Skip to main content

A Framework for Understanding the Training Process Leading to Elite Performance

Abstract

The development of performance in competition is achieved through a training process that is designed to induce automation of motor skills and enhance structural and metabolic functions. Training also promotes self-confidence and a tolerance for higher training levels and competition. In general, there are two broad categories of athletes that perform at the highest level: (i) the genetically talented (the thoroughbred); and (ii) those with a highly developed work ethic (the workhorse) with a system of training guiding their effort. The dynamics of training involve the manipulation of the training load through the variables: intensity, duration and frequency. In addition, sport activities are a combination of strength, speed and endurance executed in a coordinated and efficient manner with the development of sport-specific characteristics. Short- and long-term planning (periodisation) requires alternating periods of training load with recovery for avoiding excessive fatigue that may lead to overtraining. Overtraining is long-lasting performance incompetence due to an imbalance of training load, competition, non-training stressors and recovery. Furthermore, annual plans are normally constructed in macro-, meso- and microcycles around the competitive phases with the objective of improving performance for a peak at a predetermined time. Finally, at competition time, optimal performance requires a healthy body, and integration of not only the physiological elements but also the psychological, technical and tactical components.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Viru A. Adaptation in sports training. Boca Raton (FL): CRC Press, 1995

    Google Scholar 

  2. 2.

    Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 2002; 29: 218–22

    PubMed  CAS  Article  Google Scholar 

  3. 3.

    Schmolinsky G. Track and field: the East German textbook of athletics. Toronto: Sport Books Publisher, 1996

    Google Scholar 

  4. 4.

    Lehmann M, Foster C, Netzer N, et al. Physiological responses to short- and long-term overtraining in endurance athletes. In: O’Toole ML, editor. Overtraining in sport. Champaign (IL): Human Kinetics, 1998: 19–46

    Google Scholar 

  5. 5.

    Kallus KW. Beanspruchung und Ausgangszustand [Strain and initial state]. Weinheim: PVU, 1992

    Google Scholar 

  6. 6.

    Fry RW, Morton AR, Keast D. Periodization and the prevention of overtraining. Can J Sports Sci 1992; 17: 241–8

    CAS  Google Scholar 

  7. 7.

    Steinacker JM, Lehmann M. Clinical findings and mechanisms of stress and recovery in athletes. In: Kellmann M, editor. Enhancing recovery: preventing underperformance in athletes. Champaign (IL): Human Kinetics, 2002: 103–18

    Google Scholar 

  8. 8.

    Budgett R. Fatigue and underperformance in athletes: the overtraining syndrome. Br J Sports Med 1998; 32(2): 107–10

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Harre D. Principles of sports training: introduction to the theory and methods of training. 1st ed. Berlin: Sportverlag, 1982

    Google Scholar 

  10. 10.

    Bompa TO. Periodization: theory and methodology of training. 4th ed. Champaign (IL): Human Kinetics, 1999

    Google Scholar 

  11. 11.

    Siff MC, Verkhoshansky YV. Supertraining. 4th ed. Denver (CO): Supertraining International, 1999

    Google Scholar 

  12. 12.

    Banister EW, Calvert TW. Planning for future performance: implications for long term training. Can J Appl Sports Sci 1980; 5(3): 170–6

    CAS  Google Scholar 

  13. 13.

    Shepley B, MacDougall JD, Cipriano N, et al. Physiological effects of tapering in highly trained athletes. J Appl Physiol 1992; 72: 706–11

    PubMed  CAS  Google Scholar 

  14. 14.

    Kuipers H, Keizer HA. Overtraining in elite athletes: review and directions for the future. Sports Med 1988; 6(2): 79–92

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Zatsiorsky VM. Science and practice of strength training. Champaign (IL): Human Kinetics, 1995

    Google Scholar 

  16. 16.

    Bouchard C. Genetics and aerobic power and capacity. In: Bouchard C, editor. Sport and human genetics. Champaign (IL): Human Kinetics, 1986

    Google Scholar 

  17. 17.

    MacDougall JD, Wenger HA. The purpose of physiological testing. In: MacDougall JD, Wenger HA, Green HJ, editors. Physiological testing of the high performance athlete. 2nd ed. Champaign (IL): Human Kinetics, 1991: 1–5

    Google Scholar 

  18. 18.

    Starkes J. The road to expertise: is practice the only determinant? Int J Sport Psychol 2000; 31: 431–51

    Google Scholar 

  19. 19.

    Hopkins WG. Genes and training for athletic performance [online]. Available from URL: http://www.sportsci.org/jour/0101/wghgene.htm [Accessed 2003 Oct 31]

  20. 20.

    Bouchard C, Malina RM, Perusse L. Genetics of fitness and physical performance. Champaign (IL): Human Kinetics, 1997: 408

    Google Scholar 

  21. 21.

    Skinner JS. Do genes determine champions? Sports Sci Exchange 2001; 14(4): 1–4

    Google Scholar 

  22. 22.

    Bouchard C, Dionne FT, Simoneau J-A, et al. Genetics of aerobic and anaerobic performances. Exerc Sport Sci Rev 1992; 20: 27–58

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Myerson S, Hemingway H, Budget R, et al. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol 1999; 87: 1313–6

    PubMed  CAS  Google Scholar 

  24. 24.

    Danser AH, Schalekamp MA, Bax WA, et al. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 1995; 92(6): 1387–8

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1999; 86: 1343–6

    Article  Google Scholar 

  26. 26.

    Woods DR, Montgomery HE. Angiotensin-converting enzyme and genetics at high altitude. High Alt Med Biol 2001; 2(2): 201–10

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Miller GJ, Bauer KA, Barzegar S, et al. Increased activation of the haemostatic system in men at high risk of fatal coronary heart disease. Thromb Haemost 1996; 75(5): 767–71

    PubMed  CAS  Google Scholar 

  28. 28.

    Gayagay G, Yu B, Hambly B, et al. Elite endurance athletes and the ACE I allele: the role of genes in athletic performance. Hum Genet 1998; 103: 48–50

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Jelakovic B, Kuzmanic D, Milicic D, et al. Influence of angiotensin converting enzyme (ACE) gene polymorphism and circadian blood pressure (BP) changes on left ventricle (LV) mass in competitive oarsmen [abstract]. Am J Hypertens 2000; 113: 182A

    Article  Google Scholar 

  30. 30.

    Rankinen T, Wolfarth B, Simoneau JA, et al. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol 2000; 88(5): 1571–5

    PubMed  CAS  Google Scholar 

  31. 31.

    Montgomery HE, Marshall R, Hemingway H, et al. Human gene for physical performance. Nature 1998; 393: 221–2

    PubMed  CAS  Article  Google Scholar 

  32. 32.

    Karjalainen J, Kujala UM, Stolt A, et al. Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J Am Coll Cardiol 1999; 34: 494–9

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Taylor RR, Mamotte CD, Fallon K, et al. Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol 1999; 87(3): 1035–7

    PubMed  CAS  Google Scholar 

  34. 34.

    Woods DR, World M, Rayson MP, et al. Endurance enhancement related to the human angiotensin I-converting enzyme ID polymorphism is not due to differences in the cardiorespiratory response to training. Eur J Appl Physiol 2002; 86: 240–4

    PubMed  CAS  Article  Google Scholar 

  35. 35.

    Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 1980; 12(5): 357–60

    PubMed  CAS  Google Scholar 

  36. 36.

    Coyle EF, Coggan AR, Hopper MK, et al. Determinants of endurance in well-trained cyclists. J Appl Physiol 1988; 64(6): 2622–30

    PubMed  CAS  Google Scholar 

  37. 37.

    Hagberg JM, Ferrell RE, McCole SD, et al. V̇O2max is associated with ACE genotype in postmenopausal women. J Appl Physiol 1998; 85(5): 1842–6

    PubMed  CAS  Google Scholar 

  38. 38.

    Rankinen T, Perusse L, Gagnon J, et al. Angiotensin-converting enzyme ID polymorphism and fitness phenotype in the HERITAGE Family Study. J Appl Physiol 2000; 88: 1029–35

    PubMed  CAS  Google Scholar 

  39. 39.

    Jones AM, Montgomery HE, Woods DR. Human performance: a role for the ACE genotype? Exerc Sport Sci Rev 2002; 30(4): 184–90

    PubMed  Article  Google Scholar 

  40. 40.

    Nazarov IB, Woods DR, Montgomery HE, et al. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet 2001; 9(10): 797–801

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Helsen WF, Hodges NJ, Van Winckel J, et al. The roles of talent, physical precocity and practice in the development of soccer expertise. J Sports Sci 2000; 18(9): 727–36

    PubMed  CAS  Article  Google Scholar 

  42. 42.

    Howe MJA, Davidson JW, Sloboda JA. Innate talents: reality or myth? Behav Brain Sci 1998; 23(1): 399–407

    Article  Google Scholar 

  43. 43.

    Baker J. Genes and training for athletic performance revisited [online]. Available from URL: http://www.sportsci.org/jour/0102/jb.htm [Accessed 2003 Oct 31]

  44. 44.

    Ericsson KA, Krampe RT, Tesch-Romer C. The role of deliberate practice in the acquisition of expert performance. Physiol Rev 1993; 100(3): 363–406

    Google Scholar 

  45. 45.

    Hodges NJ, Starkes JL. Wrestling with the nature of expertise: a sport specific test of Ericsson, Krampe and Tesch-Romer’s (1993) theory of ‘deliberate practice’. Int J Sport Psychol 1996; 27: 400–24

    Google Scholar 

  46. 46.

    Starkes JL, Deakin JM, Allard F, et al. Deliberate practice in sports: what is it anyway? In: Ericsson KA, editor. The road to excellence: the acquisition of expert performance in the arts and sciences, sports and games. Hillsdale (NJ): Erlbaum, 1996: 81–106

    Google Scholar 

  47. 47.

    Helsen WF, Starkes JL, Hodges NJ. Team sports and the theory of deliberate practice. J Sport Exerc Psychol 1998; 20: 12–34

    Google Scholar 

  48. 48.

    Ericsson KA. Peak performance and age: an examination of peak performance in sports. In: Baltes MM, editor. Successful aging: perspectives from the behavioral sciences. Cambridge: Cambridge University Press, 1990: 164–95

    Chapter  Google Scholar 

  49. 49.

    Simon HA, Chase WG. Skill in chess. Am Sci 1973; 61: 394–403

    Google Scholar 

  50. 50.

    Brewer J, Balsom PD, Davis J. Season birth distribution amongst European soccer players. Sports Exerc Injury 1995; 1: 154–7

    Google Scholar 

  51. 51.

    Barnsley RH, Thompson AH. Birthdate and success in minor hockey: the key to the NHL. Can J Behav Sci 1988; 20: 167–76

    Article  Google Scholar 

  52. 52.

    Boucher J, Mutimer B. The relative age phenomenon in sport: a replication and extension with ice-hockey. Res Q Exerc Sport 1994; 65: 377–81

    PubMed  CAS  Google Scholar 

  53. 53.

    Thompson AH, Barnsley RH, Stebelsky G. Born to play ball: the relative age effect and major league baseball. Sociol Sport J 1991; 8: 146–51

    Google Scholar 

  54. 54.

    Edwards S. Born too late to win? Nature 1994; 370: 186

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Helsen WF, Starkes JL, Van Winckel J. The influence of relative age on success and dropout in male soccer players. Am J Hum Biol 1998; 10(6): 791–8

    Article  Google Scholar 

  56. 56.

    Noakes TD. Lore of running. 3rd ed. Champaign (IL): Human Kinetics Publishers, 1991

    Google Scholar 

  57. 57.

    Hackney AC. Neuroendocrine system: exercise overload and regeneration. In: Steinacker JM, editor. Overload, fatigue, performance incompetence, and regeneration in sport. New York: Plenum, 1999: 173–86

    Chapter  Google Scholar 

  58. 58.

    Kellmann M, Kallus KW. Mood, recovery-stress state, and regeneration. In: Steinacker JM, editor. Overload, fatigue, performance incompetence, and regeneration in sport. New York: Plenum, 1999: 101–17

    Chapter  Google Scholar 

  59. 59.

    Kellmann M. Underrecovery and overtraining: different concepts: similar impact? In: Kellmann M, editor. Enhancing recovery: preventing underperformance in athletes. Champaign (IL): Human Kinetics, 2002: 3–24

    Google Scholar 

  60. 60.

    Morgan WP, Brown DR, Raglin JS, et al. Psychological monitoring of overtraining and staleness. Br J Sports Med 1987; 21(3): 107–14

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Pyne D. Designing an endurance training program. Proceedings of the National Coaching and Officiating Conference; 1996 Nov 30–Dec 3; Brisbane. Bruce (ACT): Australian Coaching Council Inc., 1996

    Google Scholar 

  62. 62.

    Balyi I, Hamilton A. Long-term planning of athlete development: the training to win phase. FHS 1999 Apr; 3: 7–9

    Google Scholar 

  63. 63.

    Wilke K, Madsen O. Coaching the young swimmer. London: Pelham, 1986

    Google Scholar 

  64. 64.

    Balyi I. Long-term planning of athlete development: the training to compete phase. FHS 1998 Dec; 2: 8–11

    Google Scholar 

  65. 65.

    Norris SR, Smith DJ. Planning, periodization, and sequencing of training and competition: the rationale for a competently planned, optimally executed training and competition program, supported by a multidisciplinary team. In: Kellmann M, editor. Enhancing recovery: preventing underperformance in athletes. Champaign (IL): Human Kinetics, 2002: 121–41

    Google Scholar 

  66. 66.

    Matveyev L. Fundamentals of sports training [English translation of the revised Russian edition]. Moscow: Progress Publishers, 1981

    Google Scholar 

  67. 67.

    Balyi I. Elite athlete preparation: the training to compete and training to win stages of long-term athlete development. In: Sport leadership. Montreal: Coaching Association of Canada, 2002

    Google Scholar 

  68. 68.

    Bouchard C, Leon AS, Rao DC, et al. The HERITAGE Family Study: aims, design, and measurement protocol. Med Sci Sports Exerc 1995; 27: 721–9

    PubMed  CAS  Google Scholar 

  69. 69.

    Gaesser GA, Rich RG. Effects of high- and low-intensity exercise training on aerobic capacity and blood lipids. Med Sci Sports Exerc 1984; 16: 269–74

    PubMed  CAS  Google Scholar 

  70. 70.

    Skinner JS, Wilmore KM, Krasnoff JB, et al. Adaptation to a standardized training program and changes in fitness in a large, heterogeneous population: the HERITAGE Family Study. Med Sci Sports Exerc 2000; 32(1): 157–61

    PubMed  CAS  Google Scholar 

  71. 71.

    Swain DP, Leutholtz BC. Heart rate reserve is equivalent to %V̇O2 reserve, not to %V̇O2max.Med Sci Sports Exerc 1997; 29: 410–4

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Pollock ML, Gaesser GA, Butcher JD, et al. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc 1998; 30: 975–91

    Article  Google Scholar 

  73. 73.

    Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate: a longitudinal study. Ann Med Exp Biol Fenn 1957; 35: 307–15

    PubMed  CAS  Google Scholar 

  74. 74.

    Kindermann WG, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 1979; 42: 24–34

    Article  Google Scholar 

  75. 75.

    Henritze J, Weltman A, Schurrer RL, et al. Effects of training at and above the lactate threshold on the lactate threshold and maximal oxygen uptake. Eur J Appl Physiol Occup Physiol 1985; 54: 84–8

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Kindermann W, Meyer T, Urhausen A. Aerobic performance diagnosis: concepts and practical relevance [abstract]. Int J Sports Med 2002; 23(S2): S68–9

    Google Scholar 

  77. 77.

    Meyer T, Gabriel HHW, Kindermann W. Is determination of exercise intensities as percentages of V̇O2max or HRmax adequate? Med Sci Sports Exerc 1999; 31(9): 1342–5

    PubMed  CAS  Article  Google Scholar 

  78. 78.

    Mujika I. The influence of training characteristics and tapering on the adaptation in highly trained individuals: a review. Int J Sports Med 1998; 19(7): 439–46

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Foster C, Daniels JT, Seiler S. Perspectives on correct approaches to training. In: Steinacker JM, editor. Overload, performance, incompetence, and regeneration in sport. New York: Kluwer Academic/Plenum Publishers, 1999: 27–41

    Chapter  Google Scholar 

  80. 80.

    Wenger HA, Bell GJ. The interaction of intensity, frequency and duration of exercise training in altering cardio respiratory fitness. Sports Med 1986; 3: 346–56

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Rusko H. The effect of training on aerobic power characteristics of young cross-country skiers. J Sports Sci 1987; 5(3): 273–86

    PubMed  CAS  Article  Google Scholar 

  82. 82.

    Rusko H, Rahkila P. Effect of increased intensity of training on maximum oxygen uptake and muscular performance of young female cross-country skiers. Med Sport 1981; 14: 187–94

    Google Scholar 

  83. 83.

    Gaskill S, Serfass R, Bacharach DW, et al. Responses to training in cross-country skiers. Med Sci Sports Exerc 1999; 31: 1211–7

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Norris SR, Petersen SR. Effects of endurance training on transient oxygen uptake responses in cyclists. J Sports Sci 1998; 16(8): 733–8

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance training and high-intensity intermittent training on anaerobic capacity and V̇O2max.Med Sci Sports Exerc 1996; 28: 1327–30

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Smith TP, McNaughton LR, Marshall KL. Effects of 4-wk training using Vmax/Tmax on V̇O2max and performance on athletes. Med Sci Sports Exerc 1999; 31: 892–6

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Mikesall KA, Dudley GA. Influence of intense endurance training on aerobic power of competitive distance runners. Med Sci Sports Exerc 1984; 16: 371–5

    Google Scholar 

  88. 88.

    Martin DE, Vroon DH, May DF, et al. Physiological changes in elite male distance runners training for the Olympic Games. Phys Sportsmed 1986; 14: 152–69

    Google Scholar 

  89. 89.

    Acevedo EO, Goldfarb AH. Increasing training intensity effects on plasma lactate, ventilatory threshold and endurance. Med Sci Sports Exerc 1989; 21: 563–8

    PubMed  CAS  Google Scholar 

  90. 90.

    Lindsay F, Hawley JA, Myburgh KH, et al. Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exer 1996; 28(11): 1427–34

    CAS  Article  Google Scholar 

  91. 91.

    Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 2002; 32(1): 53–73

    PubMed  Article  Google Scholar 

  92. 92.

    Daniels J. Daniels’ running formula. Champaign (IL): Human Kinetics, 1998

    Google Scholar 

  93. 93.

    Lambert EV, Hawley JA, Goedecke J, et al. Nutritional strategies for promoting fat utilization and delaying the onset of fatigue during prolonged exercise. J Sports Sci 1997; 15(3): 315–24

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Seiler S. Endurance training theory: Norwegian style [online]. Available from URL: http://home.hia.no/~stephens/xctheoryhtm [Accessed 2003 Oct 31]

  95. 95.

    Friel J. The triathlete’s training bible: a complete training guide for the competitive multisport athlete. Boulder (CO): Velo Press, 1998: 400

    Google Scholar 

  96. 96.

    Foster C, Daniels JT, Yarbrough RA. Physiological and training correlates of marathon running performance. Aust J Sports Med 1977; 9: 58–61

    Google Scholar 

  97. 97.

    Hagan RD, Smith MG, Gettman LR. Marathon performance in relation to maximal aerobic power and training indices. Med Sci Sports Exerc 1981; 13(3): 185–9

    PubMed  CAS  Google Scholar 

  98. 98.

    Sjodin B, Svedenhag J. Applied physiology of marathon running. Sports Med 1985; 2(2): 83–99

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Banister EW. Modeling elite athletic performance. In: Green HJ, editor. Physiological testing of the high-performance athlete. Champaign (IL): Human Kinetics Books, 1991: 403–24

    Google Scholar 

  100. 100.

    Morton RH, Fitz-Clarke J, Banister EW. Modeling human performance in running. J Appl Physiol 1990; 69: 1171–7

    PubMed  CAS  Google Scholar 

  101. 101.

    Dick FW. Sports training principles. 4th ed. London: A and C Black, 2002: 214

    Google Scholar 

  102. 102.

    MacDougall JD, Sale DG, Moroz JR, et al. Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med Sci Sports 1979; 11(2): 164–6

    PubMed  CAS  Google Scholar 

  103. 103.

    Balyi I. NCCP level 4/task 12 planning, periodization & integration lecture and workshop series. Canada: Coaching Association of Canada, 1997 Jun-Sep

    Google Scholar 

  104. 104.

    Sovak D, Hawes MR. Anthropological status of international calibre speed skaters. J Sports Sci 1987; 5(3): 287–304

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Norton K, Whittingham N, Carter L, et al. Measurement techniques in anthropometry. In: Olds T, editor. Anthropometria. Sydney: University of New South Wales Press, 1996: 27–73

    Google Scholar 

  106. 106.

    Wagner DR, Heyward VH. Techniques of body composition assessment: a review of laboratory and field methods. Res Q Exerc Sport 1999; 70(2): 135–49

    PubMed  CAS  Google Scholar 

  107. 107.

    Shirreffs SM, Maughan RJ. Rehydration and recovery of fluid balance after exercise. Exerc Sport Sci Rev 2000; 28(1): 27–32

    PubMed  CAS  Google Scholar 

  108. 108.

    Coyle EF, Feltner ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991; 23(1): 93–107

    PubMed  CAS  Google Scholar 

  109. 109.

    Burke LM, Hawley JA. Carbohydrate and exercise. Curr Opin Clin Nutr Metab Care 1999; 2(6): 515–20

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Burke LM, Cox GR, Culmmings NK, et al. Guidelines for daily carbohydrate intake: do athletes achieve them? Sports Med 2001; 31(4): 267–99

    PubMed  CAS  Article  Google Scholar 

  111. 111.

    Costill DL, Flynn MG, Kirwan JP, et al. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 1988; 20: 249–54

    PubMed  CAS  Article  Google Scholar 

  112. 112.

    Lemon PW. Effect of exercise in protein requirements. J Sports Sci 1991; 9: 53–70

    PubMed  Article  Google Scholar 

  113. 113.

    Poortmans JR, Dellalieux O. Do regular high protein diets have potential health risks on kidney function in athletes? Int J Sport Nutr Exerc Metab 2000; 10(1): 23–38

    Google Scholar 

  114. 114.

    McCarthy P. How much protein do athletes really need? Phys Sportsmed 1989; 17: 170–5

    Google Scholar 

  115. 115.

    Burke LM. Energy needs of athletes. Can J Appl Physiol 2001; 26 Suppl.: S202–19

    PubMed  Article  Google Scholar 

  116. 116.

    Maughan RJ, Leiper JB. Limitations to fluid replacement during exercise. Can J Appl Physiol 1999; 24(2): 173–87

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Calvert TW, Banister EW, Savage MV, et al. Systems model of the effects of training on physical performance. IEEE Trans Syst Man Cybern 1976; SMC-6: 94–102

    Article  Google Scholar 

  118. 118.

    Banister EW, Hamilton CL. Variations in iron status with fatigue modelled from training in female distance runners. Eur J Appl Physiol 1985; 54: 16–23

    CAS  Article  Google Scholar 

  119. 119.

    Morton RH. Modelling training and overtraining. J Sports Sci 1997; 15: 335–40

    PubMed  CAS  Article  Google Scholar 

  120. 120.

    Foster C. Monitoring training in athletes with reference to indices of overtraining syndrome. Med Sci Sports Exerc 1998; 30(7): 1164–8

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    Satori J, Tschiene P. The further development of training theory: new elements and tendencies. Leistungssport 1987; 17(2): 7–16

    Google Scholar 

  122. 122.

    Nádori L, Granek I. Theoretical and methodological basis of training planning with special considerations within a microcycle. Lincoln (NE): National Strength and Conditioning Association, 1989

    Google Scholar 

  123. 123.

    Balyi I. Planning for optimal performance: integration of strength and conditioning. Proceedings of National Coaches Conference; 1994 Dec 1–3; Canberra. Canberra: Australian Coaching Council, 1994: 19–24

  124. 124.

    Verkhoshansky YV. The end of ‘periodisation’ of training in top-class sport. N Stud Athlet 1999; 47: 14–8

    Google Scholar 

  125. 125.

    Pyne D. The periodization of swimming training at the Australian Institute of Sport. Sports Coach 1996; 18: 34–8

    Google Scholar 

  126. 126.

    Hickson RC, Kanakis Jr C, Davis JR, et al. Reduced training duration effects on aerobic power, endurance, and cardiac growth. J Appl Physiol 1982; 53(1): 225–9

    PubMed  CAS  Google Scholar 

  127. 127.

    Hickson RC, Foster C, Pollock ML, et al. Reduced training intensities and loss of aerobic power, endurance, and cardiac growth. J Appl Physiol 1985; 58(2): 492–9

    PubMed  CAS  Google Scholar 

  128. 128.

    Neufer PD, Costill DL, Fielding RA, et al. Effect of reduced training on muscular strength and endurance in competitive swimmers. Med Sci Sports Exerc 1987; 19(5): 487–90

    Google Scholar 

  129. 129.

    Houmard JA, Johns RA. Effects of taper on swim performance: practical implications. Sports Med 1994; 17(4): 224–32

    PubMed  CAS  Article  Google Scholar 

  130. 130.

    Zarkadas PC, Carter JB, Banister EW. Modelling the effect of taper on performance, maximal oxygen uptake, and the anaerobic threshold in endurance triathletes. Adv Exp Med Biol 1995; 393: 179–86

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    Banister EW, Carter JB, Zarkadas PC. Training theory and taper: validation in triathlon athletes. Eur J Appl Physiol 1999; 79: 182–91

    CAS  Article  Google Scholar 

  132. 132.

    Houmard JA, Scott BK, Justice CL, et al. The effects of taper on performance in distance runners. Med Sci Sports Exerc 1994; 26: 624–31

    PubMed  CAS  Google Scholar 

  133. 133.

    Houmard JA, Kirwan JP, Flynn MG, et al. Effects of reduced training on submaximal and maximal running responses. Int J Sports Med 1989; 10: 30–3

    PubMed  CAS  Article  Google Scholar 

  134. 134.

    McConnell GK, Costill DL, Widrick JJ, et al. Reduced training volume and intensity maintain aerobic capacity but not performance in distance runners. Int J Sports Med 1993; 14: 33–7

    Article  Google Scholar 

  135. 135.

    Costill DL, King DS, Thomas R, et al. Effects of reduced training on muscular power in swimmers. Phys Sportsmed 1985; 13: 94–101

    Google Scholar 

  136. 136.

    Gibla MJ, MacDougall JD, Sale DG. The effects of tapering on strength performance in trained athletes. Int J Sports Med 1994; 15: 492–7

    Article  Google Scholar 

  137. 137.

    Houmard JA, Costill DL, Mitchell JB, et al. Reduced training maintains performance in distance runners. Int J Sports Med 1990; 11: 46–52

    PubMed  CAS  Article  Google Scholar 

  138. 138.

    Fitz-Clarke JR, Morton RH, Banister EW. Optimizing athletic performance by influence curves. J Appl Physiol 1991; 71: 1151–8

    PubMed  CAS  Google Scholar 

  139. 139.

    Kubukeli ZN, Noakes TD, Dennis SC. Training techniques to improve endurance exercise performances. Sports Med 2002; 32(8): 489–509

    PubMed  Article  Google Scholar 

  140. 140.

    Smith DJ, Norris SR. Changes in glutamine and glutamate concentrations for tracking training tolerance in elite athletes. Med Sci Sports Exerc 2000; 32: 684–9

    PubMed  CAS  Article  Google Scholar 

  141. 141.

    Lehmann M, Dickhuth HH, Gendrisch G, et al. Training-overtraining: a prospective, experimental study with experienced middle- and long-distance runners. Int J Sports Med 1991; 12(5): 444–52

    PubMed  CAS  Article  Google Scholar 

  142. 142.

    Hakkinen K, Pakarinen A, Alen M, et al. Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol Occup Physiol 1985; 53: 287–93

    PubMed  CAS  Article  Google Scholar 

  143. 143.

    Busso T, Hakkinen K, Pakarinen A, et al. Hormonal adaptations and modelled responses in elite weightlifters during 6 weeks of training. Eur J Appl Physiol 1992; 64: 381–6

    CAS  Article  Google Scholar 

  144. 144.

    Pyne DB, Gleeson M. Effects of intensive exercise training on immunity in athletes. Int J Sports Med 1998; 19Suppl. 3: S183–94

    PubMed  Article  Google Scholar 

  145. 145.

    Shephard RJ, Shek PN. Acute and chronic over-exertion: do depressed immune responses provide useful markers? Int J Sports Med 1998; 19: 159–71

    PubMed  CAS  Article  Google Scholar 

  146. 146.

    Gleeson M. Mucosal immunity and respiratory illness in elite athletes. Int J Sports Med 2000; 21Suppl. 1: S33–43

    PubMed  CAS  Article  Google Scholar 

  147. 147.

    König D, Grathwohl D, Weinstock C, et al. Upper respiratory tract infection in athletes: influence of lifestyle, type of sport, training effort, and immunostimulant intake. Exerc Immunol Rev 2000; 6: 102–20

    PubMed  Google Scholar 

  148. 148.

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93(5): 1043–65

    Article  Google Scholar 

  149. 149.

    de Meersman RE. Heart rate variability and aerobic fitness. Am Heart J 1993; 125: 726–31

    PubMed  Article  Google Scholar 

  150. 150.

    Ekblom B, Kilbom A, Soltysiak J. Physical training, bradycardia and autonomic nervous system. Scand J Clin Lab Invest 1973; 32: 251–6

    PubMed  CAS  Article  Google Scholar 

  151. 151.

    Smith ML, Hudson DL, Graitzer HM, et al. Exercise training bradycardia: the role of autonomic balance. Med Sci Sports Exerc 1987; 21: 40–4

    Google Scholar 

  152. 152.

    Israel S. Addressing the problem of excessive training from the point of view of internal medicine and exercise physiology [in German]. Med Sport (Berl) 1976; 16: 1–12

    Google Scholar 

  153. 153.

    Lehmann M, Foster C, Keul J. Overtraining and endurance athletes: a brief review. Med Sci Sports Exerc 1993; 25(7): 854–62

    PubMed  CAS  Article  Google Scholar 

  154. 154.

    Dressendorfer RH, Wade CE, Scaff JH. Increased morning heart rate in runners: a valid sign of overtraining? Phys Sportsmed 1985; 13(8): 77–86

    Google Scholar 

  155. 155.

    Jeukendrup AE, Hesselink MK, Snyder AC, et al. Physiological changes in male competitive cyclists after two weeks of intensified training. Int J Sports Med 1992; 13: 534–41

    PubMed  CAS  Article  Google Scholar 

  156. 156.

    Pinchot V, Roche F, Gaspoz J-M, et al. Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc 2000; 32(10): 1729–36

    Article  Google Scholar 

  157. 157.

    Carter JB, Banister EW, Blaber AP. The effect of age and gender on heart rate variability after endurance training. Med Sci Sports Exerc 2003; 35: 1333–40

    PubMed  Article  Google Scholar 

  158. 158.

    Uusitalo AL, Uusitalo AJ, Rusko HK. Endurance training, overtraining and baroreflex sensitivity in female athletes. Clin Physiol 1998; 18: 510–20

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Kreider RB, Fry AC, O’Toole MLE. Overtraining in sport. Champaign (IL): Human Kinetics, 1998

    Google Scholar 

  160. 160.

    Silva JN. An analysis of the training stress syndrome in competitive athletics. J Appl Sport Psychol 1990; 2(1): 5–20

    Article  Google Scholar 

  161. 161.

    Hackney AC, Pearman III SN, Nowacki JM. Physiological profiles of overtrained and stale athletes: a review. J Appl Sport Psychol 1990; 2: 21–33

    Article  Google Scholar 

  162. 162.

    Raglin JS. Overtraining and staleness: psychometric monitoring of endurance athletes. In: Tennant LK, editor. Handbook of research on sport psychology. New York: Macmillian, 1993: 840–50

    Google Scholar 

  163. 163.

    Gould D, Dieffenbach K. Overtraining, underrecovery, and burnout in sport. In: Kellmann M, editor. Enhancing recovery: preventing underperformance in athletes. Champaign (IL): Human Kinetics, 2002: 25–35

    Google Scholar 

  164. 164.

    Smith R. Toward a cognitive-affective model of athletic burnout. J Sport Psychol 1986; 8: 36–50

    Google Scholar 

  165. 165.

    Budgett R. Overtraining syndrome. Br J Sports Med 1990; 24: 231–6

    PubMed  CAS  Article  Google Scholar 

  166. 166.

    Lehmann M, Gastmann U, Baur S, et al. Selected parameters and mechanisms of peripheral and central fatigue and regeneration in overtrained athletes. In: Steinacker JM, editor. Overload, performance, incompetence, and regeneration in sport. New York: Kluwer Academic/Plenum Publishers, 1999: 7–25

    Chapter  Google Scholar 

  167. 167.

    Hooper SL, Mackinnon LT. Monitoring overtraining in athletes. Sports Med 1995; 20: 321–7

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    Urhausen A, Gabriel HHW, Kindermann W. Impaired pituitary hormonal response to exhaustive exercise in overtrained athletes. Med Sci Sports Exerc 1998; 30: 407–14

    PubMed  CAS  Article  Google Scholar 

  169. 169.

    Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have? Sports Med 2002; 32(2): 95–102

    PubMed  Article  Google Scholar 

  170. 170.

    Gabriel HHW, Urhausen A, Schwarz S, et al. Cycle ergometric performance capacity, lactate and respiratory parameters during an intensive training period of endurance athletes [abstract]. Int J Sports Med 1998; 19Suppl. 1: S24

    Google Scholar 

  171. 171.

    Budgett R, Newsholme E, Lehmann M, et al. Redefining the overtraining syndrome as the unexplained underperformance syndrome. Br J Sports Med 2000; 34(1): 67–8

    PubMed  CAS  Article  Google Scholar 

  172. 172.

    Gould D, Guinan D, Greenleaf C, et al. Factors affecting Olympic performance: perceptions of athletes and coaches from more and less successful teams. Sport Psychol 1999; 13(4): 371–95

    Google Scholar 

  173. 173.

    Kenttä G, Hassmén P. Overtraining and recovery: a conceptual model. Sports Med 1998; 26: 1–26

    PubMed  Article  Google Scholar 

  174. 174.

    Kenttä G, Hassmén P. Underrecovery and overtraining: a conceptual model. In: Kellmann M, editor. Enhancing recovery: preventing underperformance in athletes. Champaign (IL): Human Kinetics, 2002: 57–9

    Google Scholar 

  175. 175.

    Smith DJ, Norris SR. Building a sport science program. Coaches Rep 2000; 6(4): 19–21

    Google Scholar 

  176. 176.

    Verhoshanski JV. Foundations for special strength training in sports. Moscow: Fis, 1977

    Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David J. Smith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, D.J. A Framework for Understanding the Training Process Leading to Elite Performance. Sports Med 33, 1103–1126 (2003). https://doi.org/10.2165/00007256-200333150-00003

Download citation

Keywords

  • Heart Rate Variability
  • Macrocycle
  • Endurance Athlete
  • Athletic Performance
  • Training Load