 75–82

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Hambrecht R, Fiehn E, Weigl C, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998; 98: 2709–15

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Itoh H, Taniguchi K, Koike A, et al. Evaluation of severity of heart failure using ventilatory gas analysis. Circulation 1990; 81 (1 Suppl.): II31–7

    PubMed  CAS  Google Scholar 

  60. 60.

    Simonini A, Long CS, Dudley GA, et al. Heart failure in rats causes changes in skeletal muscle morphology and gene expression that are not explained by reduced activity. Circ Res 1996; 79: 128–36

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Lunde PK, Sjaastad I, Schiotz Thorud HM, et al. Skeletal muscle disorders in heart failure. Acta Physiol Scand 2001; 171: 277–94

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Franciosa JA, Park M, Levine TB. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol 1981; 47: 33–9

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Mancini DM, Schwartz M, Ferraro N, et al. Effect of dobutamine on skeletal muscle metabolism in patients with congestive heart failure. Am J Cardiol 1990; 65: 1121–6

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Mercier J, Ville N, Wintrebert P, et al. Influence of post-surgery time after cardiac transplantation on exercise responses. Med Sci Sports Exerc 1996; 28: 171–5

    PubMed  CAS  Google Scholar 

  65. 65.

    Volterrani M, Clark AL, Ludman PF, et al. Predictors of exercise capacity in chronic heart failure. Eur Heart J 1994; 15: 801–9

    PubMed  CAS  Google Scholar 

  66. 66.

    Okita K, Yonezawa K, Nishijima H, et al. Skeletal muscle metabolism limits exercise capacity in patients with chronic heart failure. Circulation 1998; 98: 1886–91

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Minotti JR, Johnson EC, Hudson TL, et al. Skeletal muscle response to exercise training in congestive heart failure. J Clin Invest 1990; 86: 751–8

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Hambrecht R, Wolf A, Gielen S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 2000; 342: 454–60

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with severe left ventricular dysfunction: hemodynamic and metabolic effects. Circulation 1988; 78: 506–15

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Stratton JR, Dunn JF, Adamopoulos S, et al. Training partially reverses skeletal muscle metabolic abnormalities during exercise in heart failure. J Appl Physiol 1994; 76: 1575–82

    PubMed  CAS  Google Scholar 

  71. 71.

    Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819–23

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Braith RW, Welsch MA, Feigenbaum MS, et al. Neuroendocrine activation in heart failure is modified by endurance exercise training. J Am Coll Cardiol 1999; 34: 1170–5

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Braith RW. Exercise training in patients with CHF and heart transplant recipients. Med Sci Sports Exerc 1998; 30: S367–78

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Todaka K, Wang J, Yi GH, et al. Impact of exercise training on ventricular properties in a canine model of congestive heart failure. Am J Physiol 1997; 272: H1382–90

    PubMed  CAS  Google Scholar 

  75. 75.

    Jugdutt BI, Michorowski BL, Lappagoda CT. Exercise training after anterior Q-wave myocardial infarction: importance of regional left ventricular function and topography. J Am Coll Cardiol 1988; 12: 362–72

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Meyer K, Foster C, Georgakopoulos N, et al. Comparison of left ventricular function during interval versus steady-state exercise training in patients with chronic congestive heart failure. Am J Cardiol 1998; 82: 1382–7

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Whaley MH, Woodall T, Kaminsky LA, et al. Reliability of perceived exertion during graded exercise testing in apparently healthy adults. J Cardiopulm Rehabil 1997; 17: 37–42

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Whaley MH, Brubaker PH, Kaminsky LA, et al. Validity of rating of perceived exertion during graded exercise testing in apparently healthy adults and cardiac patients. J Cardiopulm Rehabil 1997; 17: 261–7

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Wasserman K, Mcllroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 1964; 14: 844–52

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Wasserman K, Whipp BJ, Koyl SN, et al. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 1973; 35: 236–43

    PubMed  CAS  Google Scholar 

  81. 81.

    Meyer T, Görge G, Hildebrandt K, et al. Evaluation of training effects in patients with congestive heart failure by use of heart rate and lactate curves. Int J Sports Med 2002; 23Suppl. 2: S89

    Google Scholar 

  82. 82.

    Meyer T, Schwaab B, Scharhag J, et al. Impact of endurance training on heart rate and catecholamine levels in chronic heart failure patients. Med Sci Sports Exerc 2003; 35Suppl. 5: S352

    Google Scholar 

  83. 83.

    Walldorf J, Meyer T, Hildebrandt K, et al. Endurance training in patients with congestive heart failure: evaluation of fitness effects without maximal testing. Med Sci Sports Exerc 2002; 34Suppl. 5: S171

    Google Scholar 

  84. 84.

    Schaefer C, Meyer T, Schwaab B, et al. Effects of moderate endurance training in patients with idiopathic dilated cardiomyopathy. Med Sci Sports Exerc 2003; 35Suppl. 5: S298

    Google Scholar 

  85. 85.

    Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 1995; 27: 1292–301

    PubMed  CAS  Google Scholar 

  86. 86.

    Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 1995; 273: 1450–6

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Piepoli MF, Davos C, Francis DP, et al. Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 2004; 328(7433): 189

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Tristani FE, Hughes CV, Archibald DG, et al. Safety of graded symptom-limited exercise testing in patients with congestive heart failure. Circulation 1987; 76 (6 Pt 2): VI54–8

    PubMed  CAS  Google Scholar 

  89. 89.

    Lee DC, Johnson RA, Bingham JB, et al. Heart failure in outpatients: a randomized trial of digoxin versus placebo. N Engl J Med 1982; 306: 699–705

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Duncan GE, Howley ET, Johnson BN. Applicability of V̇O2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc 1997; 29: 273–8

    PubMed  CAS  Google Scholar 

  91. 91.

    Bittner V. Exercise testing in heart failure: maximal, submaximal, or both? J Am Coll Cardiol 2003; 42: 123–5

    PubMed  Article  Google Scholar 

  92. 92.

    Marburger CT, Brubaker PH, Pollock WE, et al. Reproducibility of cardiopulmonary exercise testing in elderly patients with congestive heart failure. Am J Cardiol 1998; 82: 905–9

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Buller NP, Poole Wilson PA. Mechanism of the increased ventilatory response to exercise in patients with chronic heart failure. Br Heart J 1990; 63: 281–3

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Mejhert M, Linder-Klingsell E, Edner M, et al. Ventilatory variables are strong prognostic markers in elderly patients with heart failure. Heart 2002; 88: 239–43

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Gitt AK, Wasserman K, Kilkowski C, et al. Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation 2002; 106: 3079–84

    PubMed  Article  Google Scholar 

  96. 96.

    Itoh H, Nakamura M, Ikeda C, et al. Changes in oxygen uptake-work rate relationship as a compensatory mechanism in patients with heart failure. Jpn Circ J 1992; 56: 504–8

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Baba R, Tsuyuki K, Kimura Y, et al. Oxygen uptake efficiency slope as a useful measure of cardiorespiratory functional reserve in adult cardiac patients. Eur J Appl Physiol 1999; 80: 397–401

    Article  CAS  Google Scholar 

  98. 98.

    Meyer K, Schwaibold M, Hajric R, et al. Delayed V̇O2 kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure. Med Sci Sports Exerc 1998; 30: 643–8

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Meyer T, Gabriel HHW, Kindermann W. Is determination of exercise intensities as percentages of V̇O2max or HRmax adequate? Med Sci Sports Exerc 1999; 31: 1342–5

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The preparation of this manuscript was in part supported by the Deutsche Herzstiftung (German Heart Foundation). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Tim Meyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meyer, T., Kindermann, M. & Kindermann, W. Exercise Programmes for Patients with Chronic Heart Failure. Sports Med 34, 939–954 (2004). https://doi.org/10.2165/00007256-200434140-00001

Download citation

Keywords

  • Chronic Heart Failure
  • Endurance Training
  • Training Effect
  • Anaerobic Threshold
  • Chronic Heart Failure Patient