Skip to main content
Log in

Recommendations for Treatment of Hyponatraemia at Endurance Events

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

This review focuses on possible pathophysiology of exercise-associated hyponatraemia and its implication on evaluation and treatment of collapsed athletes during endurance events. Rehydration guidelines and field care have traditionally been based on the belief that endurance events create a state of significant fluid deficit in athletes, which must be corrected by liberal hydration. Beliefs in the necessity of liberal hydration may have contributed to cases of hyponatraemia. Assumptions that fluid loss accounts for the entire weight loss during exercise and that fluid ingestion is the only source of water gain during exercise may lead to an overestimation of the degree of volume depletion and the amount of fluid needed for replacement.

Increasing evidence suggests that hyponatraemic athletes are fluid overloaded; ingestion of large amount of hypotonic fluid in combination with inappropriate or inadequate physiological responses leads to excessive retention of free fluid. Risk factors include hot weather, female sex, slower finishing time, and possibly the use of nonsteroidal anti-inflammatory medications. Symptoms of hyponatraemia can be subtle and can mimic those of other exercise-related illnesses, thereby complicating its diagnosis and leading to possible inappropriate treatment. Most athletes who collapse at the finish line experience exercise-associated collapse, a benign and transient form of postural hypotension that can be treated simply by continued ambulation after finishing or elevation of legs while in a supine position for those who cannot walk.

Care providers should consider the use of intravenous hydration with normal saline carefully since it is not needed by most collapsed athletes and may worsen the condition of patients with unsuspected hyponatraemia. Historic information and clinical signs of volume depletion should be elicited prior to its use. Most hyponatraemic athletes will recover uneventfully with careful observation while awaiting spontaneous diuresis. Use of hypertonic saline should be reserved for patients with severe symptoms. Moderate consumption of carbohydrate-electrolyte solution during exercise may allow the maintenance of adequate hydration and the prevention of hyponatraemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Casa DJ, Armstrong LE, Hillman SK, et al. National Athletic Trainers’ Association position statement: fluid replacement for athletes. J Athletic Training 2000; 35(2): 212–24

    CAS  Google Scholar 

  2. Convertino VA, Armstrong LE, Coyle EF, et al. ACSM position stand: exercise and fluid replacement. Med Sci Sports Exerc 1996 Oct; 28(10): i–ix

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong LE, Epstein Y, Greenleaf JE, et al. American College of Sports Medicine position stand: heat and cold illnesses during distance running. Med Sci Sports Exerc 1996 Dec; 28(12): i–x

    CAS  Google Scholar 

  4. American College of Sports Medicine, American Dietetic Association, Dietitians of Canada. Nutrition and athletic performance. Med Sci Sports Exerc 2000; 32(12): 2130–45

    Article  Google Scholar 

  5. Maughan RJ, Leiper JB, Shirreffs SM. Factors influencing the restoration of fluid and electrolyte balance after exercise in the heat. Br J Sports Med 1997; 31: 175–82

    Article  CAS  PubMed  Google Scholar 

  6. Gisolfi CV, Duchman SM. Guidelines for optimal replacement beverages for different athletic events. Med Sci Sports Exerc 1992; 24(6): 679–87

    CAS  PubMed  Google Scholar 

  7. Millard-Stafford M. Fluid replacement during exercise in the heat: review and recommendations. Sports Med 1992; 13(4): 223–33

    Article  CAS  PubMed  Google Scholar 

  8. The American Dietetic Association. Nutrition and physical fitness. J Am Diet Assoc 1980; 76: 437–43

    Google Scholar 

  9. Clark JM, Gennari FJ. Encephalopathy due to severe hyponatremia in an ultramarathon runner. West J Med 1993; 159(2): 188–9

    CAS  PubMed  Google Scholar 

  10. Fallon KE, Sivyer G, Sivyer K, et al. The biochemistry of runners in a 1600km ultramarathon. Br J Sports Med 1999; 33(4): 264–9

    Article  CAS  PubMed  Google Scholar 

  11. Frizzell RT, Lang GH, Lowance DC, et al. Hyponatremia and ultramarathon running. JAMA 1986; 255(6): 772–4

    Article  CAS  PubMed  Google Scholar 

  12. Surgenor S, Uphold RE. Acute hyponatremia in ultra-endurance athletes. Am J Emerg Med 1994; 12(4): 441–4

    Article  CAS  PubMed  Google Scholar 

  13. Speedy DB, Rogers IR, Safih S, et al. Hyponatremia and seizures in an ultradistance triathlete. J Emerg Med 2000; 18(1): 41–4

    Article  CAS  PubMed  Google Scholar 

  14. Speedy DB, Noakes TD, Kimber NE, et al. Fluid balance during and after an Ironman Triathlon. Clin J Sport Med 2001; 11: 44–50

    Article  CAS  PubMed  Google Scholar 

  15. Noakes TD, Goodwin N, Rayner BL, et al. Water intoxication: a possible complication during endurance exercise. Med Sci Sports Exerc 1985; 17(3): 370–5

    CAS  PubMed  Google Scholar 

  16. Hiller WDB, O’Toole ML, Massimino F, et al. Plasma electrolyte and glucose changes during the Hawaiian Ironman Triathlon [abstract]. Med Sci Sports Exerc 1985; 17: 219

    Google Scholar 

  17. Hiller WDB, O’Toole JL, Fortess EE, et al. Medical and physiological considerations in triathlons. Am J Sports Med 1987; 15(2): 164–7

    Article  CAS  PubMed  Google Scholar 

  18. Speedy DB, Noakes TD, Rogers IR, et al. Hyponatremia in ultradistance triathletes. Med Sci Sports Exerc 1999; 31(6): 809–15

    Article  CAS  PubMed  Google Scholar 

  19. Speedy DB, Rogers IR, Noakes TD, et al. Diagnosis and prevention of hyponatremia at an ultradistance triathlon. Clin J Sport Med 2000; 10: 52–8

    Article  CAS  PubMed  Google Scholar 

  20. Holtzhausen LM, Noakes TD, Kroning B, et al. Clinical and biochemical characteristics of collapsed ultramarathon runners. Med Sci Sports Exerc 1994; 26(9): 1095–101

    CAS  PubMed  Google Scholar 

  21. Godlonton JD. Comrades Marathon: setting the facts straight [letter]. S Afr Med J 1985; 68: 291

    Google Scholar 

  22. Norman RJ, Godlonton J, Buck RH, et al. Why marathon runners collapse [letter]. S Afr Med J 1988; 74(5): 246

    Google Scholar 

  23. Noakes TD, Norman RJ, Buck RH, et al. The incidence of hyponatremia during prolonged ultraendurance exercise. Med Sci Sports Exerc 1990; 22(2): 165–70

    CAS  PubMed  Google Scholar 

  24. Norman RJ, Coutts PB, Godlonton J. Organisation of a field laboratory at an ultramarathon. Clin Chem 1988; 34: 643–4

    CAS  PubMed  Google Scholar 

  25. Hiller WDB. Dehydration and hyponatremia during triathlons. Med Sci Sports Exerc 1989; 21 (5 Suppl.): S219–21

    CAS  PubMed  Google Scholar 

  26. Armstrong LE, Curtis WC, Hubbard RW, et al. Symptomatic hyponatremia during prolonged exercise in heat. Med Sci Sports Exerc 1993; 25(5): 543–9

    CAS  PubMed  Google Scholar 

  27. Ayus JC, Varon J, Arieff AI. Hyponatremia, cerebral edema, and noncardiogenic pulmonary edema in marathon runners. Ann Intern Med 2000; 132(9): 711–4

    CAS  PubMed  Google Scholar 

  28. Hsieh M, Roth R, Davis DL, et al. Hyponatremia in runners requiring on-site medical treatment at a single marathon. Med Sci Sports Exerc 2002; 34(2): 185–9

    Article  PubMed  Google Scholar 

  29. Young M, Sciurba F, Rinaldo J. Delirium and pulmonary edema after completing a marathon. Am Rev Respir Dis 1987; 136(3): 737–9

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt W, Rojas J, Boning D, et al. Plasma-electrolytes in natives to hypoxia after marathon races at different altitudes. Med Sci Sports Exerc 1999; 31(10): 1406–13

    Article  CAS  PubMed  Google Scholar 

  31. Hew TD, Chorley JN, Cianca JC, et al. The incidence, risk factors, and clinical manifestations of hyponatremia in marathon runners. Clin J Sport Med 2003; 13: 41–7

    Article  PubMed  Google Scholar 

  32. Davis DP, Videen JS, Marino A, et al. Exercise-associated hyponatremia in marathon runners: a two-year experience. J Emerg Med 2001; 21(1): 47–57

    Article  CAS  PubMed  Google Scholar 

  33. Smith S. Marathon runner’s death linked to excessive fluid intake. New York Times 2002 Aug 13

    Google Scholar 

  34. Backer HD, Shopes EM, Collins SL, et al. Exertional heat illness and hyponatremia in hikers. Am J Emerg Med 1999; 17(6): 532–9

    Article  CAS  PubMed  Google Scholar 

  35. Shopes EM. Drowning in the desert: exercise-induced hyponatremia at the Grand Canyon. J Emerg Nurs 1997; 23(6): 586–90

    Article  CAS  PubMed  Google Scholar 

  36. Zelingher J, Putterman C, Ilan Y, et al. Case series: hyponatremia associated with moderate exercise. Am J Med Sci 1996; 311(2): 86–91

    Article  CAS  PubMed  Google Scholar 

  37. Flinn SD, Sherer RJ. Seizure after exercise in the heat. Phys Sportsmed 2000; 28(9): 61–7

    Article  CAS  PubMed  Google Scholar 

  38. Garigan TP, Ristedt DE. Death from hyponatremia as a result of acute water intoxication in an army basic trainee. Mil Med 1999; 164(3): 234–8

    CAS  PubMed  Google Scholar 

  39. Reynolds NC, Shumakere HD, Feighery S. Complications of fluid overload in heat casualty prevention during field training. Mil Med 1998; 163(11): 789–91

    PubMed  Google Scholar 

  40. Haralambie G, Senser L, Sierra-Chavez R. Physiological and metabolic effects of a 25km race in female athletes. Eur J Appl Physiol 1981; 47(2): 123–31

    Article  CAS  Google Scholar 

  41. Maughan RJ, Whiting PH, Davidson RJL. Estimation of plasma volume changes during marathon running. Br J Sports Med 1985; 19(3): 138–41

    Article  CAS  PubMed  Google Scholar 

  42. Rogers G, Goodman C, Clifford R. Water budget during ultra-endurance exercise. Med Sci Sports Exerc 1997; 29(11): 1477–81

    Article  CAS  PubMed  Google Scholar 

  43. Noakes TD, Adams BA, Myburgh K, et al. The danger of an inadequate water intake during prolonged exercise: a novel concept revisited. Eur J Appl Physiol 1988; 57: 210–20

    Article  CAS  Google Scholar 

  44. Coombs JS, Hamilton KL. The effectiveness of commercially available sports drinks. Sports Med 2000; 29(3): 181–209

    Article  Google Scholar 

  45. Barr SI, Costill DL, Fink WJ. Fluid replacement during prolonged exercise: effects of water, saline, or no fluid. Med Sci Sports Exerc 1991; 23(7): 811–7

    CAS  PubMed  Google Scholar 

  46. Rocker L, Kirsch KA, Heyduck B, et al. Influence of prolonged physical exercise on plasma volume, plasma proteins, electrolytes, and fluid-regulating hormones. Int J Sports Med 1989; 10(4): 270–4

    Article  CAS  PubMed  Google Scholar 

  47. Mudambo KSMT, Coutie W, Rennie MJ. Plasma arginine vasopressin, atrial natriuretic peptide and brain natriuretic peptide responses in long-term field training in the heat: effects of fluid ingestion and acclimatization. Eur J Appl Physiol 1997; 75: 219–25

    Article  CAS  Google Scholar 

  48. Cohen I, Zimmerman AL. Changes in serum electrolyte levels during marathon running. S Afr Med J 1978; 53(12): 449–53

    CAS  PubMed  Google Scholar 

  49. Long D, Blake M, McNaughton L, et al. Hematological and biochemical changes during a short triathlon competition in novice triathletes. Eur J Appl Physiol 1990; 61(1–2): 93–9

    Article  CAS  Google Scholar 

  50. Nelson PB, Ellis D, Fu F, et al. Fluid and electrolyte balance during a cool weather marathon. Am J Sports Med 1989; 17(6): 770–2

    Article  CAS  PubMed  Google Scholar 

  51. Nicholas CW, Williams C, Lakomy HK, et al. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J Sports Sci 1995; 13(4): 283–90

    Article  CAS  PubMed  Google Scholar 

  52. Rama R, Ibanez J, Riera M, et al. Hematological, electrolyte, and biochemical alterations after a 100km run. Can J Appl Physiol 1994; 19(4): 411–20

    Article  CAS  PubMed  Google Scholar 

  53. Rose LI, Carroll DR, Lowe SL, et al. Serum electrolyte changes after marathon running. J Appl Physiol 1970; 29(4): 449–51

    CAS  PubMed  Google Scholar 

  54. Wells CL, Schrader TA, Stern JR, et al. Physiological responses to a 20-mile run under three fluid replacement treatments. Med Sci Sports Exerc 1985; 17(3): 364–9

    CAS  PubMed  Google Scholar 

  55. Whiting PH, Maughan RJ, Miller JDB. Dehydration and serum biochemical changes in marathon runners. Eur J Appl Physiol 1984; 52(2): 183–7

    Article  CAS  Google Scholar 

  56. Schrier RW, Hano J, Keller HI, et al. Renal, metabolic, and circulatory responses to heat and exercise: studies in military recruits during summer training, with implications for acute renal failure. Ann Intern Med 1970; 73: 213–23

    CAS  PubMed  Google Scholar 

  57. Pivarnik JM, Montain SJ, Graves JE, et al. Alterations in plasma volume, electrolytes and protein during incremental exercise at different pedal speeds. Eur J Appl Physiol 1988; 57: 103–9

    Article  CAS  Google Scholar 

  58. Verde T, Shephard RJ, Corey P, et al. Sweat composition in exercise and in heat. J Appl Physiol 1982; 53(6): 1540–5

    CAS  PubMed  Google Scholar 

  59. Costill DL. Sweating: its composition and effects on body fluids. Ann N Y Acad Sci 1977; 301: 160–74

    Article  CAS  PubMed  Google Scholar 

  60. Balakian G. What are the ‘ades’ all about? Med Times 1971 Sep; 99(9): 202–18

    CAS  PubMed  Google Scholar 

  61. Fukumoto T, Tanaka T, Fujioka H, et al. Differences in composition of sweat induced by thermal exposure and by running exercise. Clin Cardiol 1988; 11: 707–9

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka H, Osaka Y, Chikamori K, et al. Dependence on exercise intensity of changes in electrolyte secretion from the skin sampled by a simple method. Eur J Appl Physiol 1990; 60: 407–11

    Article  CAS  Google Scholar 

  63. Speedy DB, Rogers IR, Noakes TD, et al. Exercise-induced hyponatremia in ultradistance triathletes is caused by inappropriate fluid retention. Clin J Sport Med 2000; 10: 272–8

    Article  CAS  PubMed  Google Scholar 

  64. Speedy DB, Noakes TD, Rogers IR, et al. A prospective study of exercise-associated hyponatremia in two ultradistance triathletes. Clin J Sport Med 2000; 10: 136–41

    Article  CAS  PubMed  Google Scholar 

  65. Putterman C, Levy L, Rubinger D. Transient exercise-induced water intoxication and rhabdomyolysis. Am J Kidney Dis 1993; 21(2): 206–9

    CAS  PubMed  Google Scholar 

  66. Irving RA, Noakes TD, Buck R, et al. Evaluation of renal function and fluid hemostasis during recovery from exercise-induced hyponatremia. J Appl Physiol 1991; 70(1): 342–8

    CAS  PubMed  Google Scholar 

  67. Mudambo KSMT, Leese GP, Rennie MJ. Dehydration in soldiers during walking/running exercise in the heat and the effects of fluid ingestion during and after exercise. Eur J Appl Physiol 1997; 76(6): 517–24

    Article  CAS  Google Scholar 

  68. Vrijens DMJ, Rehrer NJ. Sodium-free fluid ingestion decreases plasma sodium during exercise in the heat. J Appl Physiol 1999; 70(2): 154–60

    Google Scholar 

  69. Galun E, Tur-Kaspa I, Assia E, et al. Hyponatremia induced by exercise: a 24-hour endurance march study. Miner Electrolyte Metab 1991; 17: 315–20

    CAS  PubMed  Google Scholar 

  70. Peters HPF, Akkermans LMA, Bol E, et al. Gastrointestinal symptoms during exercise: the effect of fluid supplementation. Sports Med 1995; 20(2): 65–76

    Article  CAS  PubMed  Google Scholar 

  71. Leiper JB, Prentice AS, Wrightson C, et al. Gastric emptying of a carbohydrate-electrolyte drink during a soccer match. Med Sci Sports Exerc 2001; 33(11): 1932–8

    Article  CAS  PubMed  Google Scholar 

  72. Murray R. The effects of consuming carbohydrate-electrolyte beverages on gastric emptying and fluid absorption during and following exercise. Sports Med 1987; 4: 322–51

    Article  CAS  PubMed  Google Scholar 

  73. Castenfors J. Renal function during exercise. Acta Physiol Scand 1967; 70Suppl. 293: 1–44

    Google Scholar 

  74. Freund BJ, Shizuru EM, Hashiro GM, et al. Hormonal, electrolyte, and renal responses to exercise are intensity dependent. J Appl Physiol 1991; 70(2): 900–6

    CAS  PubMed  Google Scholar 

  75. Pastene J, Germain M, Allevard AM, et al. Water balance during and after marathon running. Eur J Appl Physiol 1996; 73(1–2): 49–55

    Article  CAS  Google Scholar 

  76. Schmidt W, Bub A, Meyer M, et al. Is urodilation the missing link in exercise-dependent renal sodium retention? J Appl Physiol 1998; 84(1): 123–8

    CAS  PubMed  Google Scholar 

  77. Stokke O. Clinical chemical changes in physical activity. Scand J Soc Med Suppl 1982; 29: 93–101

    CAS  PubMed  Google Scholar 

  78. Noakes TD. The hyponatremia of exercise. Int J Sport Nutr 1992; 2(3): 205–28

    CAS  PubMed  Google Scholar 

  79. Anderson JV, Blood SR, Somers VK, et al. Hyponatremia and ultramarathon runners. JAMA 1986; 256(2): 213–4

    Article  Google Scholar 

  80. Poortmans JR. Exercise and renal function. Sports Med 1984; 1: 125–53

    Article  CAS  PubMed  Google Scholar 

  81. Bailey RR, Dann E, Gillies AHB, et al. What the urine contains following athletic competition. N Z Med J 1976; 83: 309–13

    CAS  PubMed  Google Scholar 

  82. McKenna MJ. The roles of ionic processes in muscular fatigue during intense exercise. Sports Med 1992; 13(2): 134–45

    Article  PubMed  Google Scholar 

  83. Speedy DB, Noakes TD, Boswell T, et al. Response to a fluid load in athletes with a history of exercise induced hyponatremia. Med Sci Sports Exerc 2001; 33(9): 1434–42

    Article  CAS  PubMed  Google Scholar 

  84. Roberts WO. A 12yr profile of medical injury and illness for the Twin Cities Marathon. Med Sci Sports Exerc 2000; 32(9): 1549–55

    CAS  PubMed  Google Scholar 

  85. Occhi G, Gemma S, Buselli P, et al. Effects of repeated endurance exercise on some metabolic parameters in crosscountry skiers. J Sports Med Phys Fitness 1987; 27: 184–90

    CAS  PubMed  Google Scholar 

  86. Refsum HE, Tveit B, Meen HD, et al. Serum electrolyte, fluid and acid-base balance after prolonged heavy exercise at low environmental temperature. Scand J Clin Lab Invest 1973; 32: 117–22

    Article  CAS  PubMed  Google Scholar 

  87. Muller J. Why marathon runners collapse [letter]. S Afr Med J 1988; 74(5): 247

    Google Scholar 

  88. Speedy DB, Noakes TD, Schneider G. Exercise-associated hyponatremia: a review. Emerg Med 2001; 13: 17–27

    Article  CAS  Google Scholar 

  89. Noakes TD. Hyponatremia in distance athletes. Phys Sportsmed 2000; 28(9): 71–6

    Article  CAS  PubMed  Google Scholar 

  90. Holtzhausen LM, Noakes TD. The prevalence and significance of post-exercise (postural) hypotension in ultramarathon runners. Med Sci Sports Exerc 1995; 27(12): 1595–601

    CAS  PubMed  Google Scholar 

  91. Noakes TD. IMMDA advisory statement on guidelines for fluid replacement during marathon running. International Marathon Medical Directors Association. Nov 2 [online]. Available from URL: http://www.aims-association.org/guidelines_for_fluid_replacement.htm. [Accessed 2003 Mar 18]

  92. Holtzhausen LM, Noakes TD. Collapsed ultraendurance athlete: proposed mechanisms and an approach to management. Clin J Sport Med 1997 Oct; 7(4): 292–301

    Article  CAS  PubMed  Google Scholar 

  93. Speedy DB, Noakes TD, Holtzhausen LM. Exercise-associated collapse [online]. Available from URL: http://www.physsportsmed.com/issues/2003/0303/speedy.htm [Accessed 2004 Feb 26]

  94. Cade R, Packer D, Zauner C, et al. Marathon running: physiological and chemical changes accompanying late-race functional deterioration. Eur J Appl Physiol 1992; 65(6): 485–91

    Article  CAS  Google Scholar 

  95. Cade R, Spooner G, Schlein E, et al. Effect of fluid, electrolyte, and glucose replacement during exercise on performance, body temperature, rate of sweat loss, and compositional changes of extracellular fluid. J Sports Med Phys Fitness 1972; 12(3): 150–6

    CAS  PubMed  Google Scholar 

  96. Welsh RS, Davis JM, Burke JR, et al. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med Sci Sports Exerc 2002; 34(4): 723–31

    Article  PubMed  Google Scholar 

  97. Nose H, Mack GW, Shi X, et al. Role of osmolality and plasma volume during rehydration in humans. J Appl Physiol 1988; 65(1): 325–31

    CAS  PubMed  Google Scholar 

  98. Gisolfi CV, Spranger KJ, Summers RW, et al. Effects of cycle exercise on intestinal absorption in humans. J Appl Physiol 1991; 71(6): 2518–27

    CAS  PubMed  Google Scholar 

  99. Bar-Or O, Wilk B. Water and electrolyte replenishment in the exercising child. Int J Sport Nutr 1996; 6: 93–9

    CAS  PubMed  Google Scholar 

  100. Wilmore JH, Morton AR, Gilbey HJ, et al. Role of taste preference on fluid intake during and after 90 min of running at 60% of V̇O2max in the heat. Med Sci Sports Exerc 1998; 30(4): 587–95

    Article  CAS  PubMed  Google Scholar 

  101. Fallowfield JL, Williams C, Singh R. The influence of ingesting a carbohydrate-electrolyte beverage during 4 hours of recovery on subsequent endurance capacity. Int J Sports Nutr 1993; 5(4): 285–99

    Google Scholar 

  102. Shirreffs SM, Taylor AJ, Leiper JB, et al. Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Med Sci Sports Exerc 1996; 28(10): 1260–71

    Article  CAS  PubMed  Google Scholar 

  103. Sanders B, Noakes TD, Dennis SC. Sodium replacement and fluid shifts during prolonged exercise in humans. Eur J Appl Physiol 2001; 84: 419–25

    Article  CAS  PubMed  Google Scholar 

  104. Nielsen B, Sjogaard G, Ugelvig J, et al. Fluid balance in exercise dehydration and rehydration with different glucose-electrolyte drinks. Eur J Appl Physiol 1986; 55: 318–25

    Article  CAS  Google Scholar 

  105. Gisolfi CV, Lambert GP, Summers RW. Intestinal fluid absorption during exercise: role of sport drink osmolality and [Na+]. Med Sci Sports Exerc 2001; 33(6): 907–15

    Article  CAS  PubMed  Google Scholar 

  106. Avery ME, Snyder JD. Oral therapy for acute diarrhoea: the underused simple solution. N Engl J Med 1990; 323: 891–4

    Article  CAS  PubMed  Google Scholar 

  107. Speedy DB, Thompson JMD, Rodgers I, et al. Oral salt supplementation during ultradistance exercise. Clin J Sport Med 2002; 12: 279–84

    Article  PubMed  Google Scholar 

  108. Sanders B, Noakes TD, Dennis SC. Water and eletrolyte shifts with partial fluid replacement during exercise. Eur J Appl Physiol Occup Physiol 1999; 80(4): 318–23

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, M. Recommendations for Treatment of Hyponatraemia at Endurance Events. Sports Med 34, 231–238 (2004). https://doi.org/10.2165/00007256-200434040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200434040-00003

Keywords

Navigation