Skip to main content

Effects of the Menstrual Cycle on Exercise Performance

Abstract

This article reviews the potential effects of the female steroid hormone fluctuations during the menstrual cycle on exercise performance. The measurement of estrogen and progesterone concentration to verify menstrual cycle phase is a major consideration in this review. However, even when hormone concentrations are measured, the combination of differences in timing of testing, the high inter- and intra-individual variability in estrogen and progesterone concentration, the pulsatile nature of their secretion and their interaction, may easily obscure possible effects of the menstrual cycle on exercise performance. When focusing on studies using hormone verification and electrical stimulation to ensure maximal neural activation, the current literature suggests that fluctuations in female reproductive hormones throughout the menstrual cycle do not affect muscle contractile characteristics. Most research also reports no changes over the menstrual cycle for the many determinants of maximal oxygen consumption (V̇O2max), such as lactate response to exercise, bodyweight, plasma volume, haemoglobin concentration, heart rate and ventilation. Therefore, it is not surprising that the current literature indicates that V̇O2max is not affected by the menstrual cycle. These findings suggest that regularly menstruating female athletes, competing in strength-specific sports and intense anaerobic/aerobic sports, do not need to adjust for menstrual cycle phase to maximise performance.

For prolonged exercise performance, however, the menstrual cycle may have an effect. Even though most research suggests that oxygen consumption, heart rate and rating of perceived exertion responses to sub-maximal steady-state exercise are not affected by the menstrual cycle, several studies report a higher cardiovascular strain during moderate exercise in the mid-luteal phase. Nevertheless, time to exhaustion at sub-maximal exercise intensities shows no change over the menstrual cycle. The significance of this finding should be questioned due to the low reproducibility of the time to exhaustion test. During prolonged exercise in hot conditions, a decrease in exercise time to exhaustion is shown during the mid-luteal phase, when body temperature is elevated. Thus, the mid-luteal phase has a potential negative effect on prolonged exercise performance through elevated body temperature and potentially increased cardiovascular strain. Practical implications for female endurance athletes may be the adjustment of competition schedules to their menstrual cycle, especially in hot, humid conditions. The small scope of the current research and its methodological limitations warrant further investigation of the effect of the menstrual cycle on prolonged exercise performance.

This is a preview of subscription content, access via your institution.

Table I

References

  1. 1.

    Lebrun CM. Effect of the different phases of the menstrual cycle and oral contraceptives on athletic performance. Sports Med 1993; 16(6): 400–30

    PubMed  CAS  Article  Google Scholar 

  2. 2.

    De Souza MJ, Miller BE, Loucks AB, et al. High frequency of luteal phase deficiency and anovulation in recreational women runners: blunted elevation in follicle-stimulating hormone observed during luteal-follicular transition. J Clin Endocrinol Metab 1998; 83(12): 4220–32

    PubMed  Article  Google Scholar 

  3. 3.

    Harlow SD, Ephross SA. Epidemiology of menstruation and its relevance to women’s health. Epidemiol Rev 1995; 17(2): 265–86

    PubMed  CAS  Google Scholar 

  4. 4.

    Marshall J. Thermal changes in the normal menstrual cycle. BMJ 1963 Jan; 12: 102–4

    Article  Google Scholar 

  5. 5.

    Horvath SM, Drinkwater BL. Thermoregulation and the menstrual cycle. Aviat Space Environ Med 1982; 53(8): 790–4

    PubMed  CAS  Google Scholar 

  6. 6.

    Bauman JE. Basal body temperature: unreliable method of ovulation detection. Fertil Steril 1981; 36(6): 729–33

    PubMed  CAS  Google Scholar 

  7. 7.

    Forman RG, Chapman MC, Steptoe PC. The effect of endogenous progesterone on basal body temperature in stimulated ovarian cycles. Hum Reprod 1987; 2(8): 631–4

    PubMed  CAS  Google Scholar 

  8. 8.

    Kesner JS, Wright DM, Schrader SM, et al. Methods of monitoring menstrual function in field studies: efficacy of methods. Reprod Toxicol 1992; 6(5): 385–400

    PubMed  CAS  Article  Google Scholar 

  9. 9.

    Miller PB, Soules MR. The usefulness of a urinary LH kit for ovulation prediction during menstrual cycles of normal women. Obstet Gynecol 1996; 87(1): 13–7

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Worthman CM, Stallings JF, Hofman LF. Sensitive salivary estradiol assay for monitoring ovarian function. Clin Chem 1990; 36(10): 1769–73

    PubMed  CAS  Google Scholar 

  11. 11.

    Vuorento T, Lahti A, Hovatta O, et al. Daily measurements of salivary progesterone reveal a high rate of anovulation in healthy students. Scand J Clin Lab Invest 1989; 49(4): 395–401

    PubMed  CAS  Article  Google Scholar 

  12. 12.

    Albertson BD, Zinaman MJ. The prediction of ovulation and monitoring of the fertile period. Adv Contracept 1987; 3(4): 263–90

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Israel R, Mishell Jr DR, Stone SC, et al. Single luteal phase serum progesterone assay as an indicator of ovulation. Am J Obstet Gynecol 1972; 112(8): 1043–6

    PubMed  CAS  Google Scholar 

  14. 14.

    Landgren BM, Unden AL, Diczfalusy E. Hormonal profile of the cycle in 68 normally menstruating women. Acta Endocrinol 1980; 94(1): 89–98

    PubMed  CAS  Google Scholar 

  15. 15.

    McCracken M, Ainsworth B, Hackney AC. Effects of the menstrual cycle phase on the blood lactate responses to exercise. Eur J Appl Physiol Occup Physiol 1994; 69(2): 174–5

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol 1996; 493 (Pt 1): 267–72

    PubMed  CAS  Google Scholar 

  17. 17.

    Carpenter AJ, Nunneley SA. Endogenous hormones subtly alter women’s response to heat stress. J Appl Physiol 1988; 65(5): 2313–7

    PubMed  CAS  Google Scholar 

  18. 18.

    Ferin M, Jewelewicz R, Warren M. The menstrual cycle, physiology, reproductive disorders, and infertility. Oxford: Oxford University Press, 1993

    Google Scholar 

  19. 19.

    Stephenson LA, Kolka MA. Esophageal temperature threshold for sweating decreases before ovulation in premenopausal women. J Appl Physiol 1999; 86 (1): 22–8

    PubMed  CAS  Google Scholar 

  20. 20.

    Stachenfeld NS, DiPietro L, Kokoszka CA, et al. Physiological variability of fluid-regulation hormones in young women. J Appl Physiol 1999; 86(3): 1092–6

    PubMed  CAS  Google Scholar 

  21. 21.

    Bunt JC. Metabolic actions of estradiol: significance for acute and chronic exercise responses. Med Sci Sports Exerc 1990; 22(3): 286–90

    PubMed  CAS  Google Scholar 

  22. 22.

    Filicori M, Butler JP, Crowley WF. Neuroendocrine regulation of the corpus luteum in the human: evidence for pulsatile progesterone secretion. J Clin Invest 1984; 73(6): 1638–47

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Syrop CH, Hammond MG. Diurnal variations in midluteal serum progesterone measurements. Fertil Steril 1987; 47(1): 67–70

    PubMed  CAS  Google Scholar 

  24. 24.

    Keizer HA, Rogol AD. Physical exercise and menstrual cycle alterations: what are the mechanisms? Sports Med 1990; 10(4): 218–35

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Jurkowski JE, Jones NL, Walker C, et al. Ovarian hormonal responses to exercise. J Appl Physiol 1978; 44(1): 109–14

    PubMed  CAS  Google Scholar 

  26. 26.

    Frankovich RJ, Lebrun CM. Menstrual cycle, contraception, and performance. Clin Sports Med 2000; 19(2): 251–71

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Phillips SK, Sanderson AG, Birch K, et al. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol 1996; 496 (Pt 2): 551–7

    PubMed  CAS  Google Scholar 

  28. 28.

    Bassey EJ, Coates L, Culpan J, et al. Natural variations in oestrogen and FSH levels in eumenorrheic women in negative association with voluntary muscle strength [abstract]. J Physiol 1995; 489P: 28P

    Google Scholar 

  29. 29.

    Greeves JP, Cable NT, Reilly T. The relationship between maximal muscle strength and reproductive hormones during the menstrual cycle. 4th Annual Congress of the European College of Sport Science; 1999 Jul 14–17; Rome, 189

  30. 30.

    DiBrezzo R, Fort IL, Brown B. Relationships among strength, endurance, weight and body fat during three phases of the menstrual cycle. J Sports Med Phys Fitness 1991; 31(1): 89–94

    PubMed  CAS  Google Scholar 

  31. 31.

    Quadango D, Faquin L, Gei-Nam L, et al. The menstrual cycle: Does it affect athletic performance? Phys Sportsmed 1991; 19(3): 121–4

    Google Scholar 

  32. 32.

    Lebrun CM, McKenzie DC, Prior JC, et al. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc 1995; 27(3): 437–44

    PubMed  CAS  Google Scholar 

  33. 33.

    Gür H. Concentric and eccentric isokinetic measurements in knee muscles during the menstrual cycle: a special reference to reciprocal moment ratios. Arch Phys Med Rehabil 1997; 78(5): 501–5

    PubMed  Article  Google Scholar 

  34. 34.

    White MJ, Weekes C. No evidence for a change in the voluntary or electrically evoked contractile characteristics of the triceps surae during the human menstrual cycle [abstract]. J Physiol 1998; 506P: 119P

    Google Scholar 

  35. 35.

    Janse de Jonge XAK, Boot CRL, Thorn JM, et al. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol 2001; 530 (Pt 1): 161–6

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Rutherford OM, Jones DA, Newham DJ. Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. J Neurol Neurosurg Psychiatry 1986; 49(11): 1288–91

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Hackney AC. Influence of oestrogen on muscle glycogen utilization during exercise. Acta Physiol Scand 1999; 167(3): 273–4

    PubMed  CAS  Article  Google Scholar 

  38. 38.

    Dombovy ML, Bonekat HW, Williams TJ, et al. Exercise performance and ventilatory response in the menstrual cycle. Med Sci Sports Exerc 1987; 19 (2): 111–7

    PubMed  CAS  Google Scholar 

  39. 39.

    Braun B, Mawson JT, Muza SR, et al. Women at altitude: carbohydrate utilization during exercise at 4,300 m. J Appl Physiol 2000; 88(1): 246–56

    PubMed  CAS  Google Scholar 

  40. 40.

    Nicklas BJ, Hackney AC, Sharp RL. The menstrual cycle and exercise: performance, muscle glycogen, and substrate responses. Int J Sports Med 1989; 10(4): 264–9

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    De Souza MJ, Maguire MS, Rubin KR, et al. Effects of menstrual phase and amenorrhea on exercise performance in runners. Med Sci Sports Exerc 1990; 22(5): 575–80

    PubMed  Article  Google Scholar 

  42. 42.

    Bonen A, Haynes FJ, Watson-Wright W, et al. Effects of menstrual cycle on metabolic responses to exercise. J Appl Physiol 1983; 55(5): 1506–13

    PubMed  CAS  Google Scholar 

  43. 43.

    Ashley CD, Kramer ML, Bishop P. Estrogen and substrate metabolism: a review of contradictory research. Sports Med 2000; 29(4): 221–7

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Jurkowski JE, Jones NL, Toews CJ, et al. Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol 1981; 51(6): 1493–9

    PubMed  CAS  Google Scholar 

  45. 45.

    Lavoie JM, Dionne N, Helie R, et al. Menstrual cycle phase dissociation of blood glucose homeostasis during exercise. J Appl Physiol 1987; 62(3): 1084–9

    PubMed  CAS  Article  Google Scholar 

  46. 46.

    Bemben DA, Salm PC, Salm AJ. Ventilatory and blood lactate responses to maximal treadmill exercise during the menstrual cycle. J Sports Med Phys Fitness 1995; 35(4): 257–62

    PubMed  CAS  Google Scholar 

  47. 47.

    Galliven EA, Singh A, Michelson D, et al. Hormonal and metabolic responses to exercise across time of day and menstrual cycle phase. J Appl Physiol 1997; 83(6): 1822–31

    PubMed  CAS  Google Scholar 

  48. 48.

    Hessemer V, Brack K. Influence of menstrual cycle on thermoregulatory, metabolic, and heart rate responses to exercise at night. J Appl Physiol 1985; 59(6): 1911–7

    PubMed  CAS  Google Scholar 

  49. 49.

    Stachenfeld NS, Silva C, Keefe DL. Estrogen modifies the temperature effects of progesterone. J Appl Physiol 2000; 88(5): 1643–9

    PubMed  CAS  Google Scholar 

  50. 50.

    Watson PE, Robinson MF. Variations in body-weight of young women during the menstrual cycle. Br J Nutr 1965; 19: 237–48

    PubMed  CAS  Article  Google Scholar 

  51. 51.

    Pivarnik JM, Marichal CJ, Spillman T, et al. Menstrual cycle phase affects temperature regulation during endurance exercise. J Appl Physiol 1992; 72 (2): 543–8

    PubMed  CAS  Google Scholar 

  52. 52.

    Tenaglia SA, McLellan TM, Klentrou PP. Influence of menstrual cycle and oral contraceptives on tolerance to uncompensable heat stress. Eur J Appl Physiol Occup Physiol 1999; 80(2): 76–83

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Fortney SM, Turner C, Steinmann L, et al. Blood volume responses of men and women to bed rest. J Clin Pharmacol 1994; 34(5): 434–9

    PubMed  CAS  Google Scholar 

  54. 54.

    Stephenson LA, Kolka MA. Plasma volume during heat stress and exercise in women. Eur J Appl Physiol Occup Physiol 1988; 57(4): 373–81

    PubMed  CAS  Article  Google Scholar 

  55. 55.

    Vellar OD. Changes in hemoglobin concentration and hematocrit during the menstrual cycle: I. A cross-sectional study. Acta Obstet Gynecol Scand 1974; 53(3): 243–6

    PubMed  CAS  Article  Google Scholar 

  56. 56.

    Claybaugh JR, Sato AK, Crosswhite LK, et al. Effects of time of day, gender, and menstrual cycle phase on the human response to a water load. Am J Physiol Regul Integr Comp Physiol 2000; 279(3): R966–73

    PubMed  CAS  Google Scholar 

  57. 57.

    Gaebelein CJ, Senay LC. Vascular volume dynamics during ergometer exercise at different menstrual phases. Eur J Appl Physiol 1982; 50: 1–11

    Article  Google Scholar 

  58. 58.

    Hackney AC, McCracken-Compton MA, Ainsworth B. Substrate responses to submaximal exercise in the midfollicular and midluteal phases of the menstrual cycle. Int J Sport Nutr 1994; 4(3): 299–308

    PubMed  CAS  Google Scholar 

  59. 59.

    Hallberg L, Hogdahl A, Nilsson L, et al. Menstrual blood loss: a population study: variation at different ages and attempts to define normality. Acta Obstet Gynecol Scand 1966; 45(3): 320–51

    PubMed  CAS  Article  Google Scholar 

  60. 60.

    Sawka MN, Coyle EF. Influence of body water and blood volume on thermoregulation and exercise performance in the heat. In: Holloszy JO, editor. Exercise and sport sciences reviews. Philadelphia (PA): Lippincott Williams & Wilkins, 1999: 167–218

    Google Scholar 

  61. 61.

    Hessemer V, Bruck K. Influence of menstrual cycle on shivering, skin blood flow, and sweating responses measured at night. J Appl Physiol 1985; 59(6): 1902–10

    PubMed  CAS  Google Scholar 

  62. 62.

    Schoene RB, Robertson HT, Pierson DJ, et al. Respiratory drives and exercise in menstrual cycles of athletic and nonathletic women. J Appl Physiol 1981; 50(6): 1300–5

    PubMed  CAS  Google Scholar 

  63. 63.

    Moran VH, Leathard HL, Coley J. Cardiovascular functioning during the menstrual cycle. Clin Physiol 2000; 20(6): 496–504

    PubMed  CAS  Article  Google Scholar 

  64. 64.

    Gorman AJ. Mechanisms producing tachycardia in conscious baboons during environmental heat stress. J Appl Physiol 1984; 56(2): 441–6

    PubMed  CAS  Google Scholar 

  65. 65.

    Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol 1992; 73(4): 1340–50

    PubMed  CAS  Google Scholar 

  66. 66.

    Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 1974; 54(1): 75–159

    PubMed  CAS  Google Scholar 

  67. 67.

    Jose AD, Stitt F, Collison D. The effects of exercise and changes in body temperature on the intrinsic heart rate in man. Am Heart J 1970; 79(4): 488–98

    PubMed  CAS  Article  Google Scholar 

  68. 68.

    Bailey SP, Zacher CM, Mittleman KD. Effect of menstrual cycle phase on carbohydrate supplementation during prolonged exercise to fatigue. J Appl Physiol 2000; 88(2): 690–7

    PubMed  CAS  Google Scholar 

  69. 69.

    Beidleman BA, Rock PB, Muza SR, et al. Exercise VE and physical performance at altitude are not affected by menstrual cycle phase. J Appl Physiol 1999; 86(5): 1519–26

    PubMed  CAS  Google Scholar 

  70. 70.

    Preston RJ, Heenan AP, Wolfe LA. Physicochemical analysis of phasic menstrual cycle effects on acid-base balance. Am J Physiol 2001; 280(2): R481–7

    CAS  Google Scholar 

  71. 71.

    Bayliss DA, Millhorn DE. Central neural mechanisms of progesterone action: application to the respiratory system. J Appl Physiol 1992; 73(2): 393–404

    PubMed  CAS  Google Scholar 

  72. 72.

    Dempsey JA, Gledhill N, Reddan WG, et al. Pulmonary adaptation to exercise: effects of exercise type and duration, chronic hypoxia and physical training. Ann N Y Acad Sci 1977; 301: 243–61

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    MacDougall JD, Reddan WG, Layton CR, et al. Effects of metabolic hyperthermia on performance during heavy prolonged exercise. J Appl Physiol 1974; 36(5): 538–44

    PubMed  CAS  Google Scholar 

  74. 74.

    White MD, Cabanac M. Exercise hyperpnea and hyperthermia in humans. J Appl Physiol 1996; 81(3): 1249–54

    PubMed  CAS  Google Scholar 

  75. 75.

    Williams TJ, Krahenbuhl GS. Menstrual cycle phase and running economy. Med Sci Sports Exerc 1997; 29(12): 1609–18

    PubMed  CAS  Article  Google Scholar 

  76. 76.

    Dempsey JA, Johnson BD. Demand vs capacity in the healthy pulmonary system. Schweiz Z Sportmed 1992; 40(2): 55–64

    PubMed  CAS  Google Scholar 

  77. 77.

    Harvey OL, Crocket HE. Individual differences in temperature changes during the course of the menstrual cycle. Hum Biol 1932; 4: 453–68

    Google Scholar 

  78. 78.

    Kleitman N, Ramsaroop A. Periodicity in body temperature and heart rate. Endocrinology 1948; 43(1): 1–20

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Davis ME, Fugo NW. The cause of physiologic basal temperature changes in women. J Clin Endocrinol Metab 1948; 8: 550–63

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Southam AL, Gonzaga FP. Systemic changes during the menstrual cycle. Am J Obstet Gynecol 1965; 91: 142–65

    PubMed  CAS  Google Scholar 

  81. 81.

    Tankersley CG, Nicholas WC, Deaver DR, et al. Estrogen replacement in middle-aged women: thermoregulatory responses to exercise in the heat. J Appl Physiol 1992; 73(4): 1238–45

    PubMed  CAS  Google Scholar 

  82. 82.

    Israel SL, Schneller O. The thermogenic property of progesterone. Fertil Steril 1950; 1(1): 53–65

    Google Scholar 

  83. 83.

    Perlman RM. The effects of certain steroids: intramuscular and sublingual: on basal body temperature of the adult human male [abstract]. J Clin Endocrinol Metab 1948; 8: 586

    PubMed  CAS  Google Scholar 

  84. 84.

    Rothchild I, Barnes AC. The effects of dosage, and of estrogen, androgen or salicylate administration on the degree of body temperature elevation induced by progesterone. Endocrinology 1952; 50: 485–96

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Buxton CL, Atkinson WB. Hormonal factors involved in the regulation of basal body temperature during the menstrual cycle and pregnancy. J Clin Endocrinol Metab 1948; 8: 544–9

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Cunningham DJ, Cabanac M. Evidence from behavioral thermoregulatory responses of a shift in setpoint temperature related to the menstrual cycle. J Physiol (Paris) 1971; 63(3): 236–8

    CAS  Google Scholar 

  87. 87.

    Bonjour JP, Welti HJ, Jequier E. Calorimetric study of thermoregulatory mechanisms at the onset of sweating and during the menstrual cycle [in French]. J Physiol (Paris) 1976; 72(2): 181–204

    CAS  Google Scholar 

  88. 88.

    Nakayama T, Suzuki M, Ishizuka N. Action of progesterone on preoptic thermosensitive neurones [abstract]. Nature 1975; 258(5530): 80

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Marrone BL, Gentry RT, Wade GN. Gonadal hormones and body temperature in rats: effects of estrous cycles, castration and steroid replacement. Physiol Behav 1976; 17(3): 419–25

    PubMed  CAS  Article  Google Scholar 

  90. 90.

    Silva NL, Boulant JA. Effects of testosterone, estradiol, and temperature on neurons in preoptic tissue slices. Am J Physiol 1986; 250 (4 Pt 2): R625–32

    PubMed  CAS  Google Scholar 

  91. 91.

    Cagnacci A, Volpe A, Paoletti AM, et al. Regulation of the 24-hour rhythm of body temperature in menstrual cycles with spontaneous and gonadotropin-induced ovulation. Fertil Steril 1997; 68(3): 421–5

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Magallon DT, Masters WH. Basal temperature studies in the aged female: influence of oestrogen, progesterone, and androgen. J Clin Endocrinol 1950; 10: 511–8

    CAS  Article  Google Scholar 

  93. 93.

    Avellini BA, Kamon E, Krajewski JT. Physiological responses of physically fit men and women to acclimation to humid heat. J Appl Physiol 1980; 49(2): 254–61

    PubMed  CAS  Google Scholar 

  94. 94.

    Frye AJ, Kamon E, Webb M. Responses of menstrual women, amenorrheal women, and men to exercise in a hot, dry environment. Eur J Appl Physiol Occup Physiol 1982; 48(2): 279–88

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Wells CL, Horvath SM. Heat stress reponses related to the menstrual cycle. J Appl Physiol 1973; 35(1): 1–5

    PubMed  CAS  Google Scholar 

  96. 96.

    Wells CL, Horvath SM. Responses to exercise in a hot environment as related to the menstrual cycle. J Appl Physiol 1974; 36(3): 299–302

    PubMed  CAS  Google Scholar 

  97. 97.

    Senay Jr LC. Body fluids and temperature responses of heat-exposed women before and after ovulation with and without rehydration. J Physiol 1973; 232(2): 209–19

    PubMed  CAS  Google Scholar 

  98. 98.

    Frascarolo P, Schutz Y, Jequier E. Influence of the menstrual cycle on the sweating response measured by direct calorimetry in women exposed to warm environmental conditions. Eur J Appl Physiol Occup Physiol 1992; 64(5): 449–54

    PubMed  CAS  Article  Google Scholar 

  99. 99.

    Hirata K, Nagasaka T, Hirai A, et al. Effects of human menstrual cycle on thermoregulatory vasodilation during exercise. Eur J Appl Physiol Occup Physiol 1986; 54(6): 559–65

    PubMed  CAS  Article  Google Scholar 

  100. 100.

    Grucza R, Pekkarinen H, Titov EK, et al. Influence of the menstrual cycle and oral contraceptives on thermoregulatory responses to exercise in young women. Eur J Appl Physiol Occup Physiol 1993; 67(3): 279–85

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Kolka MA, Stephenson LA. Effect of luteal phase elevation in core temperature on forearm blood flow during exercise. J Appl Physiol 1997; 82(4): 1079–83

    PubMed  CAS  Google Scholar 

  102. 102.

    Kolka MA, Stephenson LA. Control of sweating during the human menstrual cycle. Eur J Appl Physiol Occup Physiol 1989; 58(8): 890–5

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Stephenson LA, Kolka MA. Menstrual cycle phase and time of day alter reference signal controlling arm blood flow and sweating. Am J Physiol 1985; 249 (2 Pt 2): R186–91

    PubMed  CAS  Google Scholar 

  104. 104.

    McLellan TM, Cheung SS, Jacobs I. Variability of time to exhaustion during submaximal exercise. Can J Appl Physiol 1995; 20(1): 39–51

    PubMed  CAS  Article  Google Scholar 

  105. 105.

    Jeukendrup A, Saris WH, Brouns F, et al. A new validated endurance performance test. Med Sci Sports Exerc 1996; 28(2): 266–70

    PubMed  CAS  Article  Google Scholar 

  106. 106.

    Montain SJ, Sawka MN, Cadarette BS, et al. Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate. J Appl Physiol 1994; 77(1): 216–22

    PubMed  CAS  Google Scholar 

  107. 107.

    Walters TJ, Ryan KL, Tate LM, et al. Exercise in the heat is limited by a critical internal temperature. J Appl Physiol 2000; 89(2): 799–806

    PubMed  CAS  Google Scholar 

  108. 108.

    Booth J, Marino F, Ward JJ. Improved running performance in hot humid conditions following whole body precooling. Med Sci Sports Exerc 1997; 29(7): 943–9

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xanne A. K. Janse de Jonge.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Jonge, X.A.K.J. Effects of the Menstrual Cycle on Exercise Performance. Sports Med 33, 833–851 (2003). https://doi.org/10.2165/00007256-200333110-00004

Download citation

Keywords

  • Menstrual Cycle
  • Luteal Phase
  • Exercise Performance
  • Progesterone Concentration
  • Menstrual Cycle Phase